Promising 2,6,9-Trisubstituted Purine Derivatives for Anticancer Compounds: Synthesis, 3D-QSAR, and Preliminary Biological Assays

. 2019 Dec 25 ; 21 (1) : . [epub] 20191225

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31881717

Grantová podpora
1161816 Fondo Nacional de Desarrollo Científico y Tecnológico

We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.

Zobrazit více v PubMed

Hanahan D., Weinberg R.A. Hallmarks of Cancer: The Next Generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Hassanpour S.H., Dehghani M. Review of cancer from perspective of molecular. J. Cancer Res. Pract. 2017;4:127–129. doi: 10.1016/j.jcrpr.2017.07.001. DOI

Heng H.H., Stevens J.B., Bremer S.W., Ye K.J., Liu G., Ye C.J. The evolutionary mechanism of cancer. J. Cell. Biochem. 2010;109:1072–1084. doi: 10.1002/jcb.22497. PubMed DOI

Aghi M., Chou T.C., Suling K., Breakefield X.O., Chiocca E.A. Multimodal cancer treatment mediated by a replicating oncolytic virus that delivers the oxazaphosphorine/rat cytochrome P450 2B1 and ganciclovir/herpes simplex virus thymidine kinase gene therapies. Cancer Res. 1999;59:3861–3865. PubMed

Chan E.L., Chin C.H., Lui V.W. An update of ALK inhibitors in human clinical trials. Future Oncol. 2015;12:71–81. doi: 10.2217/fon.15.293. PubMed DOI

Rani R., Kumar V. Recent Update on Human Lactate Dehydrogenase Enzyme 5 (hLDH5) Inhibitors: A Promising Approach for Cancer Chemotherapy. J. Med. Chem. 2015;59:487–496. doi: 10.1021/acs.jmedchem.5b00168. PubMed DOI

Dörsam B., Fahrer J. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett. 2016;371:12–19. doi: 10.1016/j.canlet.2015.11.019. PubMed DOI

Ni M., Esposito E., Raj V.P., Muzi L., Zunino F., Zuco V., Cominetti D., Penco S., Dal Pozzo A. New macrocyclic analogs of the natural histone deacetylase inhibitor FK228; design, synthesis and preliminary biological evaluation. Bioorg. Med. Chem. 2015;23:6785–6793. doi: 10.1016/j.bmc.2015.10.004. PubMed DOI

Sherer C., Snape T.J. Heterocyclic scaffolds as promising anticancer agents against tumours of the central nervous system: Exploring the scope of indole and carbazole derivatives. Eur. J. Med. Chem. 2015;97:552–560. doi: 10.1016/j.ejmech.2014.11.007. PubMed DOI

Dolezal M., Zitko J. Pyrazine derivatives: A patent review (June 2012—present) Expert Opin. Ther. Pat. 2015;25:33–47. doi: 10.1517/13543776.2014.982533. PubMed DOI

Shiro T., Fukaya T., Tobe M. The chemistry and biological activity of heterocycle-fused quinolinone derivatives: A review. Eur. J. Med. Chem. 2015;97:397–408. doi: 10.1016/j.ejmech.2014.12.004. PubMed DOI

Khan I., Ibrar A., Abbas N. Oxadiazoles as Privileged Motifs for Promising Anticancer Leads: Recent Advances and Future Prospects. Arch. Pharm. 2014;347:1–20. doi: 10.1002/ardp.201300231. PubMed DOI

Jarvis L.M. The year in new drugs: FDA approvals hit a 20-year high in 2017, with cancer and rare-disease drugs dominating the list of new medicines. Chem. Eng. News. 2018;96:25–30.

Price A.J., Howard S., Cons B.D. Fragment-based drug discovery and its application to challenging drug targets. Essays Biochem. 2017;61:475–484. PubMed

Romasanta A.K.S., van der Sijde P., Hellsten I., Hubbard R.E., Keseru G.M., van Muijlwijk-Koezen J., de Esch I.J.P. When fragments link: A bibliometric perspective on the development of fragment-based drug discovery. Drug Discov. Today. 2018;23:1596–1609. doi: 10.1016/j.drudis.2018.05.004. PubMed DOI

Welsch M.E., Snyder S.A., Stockwell B.R. Privileged scaffolds for library design and drug discovery. Curr. Opin. Chem. Biol. 2010;14:347–361. doi: 10.1016/j.cbpa.2010.02.018. PubMed DOI PMC

Legraverend M., Grierson D.S. The purines: Potent and versatile small molecule inhibitors and modulators of key biological targets. Bioorg. Med. Chem. 2006;14:3987–4006. doi: 10.1016/j.bmc.2005.12.060. PubMed DOI

Zhao H., Dietrich J. Privileged scaffolds in lead generation. Expert Opin. Drug Discov. 2015;10:781–790. doi: 10.1517/17460441.2015.1041496. PubMed DOI

Morales F., Ramirez A., Conejo-Garcia A., Morata C., Marchal J.A., Campos J.M. Anti-proliferative activity of 2,6-dichloro-9- or 7-(ethoxycarbonylmethyl)-9H- or 7H-purines against several human solid tumour cell lines. Eur. J. Med. Chem. 2014;76:118–124. doi: 10.1016/j.ejmech.2014.02.012. PubMed DOI

Yoon J.-s., Jarhad D.B., Kim G., Nayak A., Zhao L.X., Yu J., Kim H.-R., Lee J.Y., Mulamoottil V.A., Chandra G., et al. Design, synthesis and anticancer activity of fluorocyclopentenyl-purines and–pyrimidines. Eur. J. Med. Chem. 2018;155:406–417. doi: 10.1016/j.ejmech.2018.06.003. PubMed DOI

Malinkova V., Reznickova E., Jorda R., Gucky T., Krystof V. Trisubstituted purine inhibitors of PDGFRalpha and their antileukemic activity in the human eosinophilic cell line EOL-1. Bioorg. Med. Chem. 2017;25:6523–6535. doi: 10.1016/j.bmc.2017.10.032. PubMed DOI

Calderon-Arancibia J., Espinosa-Bustos C., Canete-Molina A., Tapia R.A., Faundez M., Torres M.J., Aguirre A., Paulino M., Salas C.O. Synthesis and pharmacophore modelling of 2,6,9-trisubstituted purine derivatives and their potential role as apoptosis-inducing agents in cancer cell lines. Molecules. 2015;20:6808–6826. doi: 10.3390/molecules20046808. PubMed DOI PMC

Gucký T., Řezníčková E., Radošová Muchová T., Jorda R., Klejová Z., Malínková V., Berka K., Bazgier V., Ajani H., Lepšík M., et al. Discovery of N2-(4-Amino-cyclohexyl)-9-cyclopentyl-N6-(4-morpholin-4-ylmethyl-phenyl)-9H-purine-2,6-diamine as a Potent FLT3 Kinase Inhibitor for Acute Myeloid Leukemia with FLT3 Mutations. J. Med. Chem. 2018;61:3855–3869. doi: 10.1021/acs.jmedchem.7b01529. PubMed DOI

Demir Z., Guven E.B., Ozbey S., Kazak C., Atalay R.C., Tuncbilek M. Synthesis of novel substituted purine derivatives and identification of the cell death mechanism. Eur. J. Med. Chem. 2015;89:701–720. doi: 10.1016/j.ejmech.2014.10.080. PubMed DOI

Tuncbilek M., Kucukdumlu A., Guven E.B., Altiparmak D., Cetin-Atalay R. Synthesis of novel 6-substituted amino-9-(β-d-ribofuranosyl)purine analogs and their bioactivities on human epithelial cancer cells. Bioorg. Med. Chem. Lett. 2018;28:235–239. doi: 10.1016/j.bmcl.2017.12.070. PubMed DOI

Patel R.V., Park S.W. An evolving role of piperazine moieties in drug design and discovery. Mini Rev. Med. Chem. 2013;13:1579–1601. doi: 10.2174/13895575113139990073. PubMed DOI

Sharma S., Singh J., Ojha R., Singh H., Kaur M., Bedi P.M.S., Nepali K. Design strategies, structure activity relationship and mechanistic insights for purines as kinase inhibitors. Eur. J. Med. Chem. 2016;112:298–346. doi: 10.1016/j.ejmech.2016.02.018. PubMed DOI

Chang Y.T., Gray N.S., Rosania G.R., Sutherlin D.P., Kwon S., Norman T.C., Sarohia R., Leost M., Meijer L., Schultz P.G. Synthesis and application of functionally diverse 2,6,9-trisubstituted purine libraries as CDK inhibitors. Chem. Biol. 1999;6:361–375. doi: 10.1016/S1074-5521(99)80048-9. PubMed DOI

Wang Y., Metcalf C.A., Shakespeare W.C., Sundaramoorthi R., Keenan T.P., Bohacek R.S., van Schravendijk M.R., Violette S.M., Narula S.S., Dalgarno D.C., et al. Bone-Targeted 2,6,9-Trisubstituted purines: Novel inhibitors of Src tyrosine kinase for the treatment of bone diseases. Bioorg. Med. Chem. Lett. 2003;13:3067–3070. doi: 10.1016/S0960-894X(03)00648-6. PubMed DOI

Coxon C.R., Anscombe E., Harnor S.J., Martin M.P., Carbain B., Golding B.T., Hardcastle I.R., Harlow L.K., Korolchuk S., Matheson C.J., et al. Cyclin-Dependent Kinase (CDK) Inhibitors: Structure-Activity Relationships and Insights into the CDK-2 Selectivity of 6-Substituted 2-Arylaminopurines. J. Med. Chem. 2017;60:1746–1767. doi: 10.1021/acs.jmedchem.6b01254. PubMed DOI PMC

Zhang L., Xin M., Shen H., Wen J., Tang F., Tu C., Zhao X., Wei P. Five-membered heteroaromatic ring fused-pyrimidine derivatives: Design, synthesis, and hedgehog signaling pathway inhibition study. Bioorg. Med. Chem. Lett. 2014;24:3486–3492. doi: 10.1016/j.bmcl.2014.05.066. PubMed DOI

Espinosa-Bustos C., Mella J., Soto-Delgado J., Salas C.O. State of the art of Smo antagonists for cancer therapy: Advances in the target receptor and new ligand structures. Future Med. Chem. 2019;11:617–638. doi: 10.4155/fmc-2018-0497. PubMed DOI

Malathi K., Ramaiah S. Bioinformatics approaches for new drug discovery: A review. Biotechnol. Genet. Eng. Rev. 2018;34:243–260. doi: 10.1080/02648725.2018.1502984. PubMed DOI

Krajcovicova S., Soural M. Solid-Phase Synthetic Strategies for the Preparation of Purine Derivatives. ACS Comb. Sci. 2016;18:371–386. doi: 10.1021/acscombsci.6b00061. PubMed DOI

Fiorini M.T., Abell C. Solution-phase synthesis of 2,6,9-trisubstituted purines. Tetrahedron Lett. 1998;39:1827–1830. doi: 10.1016/S0040-4039(98)00098-7. DOI

NCI NCI/NIH Developmental Therapeutcs Program. [(accessed on 20 August 2014)]; Available online: http://dtp.nci.nih.gov/branches/btb/handlingprep.html.

Cañete-Molina Á., Espinosa-Bustos C., González-Castro M., Faúndez M., Mella J., Tapia R.A., Cabrera A.R., Brito I., Aguirre A., Salas C.O. Design, synthesis, cytotoxicity and 3D-QSAR analysis of new 3,6-disubstituted-1,2,4,5-tetrazine derivatives as potential antitumor agents. Arab. J. Chem. 2019;12:1092–1107. doi: 10.1016/j.arabjc.2017.04.002. DOI

Aubrey B.J., Kelly G.L., Janic A., Herold M.J., Strasser A. How does p53 induce apoptosis and how does this relate to p53-mediated tumour suppression? Cell Death Differ. 2017;25:104–113. doi: 10.1038/cdd.2017.169. PubMed DOI PMC

Seung-Wook C. Structural insights into the transcription-independent apoptotic pathway of p53. BMB Rep. 2014;47:167–172. PubMed PMC

Lanni J.S., Lowe S.W., Licitra E.J., Liu J.O., Jacks T. p53-independent apoptosis induced by paclitaxel through an indirect mechanism. Proc. Natl. Acad. Sci. USA. 1997;94:9679–9683. doi: 10.1073/pnas.94.18.9679. PubMed DOI PMC

D’Orazi G., Cirone M. Mutant p53 and Cellular Stress Pathways: A Criminal Alliance That Promotes Cancer Progression. Cancers. 2019;11:614. doi: 10.3390/cancers11050614. PubMed DOI PMC

Stoe & Cie GmbH; Darmstadt, Germany: 2000. Stoe, Cie, X-STEP32, Version 1.07b: crystallographic package.

Sheldrick G.M. A short history of SHELX. Acta Crystallogr. Sect. A. 2008;64:112–122. doi: 10.1107/S0108767307043930. PubMed DOI

Cabrera A.R., Espinosa-Bustos C., Faundez M., Melendez J., Jaque P., Daniliuc C.G., Aguirre A., Rojas R.S., Salas C.O. New imidoyl-indazole platinum (II) complexes as potential anticancer agents: Synthesis, evaluation of cytotoxicity, cell death and experimental-theoretical DNA interaction studies. J. Inorg. Biochem. 2017;174:90–101. doi: 10.1016/j.jinorgbio.2017.06.001. PubMed DOI

Vinter J.G., Davis A., Saunders M.R. Strategic approaches to drug design. I. An integrated software framework for molecular modelling. J. Comput. Aided Mol. Des. 1987;1:31–51. doi: 10.1007/BF01680556. PubMed DOI

Gasteiger J., Marsili M. Iterative Partial Equalization of Orbital Electronegativity—A Rapid Access to Atomic Charges. Tetrahedron. 1980;36:3219–3228. doi: 10.1016/0040-4020(80)80168-2. DOI

Clark M., Cramer R.D., Van Opdenbosch N. Validation of the general purpose Tripos 5.2 force field. J. Comput. Chem. 1989;10:982–1012. doi: 10.1002/jcc.540100804. DOI

Oprea T.I., Waller C.L., Marshall G.R. Three-dimensional quantitative structure-activity relationship of human immunodeficiency virus (I) protease inhibitors. 2. Predictive power using limited exploration of alternate binding modes. J. Med. Chem. 1994;37:2206–2215. doi: 10.1021/jm00040a013. PubMed DOI

Waller C.L., Oprea T.I., Giolitti A., Marshall G.R. Three-dimensional QSAR of human immunodeficiency virus (I) protease inhibitors. 1. A CoMFA study employing experimentally-determined alignment rules. J. Med. Chem. 1993;36:4152–4160. doi: 10.1021/jm00078a003. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...