The effects of nerve terminal activity on non-quantal release of acetylcholine at the mouse neuromuscular junction
Language English Country England, Great Britain Media print
Document type Journal Article
PubMed
2388160
PubMed Central
PMC1189779
DOI
10.1113/jphysiol.1990.sp018044
Knihovny.cz E-resources
- MeSH
- Acetylcholine metabolism MeSH
- Atropine pharmacology MeSH
- Cholinesterase Inhibitors pharmacology MeSH
- Electric Stimulation MeSH
- Mice MeSH
- Motor Endplate physiology MeSH
- Neuromuscular Junction drug effects metabolism physiology MeSH
- Nerve Endings drug effects metabolism physiology MeSH
- Ouabain pharmacology MeSH
- Oxotremorine pharmacology MeSH
- In Vitro Techniques MeSH
- Animals MeSH
- Check Tag
- Mice MeSH
- Female MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Acetylcholine MeSH
- Atropine MeSH
- Cholinesterase Inhibitors MeSH
- Ouabain MeSH
- Oxotremorine MeSH
1. Local endplate depolarization induced by anticholinesterase application to mouse nerve-diaphragm preparations was taken as a measure of non-quantal release of acetylcholine. 2. Non-quantal acetylcholine release occurred within 20-60 s after anticholinesterase application, either spontaneously or evoked by nerve stimulation. Non-quantal release declined with time and disappeared after 3-5 min. 3. The amplitude of stimulation-evoked non-quantal release increased with the frequency of stimulation and was maximal at frequencies above 50 Hz. Two stimuli were sufficient to evoke the maximal effect. 4. Micromolar concentrations of atropine, pirenzepine and vesamicol reduced the amplitude and shortened the duration of non-quantal release. Oxotremorine (10(-8) M) enhanced the amplitude and ouabain (10(-4) M) prolonged the duration of non-quantal release. 5. Our results support the idea that the non-quantal release is due to the vesicular acetylcholine transport system which becomes transiently a part of the nerve terminal during exocytotic release of quantal acetylcholine.
See more in PubMed
Neurosci Lett. 1985 Sep 6;59(3):277-80 PubMed
J Physiol. 1957 Oct 30;138(3):434-44 PubMed
Pflugers Arch. 1987 Aug;409(4-5):540-6 PubMed
J Physiol. 1954 Jun 28;124(3):586-604 PubMed
Nature. 1980 Jan 3;283(5742):90-2 PubMed
Pflugers Arch. 1983 Jun 1;397(4):319-22 PubMed
Proc R Soc Lond B Biol Sci. 1981 May 7;212(1186):131-7 PubMed
J Physiol. 1986 Mar;372:395-404 PubMed
J Physiol. 1979 Jan;286:1-14 PubMed
Physiol Bohemoslov. 1978;27(5):449-55 PubMed
Proc R Soc Lond B Biol Sci. 1977 Feb 11;196(1122):59-72 PubMed
J Physiol. 1987 Apr;385:147-67 PubMed
P R Health Sci J. 1988 Aug;7(2):71-4 PubMed
Proc Natl Acad Sci U S A. 1985 May;82(10):3514-8 PubMed
Neurosci Lett. 1989 Sep 11;103(3):293-7 PubMed
J Physiol. 1956 Jun 28;132(3):650-66 PubMed
Mol Pharmacol. 1983 Jul;24(1):48-54 PubMed
Nature. 1984 Feb 2-8;307(5950):457-60 PubMed
Pflugers Arch. 1977 Sep 16;370(3):295-7 PubMed
J Cell Biol. 1985 Nov;101(5 Pt 1):1953-65 PubMed
J Physiol. 1950 Oct 16;111(3-4):408-22 PubMed
J Gen Physiol. 1981 May;77(5):503-29 PubMed
Neuroscience. 1983 Jun;9(2):429-35 PubMed
From Frog Muscle to Brain Neurons: Joys and Sorrows in Neuroscience
Depression of miniature endplate potential frequency by acetylcholine and its analogues in frog