Depression of miniature endplate potential frequency by acetylcholine and its analogues in frog
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
1667283
PubMed Central
PMC1908837
DOI
10.1111/j.1476-5381.1991.tb12544.x
Knihovny.cz E-zdroje
- MeSH
- acetylcholin analogy a deriváty farmakologie MeSH
- aktivace enzymů účinky léků MeSH
- chemická deprese MeSH
- chloridy metabolismus MeSH
- dibutyryl cyklický AMP farmakologie MeSH
- dibutyryl cyklický GMP farmakologie MeSH
- draslík metabolismus MeSH
- karbachol farmakologie MeSH
- membránové potenciály účinky léků MeSH
- nervosvalová ploténka účinky léků MeSH
- nervosvalové spojení účinky léků MeSH
- parasympatolytika farmakologie MeSH
- parasympatomimetika farmakologie MeSH
- Rana temporaria MeSH
- sodík metabolismus MeSH
- sodíko-draslíková ATPasa metabolismus MeSH
- techniky in vitro MeSH
- teplota MeSH
- theofylin farmakologie MeSH
- vápník metabolismus MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetylcholin MeSH
- chloridy MeSH
- dibutyryl cyklický AMP MeSH
- dibutyryl cyklický GMP MeSH
- draslík MeSH
- karbachol MeSH
- parasympatolytika MeSH
- parasympatomimetika MeSH
- sodík MeSH
- sodíko-draslíková ATPasa MeSH
- theofylin MeSH
- vápník MeSH
1. Acetylcholine (ACh), 7.5 x 10(-5) M, and carbachol, 5 x 10(-6) M (CCh) depressed the frequency of miniature endplate potentials (m.e.p.ps) in the frog (Rana temporaria) sartorius neuromuscular junction with active acetylcholinesterase to about 50-55% of the controls. 2. A similar depression was produced by the nicotinic agonists, nicotine, suberyldicholine and tetramethylammonium. 3. The muscarinic agonists, oxotremorine, methylfurmethide and methacholine were without effect on m.e.p.p. frequency. The muscarinic antagonist, atropine and the nicotinic antagonist, (+)-tubocurarine, had no effect on the depression of m.e.p.p. frequency evoked by CCh. 4. The ganglionic blockers, benzhexonium and IEM-1119, were also without effect on the CCh-evoked depression of m.e.p.p. frequency. 5. Pretreatment of muscles with anticholinesterases did not prevent the CCh-induced drop in m.e.p.p. frequency. 6. The effect of CCh was proportionally the same as in the controls in preparations where the m.e.p.p. frequency was changed by elevation of K+ and in the presence of theophylline, noradrenaline, dibutyryl adenosine 3':5'-cyclic monophosphate (db cyclic AMP) and db cyclic GMP. 7. An inhibitor of Na+,K(+)-ATPase, ouabain, 5 x 10(-5) mol l-1, prevented or reversed the depression of m.e.p.p. frequency by CCh. However, the depression was present in a nominally K(+)-free medium. Insulin and adrenaline, which are considered to be Na+,K(+)-ATPase activators, were without effect on depression of m.e.p.p. frequency. 8. The depression of m.e.p.p. frequency by 5 x 10(-6) M CCh was the same at temperatures between 5 and 30 degrees C with a Q10 near to 1.0. When threshold amounts of CCh were used (6 x 10-7 and 3 x 10-7 M), the depression was less at higher temperatures.9. The receptive structures responsible for the CCh (or ACh)-evoked depression of m.e.p.p. frequency differ pharmacologically from muscarinic, nicotinic ganglionic and neuromuscular junction ACh-receptors as well as from the synaptic cholinesterase, in contrast to previous reports (Duncan & Publicover, 1979).The low temperature-dependence points to the possibility that physical rather than biochemical processes are limiting in this presynaptic effect of cholinomimetics.
Zobrazit více v PubMed
Pflugers Arch. 1987 Jul;409(3):258-64 PubMed
Pharmacol Rev. 1966 Mar;18(1):145-61 PubMed
J Cell Biol. 1985 Nov;101(5 Pt 1):1953-65 PubMed
Pharmacol Rev. 1985 Mar;37(1):81-132 PubMed
J Physiol. 1990 Apr;423:631-40 PubMed
J Gen Physiol. 1981 Sep;78(3):313-44 PubMed
Brain Res. 1983 Mar 28;264(1):89-97 PubMed
Pflugers Arch. 1981 Sep;391(3):213-8 PubMed
Biochim Biophys Acta. 1982 Dec 22;693(2):273-9 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 1981 Apr;316(2):131-4 PubMed
J Physiol. 1979 Sep;294:91-103 PubMed
J Physiol. 1979 Jan;286:1-14 PubMed
J Physiol. 1977 Oct;271(3):817-46 PubMed
J Physiol. 1977 Oct;271(3):605-24 PubMed
Farmakol Toksikol. 1955 Mar-Apr;18(2):21-7 PubMed
J Physiol. 1952 May;117(1):109-28 PubMed
J Physiol. 1956 Jun 28;132(3):650-66 PubMed
J Physiol. 1963 Nov;169:431-7 PubMed
J Pharmacol Exp Ther. 1963 Oct;142:21-3 PubMed
Nature. 1962 Mar 10;193:986-7 PubMed
Biochim Biophys Acta. 1958 Dec;30(3):653-4 PubMed
J Physiol. 1988 Sep;403:135-49 PubMed
Int Rev Neurobiol. 1985;27:299-336 PubMed
Neirofiziologiia. 1986;18(5):586-93 PubMed
Physiol Rev. 1986 Jul;66(3):542-80 PubMed
J Membr Biol. 1986;91(2):165-72 PubMed
J Physiol. 1976 Sep;260(3):687-717 PubMed
Prog Neurobiol. 1979;12(3-4):181-290 PubMed
Neuroscience. 1978;3(4-5):367-84 PubMed
Dokl Akad Nauk SSSR. 1979;249(6):1488-91 PubMed
Prog Brain Res. 1979;49:183-9 PubMed
Pflugers Arch. 1979 May 15;380(1):101-4 PubMed
Pflugers Arch. 1977 Sep 16;370(3):295-7 PubMed
Life Sci. 1977 Jun 1;20(11):1839-45 PubMed
Proc Natl Acad Sci U S A. 1979 Dec;76(12):6336-40 PubMed
Biull Eksp Biol Med. 1979 Feb;87(2):171-4 PubMed
J Physiol. 1973 Dec;235(3):655-91 PubMed
J Physiol. 1970 Dec;211(3):551-70 PubMed
J Physiol. 1965 Dec;181(3):487-97 PubMed
Science. 1971 Jun 4;172(3987):1034-6 PubMed
J Physiol. 1975 May;247(1):209-26 PubMed
Proc Natl Acad Sci U S A. 1974 Apr;71(4):1489-92 PubMed
Proc Natl Acad Sci U S A. 1969 Sep;64(1):134-41 PubMed
J Neurocytol. 1974 Mar;3(1):109-31 PubMed
Mol Pharmacol. 1986 Dec;30(6):631-8 PubMed
From Frog Muscle to Brain Neurons: Joys and Sorrows in Neuroscience