Study of Wettability and Solderability of SiC Ceramics with Ni by Use of Sn-Sb-Ti Solder by Heating with Electron Beam in Vacuum
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
APVV-17-0025
Slovak Research and Development Agency
VEGA 1/0303/20
Scientific grant agency of the Ministry of Education of the Slovak Republic and of the Slovak Academy of Sciences
PubMed
35955233
PubMed Central
PMC9369714
DOI
10.3390/ma15155301
PII: ma15155301
Knihovny.cz E-resources
- Keywords
- SiC ceramics, active solder, electron beam, solderability, wettability,
- Publication type
- Journal Article MeSH
The aim of this research was to study the wettability and solderability of SiC ceramics by the use of an active solder of the type Sn5Sb3Ti in a vacuum by electron beam heating. This solder exerts a narrow melting interval, and only one thermal effect, a peritectic reaction, was observed. The liquidus temperature of the solder is approximately 243 °C. The solder consists of a tin matrix where the Ti6(Sb,Sn)5 and TiSbSn phases are precipitated. The solder wettability on a SiC substrate decreases with decreasing soldering temperature. The best wetting angle of 33° was obtained in a vacuum at the temperature of 950 °C. The bond between the SiC ceramics and the solder was formed due to the interaction of Ti and Ni with silicon contained in the SiC ceramics. The formation of new TiSi2 and Ti3Ni5Si6 phases, which form the reaction layer and thus ensure the bond formation, was observed. The bond with Ni is formed due to the solubility of Ni in the tin solder. Two phases, namely the Ni3Sn2 and Ni3Sn phases, were identified in the transition zone of the Ni/Sn5Sb3Ti joint. The highest shear strength, around 40 MPa, was attained at the soldering temperature of 850 °C.
See more in PubMed
Iwamoto N., Umesaki N., Kamai M., Ohnishi K. Metal-ceramic interfaces. Acta-Scripta Metallurg. 1989;4:176–181.
Ferro A.C., Derby B. Wetting behaviour in the Al-Si/SiC system: Interface reactions and solubility effects. Acta Metal Mater. 1995;43:3061. doi: 10.1016/0956-7151(95)00014-M. DOI
Chen C., Choe C., Kim D., Suganuma K. Lifetime prediction of a SiC power module by micron/submicron Ag sinter joining based on fatigue, creep and thermal properties from room temperature to high temperature. J. Electron. Mater. 2021;50:687–698. doi: 10.1007/s11664-020-08410-5. DOI
Liu G.W., Muolo M.L., Valenza F., Passerone A. Survey on wetting of SiC by molten metals. Ceram. Int. 2010;36:1177–1188. doi: 10.1016/j.ceramint.2010.01.001. DOI
Wei P., Li J., Chen J. Titanium metallisation of Si3N4 ceramics by molten salt reaction: Coating microstructure and brazing property. Thin Solid Film. 2002;422:126–129. doi: 10.1016/S0040-6090(02)00950-1. DOI
Walker C.A., Hodges V.C. Comparing metal-ceramic brazing methods. Weld. J. 2008;87:43–50.
Xian A.P. Wetting of Si-Al-O-N ceramic by Sn-5at.%Ti-X ternary active solder. Mater. Sci. Eng. B. 1994;25:39–46. doi: 10.1016/0921-5107(94)90199-6. DOI
Qu W., Zhou S., Zhuang H. Effect of Ti content and Y additions on oxidation behaviour of SnAgTi solder and its application on dissimilar metals soldering. Mater. Des. 2015;88:737–742. doi: 10.1016/j.matdes.2015.09.097. DOI
Kolenak R., Kostolny I., Drapala J., Kusý M., Pašák M. Research on soldering AlN ceramics with Cu substrate using Sn-Ag-Ti solder. Solder. Surf. Mt. Technol. 2019;31:93–101. doi: 10.1108/SSMT-10-2018-0039. DOI
Yan J.C., Xu Z.W., Shi L., Ma X., Yang S. Ultrasonic assisted fabrication of particle reinforced bonds joining aluminium metal matrix composites. Mater. Des. 2011;32:343–347. doi: 10.1016/j.matdes.2010.06.036. DOI
Chuang T.H., Yeh M.S., Chai Y.H. Metal brazing of zirconia with AgCuTi and SnAgTi active filler metals. Mater. Trans. A. 2000;31:1591–1597.
Hansen M., Anderko K. Constitution of Binary Alloys. Volume 1. McGraw-Hill; New York, NY, USA: 1958. pp. 1039–1041.
Cheng L.X., Yue X.J., Xia J., Wu Z.Z., Li G.Y. Adsorption and interface reaction in direct active bonding of GaAs to GaAs using Sn-Ag-Ti solder filler. J. Mater. Sci. Mater. Electron. 2021;32:21248–21261. doi: 10.1007/s10854-021-06627-6. DOI
Azizi A., Chen X., Gou F., Hejripour F., Goodman J.A., Bae I.T., Rangarajan S., Arvin C.L., Sammakia B.G., Ke C., et al. Selective laser melting of metal structures onto graphite substrates via a low melting point interlayer alloy. Appl. Mater. Today. 2022;26:101334. doi: 10.1016/j.apmt.2021.101334. DOI
Zhang S., Zhao H., Xu H., Fu X. Accelerative reliability tests for Sn3.0Ag0.5Cu solder joints under thermal cycling coupling with current stressing. Microelectron. Reliab. 2021;120:114094. doi: 10.1016/j.microrel.2021.114094. DOI
Kang U.B., Kim Y.H. A new COG technique using low temperature solder bumps for LCD driver IC packaging applications. IEEE Trans. Compon. Packag. Technol. 2004;27:253–258. doi: 10.1109/TCAPT.2004.828585. DOI
Lee Y.G., Park J.G., Lee C.W., Jung J.P. Electrodeposition of the Sn-58 wt.%Bi layer for low-temperature soldering. Met. Mater. Int. 2011;17:117–121. doi: 10.1007/s12540-011-0216-y. DOI
Suh M.S., Park C.J., Kwon H.S. Effects of plating parameters on alloy composition and microstructure of Sn-Bi electrodeposits from methane sulphonate bath. Surf. Coat. Technol. 2006;200:3527–3532. doi: 10.1016/j.surfcoat.2004.08.162. DOI
Ali U., Khan H., Aamir M., Giasin K., Habib N., Owais Awan M. Analysis of microstructure and mechanical properties of bismuth-doped SAC305 lead-free solder alloy at high temperature. Metals. 2021;11:1077. doi: 10.3390/met11071077. DOI
Septimio R., Cruz C., Silva B., Garcia A., Spinelli J.E., Cheung N. Microstructural and segregation effects affecting the corrosion behaviour of a high-temperature Bi-Ag solder alloy in dilute chloride solution. J. Appl. Electrochem. 2021;51:769–780. doi: 10.1007/s10800-021-01533-5. DOI
Wu B., Leng X., Xiu Z., Yan J. Microstructural evolution of SiC joints soldered using Zn–Al filler metals with the assistance of ultrasound. Ultrason. Sonochemistry. 2018;44:280–287. doi: 10.1016/j.ultsonch.2018.02.037. PubMed DOI
Wu B., Guo W., He J., Xiu Z., Yan J. Microstructure evolution of SiC/SiC joints during ultrasonic-assisted air bonding using a Sn-Zn-Al alloy. Ceram. Int. 2018;44:1284–1290. doi: 10.1016/j.ceramint.2017.07.169. DOI
Wu B., Leng X., Xiu Z., Yan J. Ultrafast air bonding between SiC ceramic and SnAgTi alloy under the action of ultrasounds. Sci. Rep. 2018;8:16856. doi: 10.1038/s41598-018-34635-w. PubMed DOI PMC
Xu Z., Li Z., Qi Y., Yan J. Soldering porous ceramics through ultrasonic-induced capillary action and cavitation. Ceram. Int. 2019;45:9293–9296. doi: 10.1016/j.ceramint.2019.01.171. DOI
Hasan M.M., Sharif A., Gafur M.A. Characteristics of eutectic and near-eutectic Zn-Al alloys as high-temperature lead-free solders. J. Mater. Sci. Mater. Electron. 2020;31:1691–1702. doi: 10.1007/s10854-019-02687-x. DOI
Tschudin C., Hutin O., Arsalane S., Bartels F., Lambracht P., Rettenmayr M. Lead free soft solder die attach process for power semiconductor packaging. Proc. Semicon. 2002:1–6.
Kolenak R., Sebo P., Provaznik M., Koleňáková M., Ulrich K. Shear strength and wettability of active Sn3.5Ag4Ti(Ce,Ga) solder on Al2O3 ceramics. Mater. Des. 2011;32:3997–4003. doi: 10.1016/j.matdes.2011.03.022. DOI
Chai Y.H., Weng W.P., Chuang T.H. Relationship between wettability and interfacial reaction for Sn10Ag4Ti on Al2O3 and SiC substrates. Ceram. Int. 1998;24:273–279. doi: 10.1016/S0272-8842(97)00009-6. DOI
Synkiewicz B., Skwarek A., Witek K. Vapour phase soldering used for quality improvement of semiconductor thermogenerators (TEGs) assembly. Mater. Sci. Semicond. Process. 2015;38:346–351. doi: 10.1016/j.mssp.2014.12.004. DOI
Yeo S.M., Mahmood A., Ishak S.H. Vacuum Reflow Process Characterization for Void-Less Soldering Process in Semiconductor Package; Proceedings of the 2018 IEEE 38th International Electronics Manufacturing Technology Conference (IEMT); Melaka, Malaysia. 4–6 September 2018; pp. 1–7. DOI
Huang L., Zhu Z., Wu H., Long X. Multidiscipline Modeling in Materials and Structures. Volume 15. Emerald Publishing Ltd.; Bingley, UK: 2019. Board-level vapor phase soldering (VPS) with different temperature and vacuum conditions. DOI
Illés B., Géczy A., Medgyes BHarsányi G. Vapour phase soldering (VPS) technology: A review. Solder. Surf. Mt. Technol. 2019;31:146–156. doi: 10.1108/SSMT-10-2018-0042. DOI
Klemm A., Oppermann M., Zerna T. In-situ-X-ray investigation on vacuum soldering processes for conventional and diffusion soldering; Proceedings of the 5th Electronics System-integration Technology Conference (ESTC); Helsinki, Finland. 16–18 September 2014; pp. 1–6. DOI
Kolenak R., Kostolny I., Drapala J., Babincova P., Pasak M. Characterization of Sn-Sb-Ti Solder Alloy and the Study of Its Use for the Ultrasonic Soldering Process of SiC Ceramics with a Cu-SiC Metal-Ceramic Composite. Materials. 2021;14:6369. doi: 10.3390/ma14216369. PubMed DOI PMC
Chen S.W., Chen C.C., Gierlotka W., Zi A.R., Chen P.Y., Wu H.J. Phase equilibria of the Sn-Sb binary system. J. Electron. Mater. 2008;37:992–1002. doi: 10.1007/s11664-008-0464-x. DOI
Weitzer F., Naka M., Krendelsberger N., Stein F., He C., Du Y., Schuster J.C. The ternary system Nickel/Silicon/Titanium revisited. Z. Anorg. Allg. Chem. 2010;636:982–990. doi: 10.1002/zaac.201000017. DOI
Massalski T.B. Binary Alloy Phase Diagrams. ASM; Metals Park, OH, USA: 1996.
Ruža V., Koleňák R., Jasenák J. Brazing/Soldering in Vacuum. Welding Company; Trnava, Slovakia: 2005. p. 146.