Characterization of Sn-Sb-Ti Solder Alloy and the Study of Its Use for the Ultrasonic Soldering Process of SiC Ceramics with a Cu-SiC Metal-Ceramic Composite

. 2021 Oct 25 ; 14 (21) : . [epub] 20211025

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34771894

Grantová podpora
APVV-17-0025 Slovak Research and Development Agency
VEGA 1/0303/20 Agency of the Ministry of Education of the Slovak Republic and of Slovak Academy of Sciences

The aim of this research was to characterize soldering alloys of the type Sn-Sb-Ti and to study the ultrasonic soldering of SiC ceramics with a metal-ceramic composite of the type Cu-SiC. The Sn5Sb3Ti solder exerts a thermal transformation of a peritectic character with an approximate melting point of 234 °C and a narrow melting interval. The solder microstructure consists of a tin matrix, where the acicular constituents of the Ti6(Sb,Sn)5 phase and the sharp-edged constituents of the TiSbSn phase are precipitated. The tensile strength of the soldering alloy depends on the Ti content and reaches values from 34 to 51 MPa. The average strength of the solder increases with increasing Ti content. The bond with SiC ceramics is formed owing to the interaction of titanium, activated by ultrasound, with SiC ceramics, forming the (Ti,Si)6(Sb,Sn)5 reaction product. The bond with the metal-ceramic composite Cu-SiC is formed owing to the solubility of Cu in a tin solder forming two phases: the wettable η-Cu6Sn5 phase, formed in contact with the solder, and the non-wettable ε-Cu3Sn phase, formed in contact with the copper composite. The average shear strength of the combined joint of SiC/Cu-SiC fabricated using the Sn5Sb3Ti solder was 42.5 MPa. The Sn-Sb-Ti solder is a direct competitor of the S-Bond active solder. The production of solders is cheaper, and the presence of antimony increases their strength. In addition, the application temperature range is wider.

Zobrazit více v PubMed

Benda V., Grant D.A., Gowar J. Power Semiconductor Devices: Theory and Applications. Wiley; Chichester, UK: New York, NY, USA: 1999.

Hunter L.P. Handbook of Semiconductor Electronics: A Practical Manual Covering the Physics, Technology, and Circuit Applications of Transistors, Diodes, and Other Semiconductor Devices in Conventional and Integrated Circuits. McGraw-Hill; New York, NY, USA: 1970.

Sharma A.K. Semiconductor Electronics. New Age International; New Delhi, India: 2001.

Frear D.R., Ramanathan L.N., Jang J.-W., Owens N.L. Emerging reliability challenges in electronic packaging; Proceedings of the 2008 IEEE International Reliability Physics Symposium, IEEE; Phoenix, AZ, USA. 27 April–1 May 2008; pp. 450–454. DOI

Yang P., Wang Y., Deng L. A review on reliability of electronic packaging in micro/nano manufacturing. Int. J. Mater. Struct. Integr. 2015;9:131. doi: 10.1504/IJMSI.2015.071114. DOI

Plieninger R., Dittes M., Pressel K. Modern IC packaging trends and their reliability implications. Microelectron. Reliab. 2006;46:1868–1873. doi: 10.1016/j.microrel.2006.08.008. DOI

Zweben C. High-performance thermal management materials. Adv. Packaging. 2006;2:20.

German R.M., Hens K.F., Johnson J.L. Powder metallurgy processing of thermal management materials for microelectronic applications. Int. J. Powder Metall. 1994;30:205–215.

Schubert T., Trindade B., Weißgärber T., Kieback B. Interfacial design of Cu-based composites prepared by powder metallurgy for heat sink applications. Mater. Sci. Eng. A. 2008;475:39–44. doi: 10.1016/j.msea.2006.12.146. DOI

Wei P., Li J., Chen J. Titanium metallization of Si3N4 ceramics by molten salt reaction: Coating microstructure and brazing property. Thin Solid Film. 2002;422:126–129. doi: 10.1016/S0040-6090(02)00950-1. DOI

Walker C.A., Hodges V.C. Comparing metal-ceramic brazing methods. Weld. J. 2008;87:43–50.

Xian A.P. Wetting of Si-Al-O-N ceramic by Sn-5at.%Ti-X ternary active solder. Mater. Sci. Eng. B. 1994;25:39–46. doi: 10.1016/0921-5107(94)90199-6. DOI

Qu W., Zhou S., Zhuang H. Effect of Ti content and Y additions on oxidation behavior of SnAgTi solder and its application on dissimilar metals soldering. Mater. Des. 2015;88:737–742. doi: 10.1016/j.matdes.2015.09.097. DOI

Koleňák R., Kostolný I., Drápala J., Kusý M., Pašák M. Research on soldering AlN ceramics with Cu substrate using Sn-Ag-Ti solder. Solder. Surf. Mt. Technol. 2019;31:93–101. doi: 10.1108/SSMT-10-2018-0039. DOI

Yu W.-Y., Liu S.-H., Liu X.-Y., Liu M.-P., Shi W.-G. Interface reaction in ultrasonic vibration-assisted brazing of aluminum to graphite using Sn–Ag–Ti solder foil. J. Mater. Process. Technol. 2015;221:285–290. doi: 10.1016/j.jmatprotec.2015.02.028. DOI

Feng K.Y., Mu D.K., Liao X.J., Huang H., Xu X.P. Brazing sapphire/Sapphire and sapphire/Copper sandwich joints using Sn-Ag-Ti active solder alloy. Solid State Phenom. 2018;273:187–193. doi: 10.4028/www.scientific.net/SSP.273.187. DOI

Yu W., Liu Y., Liu X. Spreading of Sn-Ag-Ti and Sn-Ag-Ti(-Al) solder droplets on the surface of porous graphite through ultrasonic vibration. Mater. Des. 2018;150:9–16. doi: 10.1016/j.matdes.2018.04.028. DOI

Yan J.C., Xu Z.W., Shi L., Ma X., Yang S.Q. Ultrasonic assisted fabrication of particle reinforced bonds joining aluminum metal matrix composites. Mater. Des. 2011;32:343–347. doi: 10.1016/j.matdes.2010.06.036. DOI

Chuang T.H., Yeh M.S., Chai Y.H. Metall Brazing of zirconia with AgCuTi and SnAgTi active filler metals. Mater. Trans. A. 2000;31:1591–1597. doi: 10.1007/s11661-000-0169-0. DOI

Chang S.Y., Chuang T.H., Tsao L.C., Yang C.L., Yang Z.S. Active soldering of ZnS-SiO2 sputtering targets to copper backing plates using an Sn3.5Ag4Ti(Ce,Ga) filler metal. J. Mater. Process. Technol. 2008;202:22–26. doi: 10.1016/j.jmatprotec.2007.08.045. DOI

Chang S.Y., Tsao L.C., Chiang M.J., Chuang T.H., Tung C.N., Pan G.H. Active soldering if Indium tin oxide (ITO) with Cu in air using an Sn3.5Ag4Ti(Ce,Ga) filler. J. Mater. Eng. Perform. 2003;12:383–389. doi: 10.1361/105994903770342890. DOI

Kolenak R., Sebo P., Provazník M., Koleňáková M., Ulrich K. Materials and Design. Volume 32. Elsevier; Amsterdam, The Netherlands: 2011. Shear strength and wettability of active Sn3.5Ag4Ti(Ce,Ga) solder on Al2O3 ceramics; pp. 3997–4003.

Cheng L.X., Li G.Y., Li Z.L., Wu Z.Z., Zhou B. Effects of titanium on active bonding between Sn3. 5Ag4Ti (Ce, Ga) alloy filler and alumina. J. Mater. Sci. Mater. Electron. 2015;26:6004–6012. doi: 10.1007/s10854-015-3176-z. DOI

Tsao L. Interfacial structure and fracture behavior of 6061 Al and MAO-6061 Al direct active soldered with Sn–Ag–Ti active solder. Mater. Des. 2014;56:318–324. doi: 10.1016/j.matdes.2013.11.021. DOI

Tsao L.C. Microstructural characterization and mechanical properties of microplasma oxidized TiO 2/Ti joints soldered using Sn3. 5Ag4Ti (Ce) active filler. J. Mater. Sci. Mater. Electron. 2014;25:233–243. doi: 10.1007/s10854-013-1577-4. DOI

Yu W.-Y., Liu S.-H., Liu X.-Y., Shao J.-L., Liu M.-P. Wetting behavior in ultrasonic vibration-assisted brazing of aluminum to graphite using SN-AG-ti active solder. Surf. Rev. Lett. 2015;22:1550035. doi: 10.1142/S0218625X15500353. DOI

Kolenak R.K.I. Active Soft Solder for Ultrasonic Soldering at Higher Application Temperatures: Patent number: WO2020115653 (A1)-2020-06-11, Aplication number: WO2019IB60395 20191203, Priority numbers: SK20180000139 20181206, SK20180000222U 20181206. European Patent Office; Munich, Germany: 2020. 4p

Berger P., Schmetterer C., Effenberger H., Flandorfer H. The ternary phase diagram Sb-Sn-Ti. J. Alloys Compd. 2021;879:160272. doi: 10.1016/j.jallcom.2021.160272. DOI

Chen X., Xie R., Lai Z., Liu L., Zou G., Yan J. Ultrasonic-assisted brazing of Al–Ti dissimilar alloy by a filler metal with a large semi-solid temperature range. Mater. Des. 2016;95:296–305. doi: 10.1016/j.matdes.2016.01.109. DOI

Watanabe T., Sakuyama H., Yanagisawa A. Ultrasonic welding between mild steel sheet and Al–Mg alloy sheet. J. Mater. Process. Technol. 2009;209:5475–5480. doi: 10.1016/j.jmatprotec.2009.05.006. DOI

Wang Q., Zhu L., Chen X. Si Particulate-reinforced Zn-Al based composites joints of hypereutectic Al-50Si alloys by ultra-sonic-assisted soldering. Mater. Des. 2016;107:41–46. doi: 10.1016/j.matdes.2016.05.121. DOI

Nagaoka T., Morisada Y., Fukusumi M., Takemoto T. Ultrasonic-assisted Soldering of 5056 Aluminum alloy using qua-si-melting Zn-Sn alloy. Metallurg. Mater. Trans. B. 2012;41:864–871. doi: 10.1007/s11663-010-9375-3. DOI

Lai Z., Chen X., Pan C., Xie R., Liu L., Zou G. Joining Mg alloys with Zn interlayer by novel ultrasonic-assisted transient liquid phase bonding method in air. Mater. Lett. 2016;166:219–222. doi: 10.1016/j.matlet.2015.11.031. DOI

Lai Z., Xie R., Pan C., Chen X., Liu L., Wang W., Zou G. Ultrasound-assisted transient liquid phase bonding of magnesium alloy using brass interlayer in air. J. Mater. Sci. Technol. 2017;33:567–572. doi: 10.1016/j.jmst.2016.11.002. DOI

Guo W., Leng X., Luan T., Yan J., He J. Ultrasonic-promoted rapid TLP bonding of fine-grained 7034 high strength aluminum alloys. Ultrason. Sonochem. 2017;36:354–361. doi: 10.1016/j.ultsonch.2016.12.002. PubMed DOI

Qian W., Chen X., Lin Z. Rapid ultrasound-induced transient-liquid-phase bonding of Al-50Si alloys with Zn interlayer in air for electrical packaging application. Ultrason. Sonochem. 2017;34:947–952. PubMed

Zhao H., Liu J., Li Z., Zhao Y., Niu H., Song X., Dong H. Non-interfacial growth of Cu3Sn in Cu/Sn/Cu joints during ultrasonic-assisted transient liquid phase soldering process. Mater. Lett. 2017;186:283–288. doi: 10.1016/j.matlet.2016.10.017. DOI

Chen S.-W., Chen C.-C., Gierlotka W., Zi A.-R., Chen P.-Y., Wu H.-J. Phase equilibria of the Sn-Sb binary system. J. Electron. Mater. 2008;37:992–1002. doi: 10.1007/s11664-008-0464-x. DOI

Massalski T.B. Binary Alloy Phase Diagrams. ASM; Metals Park, OH, USA: 1996.

Tavassoli A., Grytsiv A., Failamani F., Rogl G., Puchegger S., Müller H., Broze P., Zelenkae F., Macciò D., Saccone A., et al. Constitution of the binary M-Sb systems (M = Ti, Zr, Hf) and physical properties of MSb2. Intermetallics. 2018;94:119–132. doi: 10.1016/j.intermet.2017.12.014. DOI

Wu Y., Li H., Qu W., Zhang J., Zhuang H. Ultrasonic-assisted bonding of Al2O3 ceramic, Cu, and 5056 aluminum alloy with Sn-Zn-Sb solders. Weld. World. 2020;64:247–256. doi: 10.1007/s40194-019-00815-z. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...