Antimicrobial activity and properties of de novo design of short synthetic lipopeptides

. 2024 Apr ; 69 (2) : 445-457. [epub] 20240126

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38277095
Odkazy

PubMed 38277095
PubMed Central PMC11003925
DOI 10.1007/s12223-024-01132-9
PII: 10.1007/s12223-024-01132-9
Knihovny.cz E-zdroje

The aim of this article is to introduce the topic of newly designed peptides as well as their biological activity. We designed nine encoded peptides composed of six amino acids. All these peptides were synthesized with C-terminal amidation. To investigate the importance of increased hydrophobicity at the amino end of the peptides, all of them were subsequently synthesized with palmitic or lithocholic acid at the N-terminus. Antimicrobial activity was tested on Gram-positive and Gram-negative bacteria and fungi. Cytotoxicity was measured on HepG2 and HEK 293 T cell cultures. Peptides bearing a hydrophobic group exhibited the best antimicrobial activity. Lipopeptides with palmitic or lithocholic acid (PAL or LCA peptides) at the N-terminus and with C-terminal amidation were highly active against Gram-positive bacteria, especially against strains of Staphylococcus aureus and Candida tropicalis. The LCA peptide SHP 1.3 with the sequence LCA-LVKRAG-NH2, had high efficiency on HepG2 human liver hepatocellular carcinoma cells (97%).

Zobrazit více v PubMed

Andreu R, Rivas L. Animal antimicrobial peptides: an overview. Biopolymers. 1998;47:415–433. doi: 10.1002/(SICI)1097-0282(1998)47:6<415::AID-BIP2>3.0.CO;2-D. PubMed DOI

Ball LJ, Goult CM, Donarski JA, Micklefield J, Ramesh V. NMR structure determination and calcium binding effects of lipopeptide antibiotic daptomycin. Org Biomol Chem. 2004;2:1872–1878. doi: 10.1039/b402722a. PubMed DOI

Boman HG. Peptide antibiotics and their role in innate immunity. Annu Rev Immunol. 1995;13:61–92. doi: 10.1146/annurev.iy.13.040195.000425. PubMed DOI

Brogden KA. Antimicrobial peptides: pore formes or metabolite inhibitors in bacteria. Nat Rev Microbiol. 2005;3:238–250. doi: 10.1038/nrmicro1098. PubMed DOI

Cabrera MPDS, Arcisio-Miranda M, Costa STB, Konno K, Ruggiero JR, Procopio J, Neto JG. Study of the mechanism of action of anoplin, a helical antimicrobial decapeptide with ion channel-like activity, and the role of the amidated C-terminus. J Pept Sci. 2008;14:661–669. doi: 10.1002/psc.960. PubMed DOI

Doležílková I, Macková M, Macek T. Antimicrobial peptides: a relation between their structure and antimicrobial activity. Chem Listy. 2011;105:346–355.

Giangaspero A, Sandri L, Tossi A. Amphipathic α helical antimicrobial peptides. Eur J Biochem. 2001;268:5589–5600. doi: 10.1046/j.1432-1033.2001.02494.x. PubMed DOI

Grif K, Dierich MP, Karch H, Allerberger F. Strain-specific differences in the amount of Shiga toxin released from enterohemorrhagic Escherichia coli O157 following exposure to subinhibitory concentrations of antimicrobial agents. Eur J Clin Microbiol Infect. 1998;17:761–766. doi: 10.1007/s100960050181. PubMed DOI

Gupta S, Thakur J, Pal S, Gupta R, Mishra D, Kumar S, Yadav K, Saini A, Yavvari PS, Vedantham M, Singh A, Srivastava A, Prasad R, Bajaj A. (2019) Cholic acid-peptide conjugates as potent antimicrobials against interkingdom polymicrobial biofilms. Antimicrob Agents Chemother. 2019;63(11):e00520–e619. doi: 10.1128/AAC.00520-19.PMID:31427303;PMCID:PMC6811435. PubMed DOI PMC

Hancock REW. Host defence (cationic) peptides: what is their future clinical potential? Drugs. 1999;57:469–473. doi: 10.2165/00003495-199957040-00002. PubMed DOI

Hand WL. Current challenges in antibiotic resistance. Adolesc Med. 2000;11:427–438. PubMed

Hidron AI, Edwards JR, Patel J, Horan TC, Sievert DM, Pollock DA, Fridkin SK. NHSN annual update: antimicrobial-resistant pathogens associated with healthcare-associated infections: annual summary of data reported to the National Healthcare Safety Network at the Centers for Disease Control and Prevention, 2006–2007. Infect Control Hosp Epidemiol. 2008;29:996–1011. doi: 10.1086/591861. PubMed DOI

Hwang PM, Vogel HJ. Structure-function relationships of antimicrobial peptides. Biochem Cell Biol. 1998;76:235–246. doi: 10.1139/bcb-76-2-3-235. PubMed DOI

Iijima N, Tanimoto N, Emoto Y, Morita Y, Uematsu K, Murakami T, Nakai T. Purification and characterization of three isoforms of chrysophsin, a novel antimicrobial peptide in the gills of the red sea bream, Chrysophrys major. Eur J Biochem. 2003;270:675–686. doi: 10.1046/j.1432-1033.2003.03419.x. PubMed DOI

Kamysz W, Silvestri C, Cirioni O, Giacometti A, Licci A, Della VA, Okroj M, Scalise G. In vitro activities of the lipopeptides palmitoyl (Pal)-Lys-Lys-NH2 and Pal-Lys-Lys alone and in combination with antimicrobial agents against multiresistant gram-positive cocci. Antimicrob Agents and Chemother. 2007;51:354–358. doi: 10.1128/AAC.00344-06. PubMed DOI PMC

Kondejewski LH, Farmer SW, Wishart DS, Kay CM, Hancock REW, Hodges RS. Modulation of structure and antibacterial and hemolytic activity by ring size in cyclic gramicidin S analogs. J Biol Chem. 1996;271:25261–25268. doi: 10.1074/jbc.271.41.25261. PubMed DOI

Korzeniewski C, Callewaert DM. An enzyme-release assay for natural cytotoxicity. J Immunol Methods. 1983;64:313–320. doi: 10.1016/0022-1759(83)90438-6. PubMed DOI

Levy SB. The Challenge of Antibiotic Resistance Sciam. 1998;278:46–53. doi: 10.1038/scientificamerican0398-46. PubMed DOI

Lin C, Wang Y, Le M, Chen KF, Jia YG. Recent progress in bile acid-based antimicrobials. Bioconjug Chem. 2021;32(3):395–410. doi: 10.1021/acs.bioconjchem.0c00642. PubMed DOI

Macurkova A, Neubauerova T, Poncova K, Jezek R, Lovecka P, Spiwok V, Mackova M, Macek T. Effect of chain elongation on biological properties of the toxin paralysin β-alanyl-tyrosine. Chem Biol Drug Des. 2014;83:418–426. doi: 10.1111/cbdd.12257. PubMed DOI

Majerle A, Kidrič J, Jerala R. Enhancement of antibacterial and lipopolysaccharide binding activities of a human lactoferrin peptide fragment by the addition of acyl chain. J Antimicrob Chemother. 2003;51:1159–1165. doi: 10.1093/jac/dkg219. PubMed DOI

Mandal SM, Dey S, Mandal M, Sarkar S, Neto SM, Franco OL. Identification and structural insights of tree novel antimicrobial peptides isolated from green coconut water. Peptides. 2009;30:633–637. doi: 10.1016/j.peptides.2008.12.001. PubMed DOI

Merkler DJ. C-Terminal amidated peptides: production by the in vitro enzymatic amidation of glycine-extended peptides and the importance of the amide to bioactivity. Enzyme Microb Technol. 1994;16:450–456. doi: 10.1016/0141-0229(94)90014-0. PubMed DOI

Meylaers K, Cerstiaens A, Vierstraete E, Baggerman G, Michiels CW, Loof A, Schoofs L. Antimicrobial compounds of low molecular mass are constitutively present in insects: characterisation of beta-alanyl-tyrosine. Curr Pharm Des. 2003;9:159–174. doi: 10.2174/1381612033392279. PubMed DOI

Nair PP. Role of bile acids and neutral sterols in carcinogenesis. AJCN. 1988;48:768–774. PubMed

Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin II: buforin II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. BBRC. 1998;244:253–257. doi: 10.1006/bbrc.1998.8159. PubMed DOI

Radzishevsky IS, Rotem S, Zaknoon F, Gaidukov L, Dagan A, Mor A. Effects of acyl versus aminoacyl conjugation on the properties of antimicrobial peptides. Antimicrob Agents Chemother. 2005;49:2412–2420. doi: 10.1128/2FAAC.49.6.2412-2420.2005. PubMed DOI PMC

Savage PB, Li C, Taotafa U, Ding B, Guan Q. Antibacterial properties of cationic steroid antibiotics. FEMS Microbiol Lett. 2002;217(1):1–7. doi: 10.1111/j.1574-6968.2002.tb11448.x. PubMed DOI

Shai Y. Mode of action of membrane active antimicrobial peptides. Biopolymers. 2002;66:236–248. doi: 10.1002/bip.10260. PubMed DOI

Stoddart MJ. Mammalian cell viability: methods and protocols. 1. New York, U.S.A.: Humana Press; 2011. pp. 1–240.

Tossi A, Tarantino C, Romeo D. Design of synthetic antimicrobial peptides based on sequence analogy and amphipathicity. Eur J Biochem. 1997;250:549–558. doi: 10.1111/j.1432-1033.1997.0549a.x. PubMed DOI

Tossi A, Sandri L, Giangaspero A. Amphipathic, α-helical antimicrobial peptides. Peptide Sci. 2000;55:4–30. doi: 10.1002/1097-0282(2000)55:1<4::aid-bip30>3.0.co;2-m. PubMed DOI

Venturi M, Hambly RJ, Glinghammar B, Rafter JJ, Rowland IR. Genotoxic activity in human faecal water and the role of bile acids: a study using the alkaline comet assay. Carcinogenesis. 1997;18:2353–2359. doi: 10.1093/carcin/18.12.2353. PubMed DOI

Wang GS, Li X, Wang Z. APD2: the updated antimicrobial peptide database and its application in peptide design. Nucleic Acid Res. 2009;39:D933–D937. doi: 10.1093/nar/gkn823. PubMed DOI PMC

Weinstein RA, Gaynes R, Edwards JR. Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis. 2005;41:848–854. doi: 10.1086/432803. PubMed DOI

Zanetti M, Gennaro R, Romeo D. Cathelicidins: a novel protein family with a common proregion and a variable C-terminal antimicrobial domain. FEBS Lett. 1995;374:1–5. doi: 10.1016/0014-5793(95)01050-o. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...