Chemistry of Carbon-Substituted Derivatives of Cobalt Bis(dicarbollide)(1-) Ion and Recent Progress in Boron Substitution

. 2023 Oct 07 ; 28 (19) : . [epub] 20231007

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid37836814

Grantová podpora
21-14409S Czech Science Foundation

The cobalt bis(dicarbollide)(1-) anion (1-), [(1,2-C2B9H11)2-3,3'-Co(III)](1-), plays an increasingly important role in material science and medicine due to its high chemical stability, 3D shape, aromaticity, diamagnetic character, ability to penetrate cells, and low cytotoxicity. A key factor enabling the incorporation of this ion into larger organic molecules, biomolecules, and materials, as well as its capacity for "tuning" interactions with therapeutic targets, is the availability of synthetic routes that enable easy modifications with a wide selection of functional groups. Regarding the modification of the dicarbollide cage, syntheses leading to substitutions on boron atoms are better established. These methods primarily involve ring cleavage of the ether rings in species containing an oxonium oxygen atom connected to the B(8) site. These pathways are accessible with a broad range of nucleophiles. In contrast, the chemistry on carbon vertices has remained less elaborated over the previous decades due to a lack of reliable methods that permit direct and straightforward cage modifications. In this review, we present a survey of methods based on metalation reactions on the acidic C-H vertices, followed by reactions with electrophiles, which have gained importance in only the last decade. These methods now represent the primary trends in the modifications of cage carbon atoms. We discuss the scope of currently available approaches, along with the stereochemistry of reactions, chirality of some products, available types of functional groups, and their applications in designing unconventional drugs. This content is complemented with a report of the progress in physicochemical and biological studies on the parent cobalt bis(dicarbollide) ion and also includes an overview of recent syntheses and emerging applications of boron-substituted compounds.

Zobrazit více v PubMed

Hawthorne M.F. Chemistry of the polyhedral species derived from transition metals and carboranes. Accounts Chem. Res. 1968;1:281–288. doi: 10.1021/ar50009a004. DOI

Hawthorne M.F., Andrews T.D. Carborane analogues of cobalticinium ion. Chem. Commun. 1965;19:443–444. doi: 10.1039/c19650000443. DOI

Francis J.N., Hawthorn M.F., Jones C.J. Chemistry of bis(.pi.-7,8-dicarballyl)metalates. Reaction between [(.pi.-7,8-B9C2H11)2Co]- and aryl diazonium salts. J. Am. Chem. Soc. 1972;94:4878–4881. doi: 10.1021/ja00769a013. DOI

Viñas C., Pedrajas J., Bertran J., Teixidor F., Kivekäs R., Sillanpää R. Synthesis of cobaltabis(dicarbollyl) complexes incorporating exocluster SR substituents and the improved synthesis of [3,3‘-Co(1-R-2-R‘-1,2-C2B9H9)2]- derivatives. Inorg. Chem. 1997;36:2482–2486. doi: 10.1021/ic961002g. PubMed DOI

Hawthorne M.F., Young D.C., Andrews T.D., Howe D.V., Pilling R.L., Pitts A.D., Reintjes M., Warren L.F., Jr., Wegner P.A. pi.-Dicarbollyl derivatives of the transition metals. Metallocene analogs. J. Am. Chem. Soc. 1968;90:879–896. doi: 10.1021/ja01006a008. DOI

Sivaev I.B., Bregadze V.I. Chemistry of cobalt bis(dicarbollides). A review. Collect. Czech. Chem. Commun. 1999;64:783–805. doi: 10.1135/cccc19990783. DOI

Dash B.P., Satapathy R., Swain B.R., Mahanta C.S., Jena B.B., Hosmane N.S. Cobalt bis(dicarbollide) anion and its derivatives. J. Organomet. Chem. 2017;849–850:170–194.

Grimes R.N. Carboranes. Elsevier; Amsterdam, The Netherlands: 2016. Metallacarboranes of the transition and lanthanide elements; pp. 711–903.

Rais J., Grűner B. Extraction with Metal bis(Dicarbollide) Anions; Metal bis(dicarbollide) extractants and their applications in separation chemistry. In: Marcus Y., SenGupta A.K., editors. Ion Exchange, Solvent Extraction. 1st ed. Volume 17. Marcel Dekker; New York, NY, USA: 2004. pp. 243–334.

Grűner B., Rais J., Selucký P., Lucanikova M. Recent progress in extraction agents based on cobalt bis(dicarbollides) for partitioning of radionuclides from high level nuclear waste. In: Hosmane N.S., editor. Chapter 19 in Boron Science, New Technologies and Applications. CRC Press; Boca Raton, FL, USA: 2012.

Núñez R., Tarrés M., Ferrer-Ugalde A., de Biani F.F., Teixidor F. Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem. Rev. 2016;116:14307–14378. PubMed

Xavier J.A.M., Viñas C., Lorenzo E., García-Mendiola T., Teixidor F. Potential application of metallacarboranes as an internal reference: An electrochemical comparative study to ferrocene. Chem. Commun. 2022;58:4196–4199. doi: 10.1039/D2CC00424K. PubMed DOI

Xavier J.A.M., Fuentes I., Nuez-Martínez M., Kelemen Z., Andrio A., Viñas C., Compañ V., Teixidor F. How to switch from a poor PEDOT:X oxygen evolution reaction (OER) to a good one. A study on dual redox reversible PEDOT:metallacarborane. J. Mater. Chem. 2022;10:16182–16192. doi: 10.1039/D2TA02079C. DOI

Stoica A.I., Viñas C., Teixidor F. History of cobaltabis(dicarbollide) in potentiometry, no need for ionophores to get an excellent selectivity. Molecules. 2022;27:14. PubMed PMC

Teixidor F., Viñas C., Planas J.G., Romero I., Núñez R. Advances in the catalytic and photocatalytic behavior of carborane derived metal complexes. In: Dieguez M., Núñez R., editors. Advances in the Synthesis and Catalytic Applications of Boron Cluster: A Tribute to the Works of Professor Francesc Teixidor and Professor Clara Viñas. 1st ed. Volume 71. Academic Press; Cambridge, MA, USA: 2022. pp. 1–45.

Guerrero I., Viñas C., Romero I., Teixidor F. A stand-alone cobalt bis(dicarbollide) photoredox catalyst epoxidates alkenes in water at extremely low catalyst load. Green Chem. 2021;23:10123–10131. doi: 10.1039/D1GC03119H. DOI

Hardie M.J., Raston C.L. Solid state supramolecular assemblies of charged supermolecules (Na[2.2.2]cryptate) and anionic carboranes with host cyclotriveratrylene. Chem. Commun. 2001;10:905–906.

Fox M.A., Hughes A.K. Cage C-H center dot center dot center dot X interactions in solid-state structures of icosahedral carboranes. Coord. Chem. Rev. 2004;248:457–476. doi: 10.1016/j.ccr.2003.10.002. DOI

Brusselle D., Bauduin P., Girard L., Zaulet A., Viñas C., Teixidor F., Ly I., Diat O. Lyotropic lamellar phase formed from monolayered theta-shaped carborane-cage amphiphiles. Angew. Chem. Int. Edit. 2013;52:12114–12118. doi: 10.1002/anie.201307357. PubMed DOI

Tarrés M., Viñas C., González-Cardoso P., Hänninen M.M., Sillanpää R., Ďorďovič V., Uchman M., Teixidor F., Matejicek P. Aqueous self-assembly and cation selectivity of cobaltabisdicarbollide dianionic dumbbells. Chem. Eur. J. 2014;20:6786–6794. doi: 10.1002/chem.201402193. PubMed DOI

Bauduin P., Prevost S., Farràs P., Teixidor F., Diat O., Zemb T. A Theta-shaped amphiphilic cobaltabisdicarbollide anion: Transition from monolayer vesicles to micelles. Angew. Chem. Int. Edit. 2011;50:5298–5300. doi: 10.1002/anie.201100410. PubMed DOI

Viñas C., Tarres M., González-Cardoso P., Farràs P., Bauduin P., Teixidor F. Surfactant behaviour of metallacarboranes. A study based on the electrolysis of water. Dalton Trans. 2014;43:5062–5068. PubMed

Ďorďovič V., Tošner Z., Uchman M., Zhigunov A., Reza M., Ruokolainen J., Pramanik G., Cígler P., Kalíková K., Gradzielski M., et al. Stealth amphiphiles: Self-assembly of polyhedral boron clusters. Langmuir. 2016;32:6713–6722. doi: 10.1021/acs.langmuir.6b01995. PubMed DOI

Hao E., Sibrian-Vazquez M., Serem W., Garno J.C., Fronczek F.R., Vicente M.G.H. Synthesis, aggregation and cellular investigations of porphyrin–cobaltacarborane conjugates. Chem. Eur. J. 2007;13:9035–9042. PubMed

Grűner B., Brynda J., Das V., Šícha V., Štěpánková J., Nekvinda J., Holub J., Pospíšilová K., Fábry M., Pachl P., et al. Metallacarborane sulfamides: Unconventional, specific, and highly selective inhibitors of carbonic anhydrase IX. J. Med. Chem. 2019;62:9560–9575. doi: 10.1021/acs.jmedchem.9b00945. PubMed DOI

Fink K., Cebula J., Tošner Z., Psurski M., Uchman M., Goszczyński T.M. Cobalt bis(dicarbollide) is a DNA-neutral pharmacophore. Dalton Trans. 2023;52:10338–10347. PubMed

Chen Y., Barba-Bon A., Grűner B., Winterhalter M., Aksoyoglu M.A., Pangeni S., Ashjari M., Brix K., Salluce G., Folgar-Cameán Y., et al. Metallacarborane cluster anions of the cobalt bisdicarbollide-type as chaotropic carriers for transmembrane and intracellular delivery of cationic peptides. J. Am. Chem. Soc. 2023;145:13089–13098. doi: 10.1021/jacs.3c01623. PubMed DOI PMC

Gan L., Nord M.T., Lessard J.M., Tufts N.Q., Chidambaram A., Light M.E., Huang H.L., Solano E., Fraile J., Suárez-García F., et al. Biomimetic photodegradation of glyphosate in carborane-functionalized nanoconfined spaces. J. Am. Chem. Soc. 2023;145:13730–13741. PubMed PMC

Fuentes I., García-Mendiola T., Sato S., Pita M., Nakamura H., Lorenzo E., Teixidor F., Marques F., Viñas C. Metallacarboranes on the road to anticancer therapies: Cellular uptake, DNA interaction, and biological evaluation of cobaltabisdicarbollide COSAN (-) Chem.-Eur. J. 2018;24:17239–17254. PubMed

Farràs P., Juárez-Pérez E.J., Lepšík M., Luque R., Núñez R., Teixidor F. Metallacarboranes and their interactions: Theoretical insights and their applicability. Chem. Soc. Rev. 2012;41:3445–3463. PubMed

Řezáčová P., Cígler P., Matějíček P., Pokorná J., Grűner B., Konvalinka J. Medicinal application of carboranes: Inhibition of HIV protease. In: Hosmane N.S., editor. Boron Science- New Technologies and Applications. CRC Press; Boca Raton, FL, USA: 2012. pp. 45–63.

Kugler M., Nekvinda J., Holub J., El Anwar S., Das V., Šícha V., Pospíšilová K., Fábry M., Král V., Brynda J., et al. Inhibitors of CA IX enzyme based on polyhedral boron compounds. ChemBioChem. 2021;22:2741–2761. PubMed

Kaplánek R., Martásek P., Grűner B., Panda S., Rak J., Masters B.S.S., Král V., Roman L.J. Nitric oxide synthases activation and inhibition by metallacarborane-cluster-based isoform-specific affectors. J. Med. Chem. 2012;55:9541–9548. PubMed PMC

Couto M., Mastandrea I., Cabrera M., Cabral P., Teixidor F., Cerecetto H., Viñas C. Small-molecule kinase-inhibitors-loaded boron cluster as hybrid agents for glioma-cell-targeting therapy. Chem. Eur. J. 2017;23:9233–9238. doi: 10.1002/chem.201701965. PubMed DOI

Fink K., Uchman M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord. Chem. Rev. 2021;431:213684.

Bennour I., Ramos M.N., Nuez-Martínez M., Xavier J.A.M., Buades A.B., Sillanpää R., Teixidor F., Choquesillo-Lazarte D., Romero I., Martinez-Medina M., et al. Water soluble organometallic small molecules as promising antibacterial agents: Synthesis, physical-chemical properties and biological evaluation to tackle bacterial infections. Dalton Trans. 2022;51:7188–7209. PubMed

Kubiński K., Masłyk M., Janeczko M., Goldeman W., Nasulewicz-Goldeman A., Psurski M., Martyna A., Boguszewska-Czubara A., Cebula J., Goszczyński T.M. Metallacarborane derivatives as innovative anti-candida albicans agents. J. Med. Chem. 2022;65:13935–13945. doi: 10.1021/acs.jmedchem.2c01167. PubMed DOI

Nuez-Martinez M., Pinto C.I.G., Guerreiro J.F., Mendes F., Marques F., Muñoz-Juan A., Xavier J.A.M., Laromaine A., Bitonto V., Protti N., et al. Cobaltabis(dicarbollide) (o-COSAN (-)) as multifunctional chemotherapeutics: A prospective application in boron neutron capture therapy (BNCT) for glioblastoma. Cancers. 2021;13:22. PubMed PMC

Olejniczak A.B., Nawrot B., Leśnikowski Z.J. DNA modified with boron-metal cluster complexes M(C2B9H11)(2) synthesis, properties, and applications. Int. J. Mol. Sci. 2018;19:13. PubMed PMC

Grimes R.N. Boron clusters come of age. J. Chem. Educ. 2004;81:657. doi: 10.1021/ed081p657. DOI

Masalles C., Borrós S., Viñas C., Teixidor F. Surface layer formation on polypyrrole films. Adv. Mater. 2002;14:449–452. doi: 10.1002/1521-4095(20020318)14:6<449::AID-ADMA449>3.0.CO;2-4. DOI

Hardie M.J. The use of carborane anions in coordination polymers and extended solids. J. Chem. Crystallogr. 2007;37:69–80.

Stoica A.I., Viñas C., Teixidor F. Cobaltabisdicarbollide anion receptor for enantiomer-selective membrane electrodes. Chem. Commun. 2009;33:4988–4990. doi: 10.1039/b910645f. PubMed DOI

Grimes R.N. Carboranes. 3rd ed. Academic Press; Cambridge, MA, USA: Elsevier Science Ltd; London, UK: 2016. pp. 1–1041.

Körrbe S., Schreiber P.J., Michl J. Chemistry of the carba-closo-dodecaborate(-) anion, CB11H12. Chem. Rev. 2006;106:5208–5249. PubMed

Chamberlin R.M., Scott B.L., Melo M.M., Abney K.D. Butyllithium deprotonation vs. alkali metal reduction of cobalt dicarbollide: A new synthetic route to C-substituted derivatives. Inorg. Chem. 1997;36:809–817.

Rojo I., Teixidor F., Viñas C., Kivekäs R., Sillanpää R. Synthesis and coordinating ability of an anionic cobaltabisdicarbollide ligand geometrically analogous to BINAP. Chem.-Eur. J. 2004;10:5376–5385. doi: 10.1002/chem.200400361. PubMed DOI

Juárez-Pérez E.J., Viñas C., González-Campo A., Teixidor F., Sillanpää R., Kivekäs R., Núñez R. Controlled direct synthesis of C-mono- and C-disubstituted derivatives of 3,3‘-Co(1,2-C(2)B(9)H(11))(2) (-) with organosilane groups: Theoretical calculations compared with experimental results. Chem.-Eur. J. 2008;14:4924–4938. doi: 10.1002/chem.200702013. PubMed DOI

Farràs P., Teixidor F., Rojo I., Kivekäs R., Sillanpää R., González-Cardoso P., Viñas C. Relaxed but highly compact diansa metallacyclophanes. J. Am. Chem. Soc. 2011;133:16537–16552. doi: 10.1021/ja205850p. PubMed DOI

Junqueira G.M.A. Remarkable aromaticity of cobalt bis(dicarbollide) derivatives: A NICS study. Theor. Chem. Acc. 2018;137:7. doi: 10.1007/s00214-018-2272-6. DOI

Poater J., Solà M., Viñas C., Teixidor F. π aromaticity and three-dimensional aromaticity: Two sides of the same coin? Angew. Chem.-Int. Edit. 2014;53:12191–12195. doi: 10.1002/anie.201407359. PubMed DOI

Poater J., Viñas C., Olid D., Solà M., Teixidor F. Aromaticity and extrusion of benzenoids linked to o-COSAN (-): Clar has the answer. Angew. Chem. Int. Edit. 2022;61 doi: 10.1002/anie.202200672. PubMed DOI PMC

Poater J., Viñas C., Solà M., Teixidor F. 3D and 2D aromatic units behave like oil and water in the case of benzocarborane derivatives. Nat. Commun. 2022;13:8. PubMed PMC

Bühl M., Hnyk D., Macháček J. Computational study of structures and properties of metallaboranes: Cobalt bis(dicarbollide) Chem.-Eur. J. 2005;11:4109–4120. PubMed

Bühl M., Holub J., Hnyk D., Macháček J. Computational studies of structures and properties of metallaboranes. 2. Transition-metal dicarbollide complexes. Organometallics. 2006;25:2173–2181. doi: 10.1021/om051025f. DOI

Bogucka-Kocka A., Kołodziej P., Makuch-Kocka A., Różycka D., Rykowski S., Nekvinda J., Grűner B., Olejniczak A.B. Nematicidal activity of naphthalimide–boron cluster conjugates. Chem. Commun. 2022;58:2528–2531. PubMed

Sivaev I.B., Kosenko I.D. Rotational conformation of 8,8’-dihalogenated derivatives of cobalt bis(dicarbollide) in solution. Russ. Chem. Bull. 2021;70:753–756. doi: 10.1007/s11172-021-3146-y. DOI

Sivaev I.B. Ferrocene and transition metal bis(dicarbollides) as platform for design of rotatory molecular switches. Molecules. 2017;22:30. PubMed PMC

Juárez-Pérez E.J., Núñez R., Viñas C., Sillanpää R., Teixidor F. The role of C-H center dot center dot center dot H-B interactions in establishing rotamer configurations in metallabis(dicarbollide) systems. Eur. J. Inorg. Chem. 2010;16:2385–2392.

Anufriev S.A., Timofeev S.V., Anisimov A.A., Suponitsky K.Y., Sivaev I.B. Bis(dicarbollide) complexes of transition metals as a platform for molecular switches. study of complexation of 8,8‘-bis(methylsulfanyl) derivatives of cobalt and iron bis(dicarbollides) Molecules. 2020;25:5745. doi: 10.3390/molecules25235745. PubMed DOI PMC

Zalkin A., Hopkins T.E., Templeton D.H. Crystal structure of Cs(B9C2H11)2CO. Inorg. Chem. 1967;6:1911–1915. doi: 10.1021/ic50056a033. DOI

Mortimer M.D., Knobler C.B., Hawthorne M.F. Methylation of boron vertices of the cobalt dicarbollide anion. Inorg. Chem. 1996;35:5750–5751. doi: 10.1021/ic960353s. PubMed DOI

Fojt L., Grűner B., Nekvinda J., Tüzün E.Z., Havran L., Fojta M. Electrochemistry of cobalta bis(dicarbollide) ions substituted at carbon atoms with hydrophilic alkylhydroxy and carboxy groups. Molecules. 2022;27:1761. doi: 10.3390/molecules27061761. PubMed DOI PMC

Geiger W.E., Smith D.E. Electrochemical indications of new oxidation states in transition-metal dicarbollide complexes. J. Chem. Soc. D. 1971;1:8–9. doi: 10.1039/c29710000008. DOI

Manning M.J., Knobler C.B., Hawthorne M.F., Do Y. Dicarbollide complexes of thallium—Structural and B-11 NMR-studies. Inorg. Chem. 1991;30:3589–3591. doi: 10.1021/ic00019a003. DOI

Scholz M., Hey-Hawkins E. Carbaboranes as pharmacophores: Properties, synthesis, and application strategies. Chem. Rev. 2011;111:7035–7062. PubMed

Oliva-Enrich J.M., Humbel S., Dávalos J.Z., Holub J., Hnyk D. Proton affinities of amino group functionalizing 2D and 3D boron compounds. Afinidad. 2018;75:260–266.

Růžičková Z., Litecká M., Pazderová L., Tüzün E., Grűner B. Cobalt Bis(dicarbollide) Ion with Functional Groups Directly Attached to Carbon Atoms. Institute of Inorganic Chemistry; Czech Republic: 2023. Correspondence Grűner, B. manuscript in preparation.

Hawthorne M.F., Maderna A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem. Rev. 1999;99:3421–3434. doi: 10.1021/cr980442h. PubMed DOI

Gomez F.A., Johnson S.E., Knobler C.B., Hawthorne M.F. Synthesis and structural characterization of metallacarboranes containing bridged dicarbollide ligands. Inorg. Chem. 1992;31:3558–3567. doi: 10.1021/ic00043a015. DOI

Harwell D.E., Nabakka J., Knobler C.B., Hawthorne M.F. Synthesis and structural characterization of an ether-bridged cobalta-bis(dicarbollide)—a model for venus flytrap cluster reagents. Can. J. Chem. 1995;73:1044–1049. doi: 10.1139/v95-129. DOI

Nabakka J.M., Harwell D.E., Knobler C., Hawthorne M.F. The synthesis and characterization of a thioether-bridged cobalta-bis(dicarbollide): A model for Venus flytrap cluster reagents. Abstr. Pap. Am. Chem. Soc. 1996;211:186.

Viñas C., Bertran J., Gomez S., Teixidor F., Dozol J.F., Rouquette H., Kivekäs R., Sillanpää R. Aromatic substituted metallacarboranes as extractants of Cs-137 and Sr-90 from nuclear wastes. J. Chem. Soc.-Dalton Trans. 1998;17:2849–2853. doi: 10.1039/a803495h. DOI

Viñas C., Gomez S., Bertran J., Teixidor F., Dozol J.F., Rouquette H. Cobaltabis(dicarbollide) derivatives as extractants for europium from nuclear wastes. Chem. Commun. 1998;2:191–192. doi: 10.1039/a707835h. PubMed DOI

Grűner B., Kugler M., El Anwar S., Holub J., Nekvinda J., Bavol D., Růžičková Z., Pospíšilová K., Fábry M., Král V., et al. Cobalt bis(dicarbollide) alkylsulfonamides: Potent and highly selective inhibitors of tumor specific carbonic anhydrase IX. ChemPlusChem. 2021;86:352–363. doi: 10.1002/cplu.202000574. PubMed DOI

Schaarschmidt D., Lang H. Selective syntheses of planar-chiral ferrocenes. Organometallics. 2013;32:5668–5704.

Kitazawa Y., Takita R., Yoshida K., Muranaka A., Matsubara S., Uchiyama M. “Naked” lithium cation: Strongly activated metal cations facilitated by carborane anions. J. Org. Chem. 2017;82:1931–1935. PubMed

Reich H.J. Role of organolithium aggregates and mixed aggregates in organolithium mechanisms. Chem. Rev. 2013;113:7130–7178. PubMed

Grűner B., Šícha V., Hnyk D., Londesborough M.G.S., Císařová I. The synthesis and structural characterization of polycyclic derivatives of cobalt bis(dicarbollide)(1(-)) Inorg. Chem. 2015;54:3148–3158. doi: 10.1021/ic502450t. PubMed DOI

El Anwar S., Růžičková Z., Bavol D., Fojt L., Grűner B. Tetrazole ring substitution at carbon and boron sites of the cobalt bis(dicarbollide) ion available via dipolar cycloadditions. Inorg. Chem. 2020;59:17430–17442. doi: 10.1021/acs.inorgchem.0c02719. PubMed DOI

Grűner B., Švec P., Šícha V., Padělková Z. Direct and facile synthesis of carbon substituted alkylhydroxy derivatives of cobalt bis(1,2-dicarbollide), versatile building blocks for synthetic purposes. Dalton Trans. 2012;41:7498–7512. doi: 10.1039/c2dt30128h. PubMed DOI

El Anwar S., Pazderová L., Bavol D., Bakardjiev M., Růžičková Z., Horáček O., Fojt L., Kučera R., Grűner B. Structurally rigidified cobalt bis(dicarbollide) derivatives, a chiral platform for labelling of biomolecules and new materials. Chem. Commun. 2022;58:2572–2575. PubMed

Grűner B., Plzák Z. High-performance liquid chromatographic separations of boron-cluster compounds. J. Chromatogr. A. 1997;789:497–517. doi: 10.1016/S0021-9673(97)00497-4. DOI

Plešek J. The age of chiral deltahedral borane derivatives. Inorg. Chim. Acta. 1999;289:45–50. doi: 10.1016/S0020-1693(99)00056-0. DOI

Grűner B., Císařová I., Franken A., Plešek J. Resolution of the 6,6‘-mu-(CH3)(2)P-(1,7-(C2B9H10)(2))-2-Co bridged cobaltacarborane to enantiomers pure by chiral HPLC, circular dichroism spectra and absolute configurations by X-ray diffraction. Tetrahedron-Asymmetry. 1998;9:79–88. doi: 10.1016/S0957-4166(97)00605-8. DOI

Horáková H., Grűner B., Vespalec R. Emerging subject for chiral separation science: Cluster boron compounds. Chirality. 2011;23:307–319. doi: 10.1002/chir.20918. PubMed DOI

Horáček O., Papajová-Janetková M., Grűner B., Lochman L., Štěrbová-Kovaříková P., Vespalec R., Kučera R. The first chiral HPLC separation of dicarba-nido-undecarborate anions and their chromatographic behavior. Talanta. 2021;222:9. PubMed

Horáček O., Marvalová J., Stilcová K., Holub J., Grűner B., Kučera R. Reversed-phase chromatography as an effective tool for the chiral separation of anionic and zwitterionic carboranes using polysaccharide-based chiral selectors. J. Chromatogr. A. 2022;1672:463051. PubMed

Horáček O., Nováková L., Tüzün E., Grűner B., Švec F., Kučera R. Advanced tool for chiral separations of anionic and zwitterionic (metalla)carboranes: Supercritical fluid chromatography. Anal. Chem. 2022;94:17551–17558. PubMed

Horáček O., Dhaubhadel U., Holub J., Grűner B., Armstrong D.W., Kučera R. Employment of chiral columns with superficially porous particles in chiral separations of cobalt bis (dicarbollide) and nido-7,8-C2B9H12(1-) derivatives. Chirality. 2023:1–15. doi: 10.1002/chir.23606. PubMed DOI

Nekvinda J., Švehla J., Císařová I., Grűner B. Chemistry of cobalt bis(1,2-dicarbollide) ion; the synthesis of carbon substituted alkylamino derivatives from hydroxyalkyl derivatives via methylsulfonyl or p-toluenesulfonyl esters. J. Organomet. Chem. 2015;798:112–120.

Carey F.A., Sundberg R.J. Advanced Organic Chemistry, Part B: Reaction and Synthesis. 5th ed. Springer; Berlin/Heidelberg, Germany: 2007.

Śmiałkowski K., Sardo C., Leśnikowski Z.J. Metallacarborane synthons for molecular constructionoligofunctionalization of cobalt bis(1,2-dicarbollide) on boron and carbon atoms with extendable ligands. Molecules. 2023;28:4118. doi: 10.3390/molecules28104118. PubMed DOI PMC

Fino S.A., Benwitz K.A., Sullivan K.M., LaMar D.L., Stroup K.M., Giles S.M., Balaich G.J., Chamberlin R.M., Abney K.D. Condensation polymerization of cobalt dicarbollide dicarboxylic acid. Inorg. Chem. 1997;36:4604–4606. doi: 10.1021/ic961182u. PubMed DOI

Miller R.L., Pinkerton A.B., Hurlburt P.K., Abney K.D. Efficient extraction of Cs and Sr into hydrocarbons using modified cobalt dicarbollide. Abstr. Pap. Am. Chem. S. 1995;209:146.

Miller R.L., Pinkerton A.B., Hurlburt P.K., Abney K.D. Extraction of cesium and strontium into hydrocarbon solvents using tetra-C-alkyl cobalt dicarbollide. Solvent Extr. Ion Exc. 1995;13:813–827. doi: 10.1080/07366299508918304. DOI

Hurlburt P.K., Miller R.L., Abney K.D., Foreman T.M., Butcher R.J., Kinkead S.A. New synthetic routes to B-halogenated derivatives of cobalt dicarbollide. Inorg. Chem. 1995;34:5215–5219. doi: 10.1021/ic00125a021. DOI

Steckle W.P., Duke J.R., Jorgensen B.S. Metal-Containing Polymeric Materials. Springer; Boston, MA, USA: 1996. Cobalt dicarbollide containing polymer resins for cesium and strontium uptake; pp. 277–285.

Nekvinda J., Šícha V., Hnyk D., Grűner B. Synthesis, characterisation and some chemistry of C- and B-substituted carboxylic acids of cobalt bis(dicarbollide) Dalton Trans. 2014;43:5106–5120. doi: 10.1039/c3dt52870g. PubMed DOI

Bredael K., Geurs S., Clarisse D., De Bosscher K., D’Hooghe M. Carboxylic acid bioisosteres in medicinal chemistry: Synthesis and properties. J. Chem. 2022;2022:21. doi: 10.1155/2022/2164558. DOI

Wharton C.J., Wrigglesworth R. Synthesis and reactions of 2,3-dihydro-oxazolo 2,3-a isoindol-5(9BH)-ones. J. Chem. Soc. Perkin Trans. 1. 1985:809–813. doi: 10.1039/p19850000809. DOI

Vyakaranam K., Li S.J., Zheng C., Hosmane N.S. Substituent effect on the carborane coupling reaction: Synthesis and crystal structure of 1-phenyl-2- 2,3-benzobicyclo(3,3,0)-1-oxo-4-oxa-7-aza-8-yl -1,2-dicarba- closo-dodecaborane(12) Inorg. Chem. Commun. 2001;4:180–182. doi: 10.1016/S1387-7003(01)00158-7. DOI

Juarez-Perez E.J., Viñas C., Teixidor F., Núñez R. First example of the formation of a Si-C bond from an intramolecular Si-H center dot center dot center dot H-C diyhydrogen interaction in a metallacarborane: A theoretical study. J. Organomet. Chem. 2009;694:1764–1770. doi: 10.1016/j.jorganchem.2008.12.022. DOI

Selucký P., Plešek J., Rais J., Kyrš M., Kadlecová L. Extraction of fission-products into nitrobenzene with dicobalt tris-dicarbollide and ethyleneoxy-substituted cobalt bis- dicarbollide. J. Radioanal. Nucl. Chem. Artic. 1991;149:131–140. doi: 10.1007/BF02053721. DOI

Plešek J., Heřmánek S., Franken A., Císařová I., Nachtigal C. Dimethyl sulfate induced nucleophilic substitution of the bis(1,2-dicarbollido)-3-cobalt(1-) ate ion. Syntheses, properties and structures of its 8,8’-mu-sulfato, 8-phenyl and 8-dioxane derivatives. Collect. Czech. Chem. Commun. 1997;62:47–56. doi: 10.1135/cccc19970047. DOI

Plešek J., Grűner B., Heřmánek S., Báča J., Mareček V., Jänchenová J., Lhotský A., Holub K., Selucký P., Rais J., et al. Synthesis of functionalized cobaltacarboranes based on the closo-[(1,2-C2B9H11)2-3,3′-Co]− ion bearing polydentate ligands for separation of M3+ cations from nuclear waste solutions. Electrochemical and liquid–liquid extraction study of selective transfer of M3+ metal cations to an organic phase. Molecular structure of the closo-[(8-(2-CH3O C6H4 O)-(CH2CH2O)2-1,2-C2B9H10)-(1′,2′-C2B9H11)-3,3′-Co]Na determined by X-ray diffraction analysis. Polyhedron. 2002;21:975–986.

Sivaev I.B.B., Bregadze V.I. In: Boron Science: New Technologies and Applications. Hosmane N.S., editor. CRC Press; Boca Raton, FL, USA: 2012. pp. 624–637.

Druzina A.A., Kosenko I.D., Zhidkova O.B., Ananyev I.V., Timofeev S.V., Bregadze V.I. Novel cobalt bis(dicarbollide) based on terminal alkynes and their click-reactions. Eur. J. Inorg. Chem. 2020;2020:2658–2665. doi: 10.1002/ejic.202000388. DOI

Dezhenkova L.G., Druzina A.A., Volodina Y.L., Dudarova N.V., Nekrasova N.A., Zhidkova O.B., Grin M.A., Bregadze V.I. Synthesis of cobalt bis(dicarbollide)-curcumin conjugates for potential use in boron neutron capture therapy. Molecules. 2022;27:4658. doi: 10.3390/molecules27144658. PubMed DOI PMC

Semioshkin A.A., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008;2008:977–992. doi: 10.1039/b715363e. PubMed DOI

Sivaev I.B., Bregadze V.I. Cyclic Oxonium Derivatives as an Efficient Synthetic Tool for the Modification of Polyhedral Boron Hydrides. Chem. Inform. 2012;43:623–637. doi: 10.1002/chin.201217264. DOI

Druzina A.A., Shmalko A.V., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of cobalt and iron bis(dicarbollides) and their use in organic synthesis. Russ. Chem. Rev. 2021;90:785–830.

Shmal’ko A.V., Stogniy M.Y., Kazakov G.S., Anufriev S.A., Sivaev I.B., Kovalenko L.V., Bregadze V.I. Cyanide free contraction of disclosed 1,4-dioxane ring as a route to cobalt bis(dicarbollide) derivatives with short spacer between the boron cage and terminal functional group. Dalton Trans. 2015;44:9860–9871. doi: 10.1039/C5DT01293G. PubMed DOI

Plešek J., Grűner B., Šícha V., Böhmer V., Císařová I. The zwitterion [(8,8’-μ-CH2O(CH3)-(1,2-C2B9H10)2-3,3’-Co]0 as a versatile building block for introduction of the cobalt bis(dicarbollide) ion into organic molecules. Organometallics. 2012;31:1703–1715. doi: 10.1021/om200938n. DOI

Druzina A.A., Kosenko I.D., Zhidkova O.B. Synthesis of novel conjugates of closo-dodecaborate derivatives with cholesterol. INEOS OPEN. 2020;3:70–74. doi: 10.32931/io2008a. DOI

Plešek J., Štíbr B., Heřmánek S. A 8,8’-mu-I-3-CO(1,2-C2B9H10)2 metallacarborane complex with a iodonium bridge—evidence for a bromonium analog. Collect. Czech. Chem. Commun. 1984;49:1492–1496. doi: 10.1135/cccc19841492. DOI

Kosenko I.D., Lobanova I.A., Starikova Z.A., Bregadze V.I. Synthesis of new charge-compensated cobalt bis(1,2-dicarbollide) derivatives. Russ. Chem. Bull. 2013;62:1914–1918. doi: 10.1007/s11172-013-0275-y. DOI

Kosenko I.D., Lobanova I.A., Godovikov I.A., Starikova Z.A., Sivaev I.B., Bregadze V.I. Mild C-H activation of activated aromatics with 8,8 ‘-mu-I-3,3 ‘-Co(1,2-C2B9H10)(2): Just mix them. J. Organomet. Chem. 2012;721:70–77. doi: 10.1016/j.jorganchem.2012.05.045. DOI

Safronov A.V., Sevryugina Y.V., Jalisatgi S.S., Kennedy R.D., Barnes C.L., Hawthorne M.F. Unfairly forgotten member of the iodocarborane family: Synthesis and structural characterization of 8-iodo-1,2-dicarba-closo-dodecaborane, its precursors, and derivatives. Inorg. Chem. 2012;51:2629–2637. doi: 10.1021/ic2025846. PubMed DOI

Pichaandi K.R., Safronov A.V., Sevryugina Y.V., Everett T.A., Jalisatgi S.S., Hawthorne M.F. Rodlike polymers containing nickel and cobalt metal bis(dicarbollide) anions: Synthesis and characterization. Organometallics. 2017;36:3823–3829. doi: 10.1021/acs.organomet.7b00578. DOI

Pichaandi K.R., Nilakantan L., Safronov A.V., Sevryugina Y.V., Jalisatgi S.S., Hawthorne M.F. Electronic interactions between ferrocenyl units facilitated by the cobalt bis(dicarbollide) anion linker: An experimental and DFT study. Eur. J. Inorg. Chem. 2018;2018:666–670. doi: 10.1002/ejic.201701019. DOI

Shmaľko A.V., Anufriev S.A., Anisimov A.A., Stogniy M.Y., Sivaev I.B., Bregadze V.I. Synthesis of cobalt and nickel 6,6-diphenylbis(dicarbollides) Russ. Chem. Bull. 2019;68:1239–1247. doi: 10.1007/s11172-019-2547-7. DOI

Anufriev S.A., Sivaev I.B., Bregadze V.I. Synthesis of 9,9’,12,12’-substituted cobalt bis(dicarbollide) derivatives. Russ. Chem. Bull. 2015;64:712–717. doi: 10.1007/s11172-015-0924-4. DOI

Nar I., Atsay A., Gümrükçü S., Karazehir T., Hamuryudan E. Low-symmetry phthalocyanine cobalt bis(dicarbollide) conjugate for hydrogen reduction. Eur. J. Inorg. Chem. 2018;2018:3878–3882. doi: 10.1002/ejic.201800649. DOI

Kosenko I.D., Lobanova I.A., Ananyev I.V., Godovikov I.A., Chekulaeva L.A., Starikova Z.A., Qi S., Bregadze V.I. Novel alkoxy derivatives of cobalt bis(1,2-dicarbollide) J. Organomet. Chem. 2014;769:72–79. doi: 10.1016/j.jorganchem.2014.07.005. DOI

Stogniy M.Y., Suponitsky K.Y., Chizhov A.O., Sivaev I.B., Bregadze V.I. Synthesis of 8-alkoxy and 8,8’-dialkoxy derivatives of cobalt bis(dicarbollide) J. Organomet. Chem. 2018;865:138–144. doi: 10.1016/j.jorganchem.2018.03.005. DOI

Plešek J., Grűner B., Báča J., Fusek J., Císařová I. Syntheses of the B(8)-hydroxy- and B(8,8′)-dihydroxy-derivatives of the bis(1,2-dicarbollido)-3-cobalt(1-)ate ion by its reductive acetoxylation and hydroxylation: Molecular structure of [8,8′-μ-CH3C(O)2 (1,2-C2B9H10)2-3-Co]0 zwitterion determined by X-ray diffraction analysis. J. Organomet. Chem. 2002;649:181–190.

Sardo C., Janczak S., Leśnikowski Z.J. Unusual resistance of cobalt bis dicarbollide phosphate and phosphorothioate bridged esters towards alkaline hydrolysis: The “metallacarborane effect”. J. Organomet. Chem. 2019;896:70–76. doi: 10.1016/j.jorganchem.2019.06.001. DOI

Anufriev S.A., Erokhina S.A., Suponitsky K.Y., Godovikov I.A., Filippov O.A., Fabrizi de Biani F., Corsini M., Chizhov A.O., Sivaev I.B. Methylsulfanyl-stabilized rotamers of cobalt bis(dicarbollide) Eur. J. Inorg. Chem. 2017;2017:4444–4451. doi: 10.1002/ejic.201700575. DOI

Churchill M.R., Gold K., Francis J.N., Hawthorne M.F. Preparation and crystallographic characterization of a bridged metallo-carborane complex containing a carbonium ion center: (B9C2H10)2CoS2CH. J. Am. Chem. Soc. 1969;91:1222–1223. doi: 10.1021/ja01033a035. DOI

Francis J.N., Hawthorn M.F. Synthesis and reactions of novel bridged dicarbollide complexes having electron-deficient carbon atoms. Inorg. Chem. 1971;10:594.

Frank R., Ahrens V.M., Boehnke S., Beck-Sickinger A.G., Hey-Hawkins E. Charge-compensated metallacarborane building blocks for conjugation with peptides. ChemBioChem. 2016;17:308–317. doi: 10.1002/cbic.201500569. PubMed DOI

Sivaev I.B., Stogniy M.Y., Anufriev S.A., Zakharova M.V., Bregadze V.I. New sulfur derivatives of carboranes and metallacarboranes. Phosphorus Sulfur Silicon Relat. Elem. 2017;192:192–196. doi: 10.1080/10426507.2016.1255616. DOI

Anufriev S.A., Sivaev I.B., Suponitsky K.Y., Bregadze V.I. Practical synthesis of 9-methylthio-7,8-nido-carborane [9-MeS-7,8-C2B9H11]-. Some evidences of BH···X hydride-halogen bonds in 9- XCH2(Me)S-7,8-C2B9H11 (X = Cl, Br, I) J. Organomet. Chem. 2017;849:315–323.

Timofeev S.V., Zakharova M.V., Mosolova E.M., Godovikov I.A., Ananyev I.V., Sivaev I.B., Bregadze V.I. Tungsten carbonyl σ-complexes of nido-carborane thioethers. J. Organomet. Chem. 2012;721:92–96. doi: 10.1016/j.jorganchem.2012.06.002. DOI

Timofeev S.V., Zhidkova O.B., Mosolova E.M., Sivaev I.B., Godovikov I.A., Suponitsky K.Y., Starikova Z.A., Bregadze V.I. Tungsten carbonyl σ-complexes with charge-compensated nido-carboranyl thioether ligands. Dalton Trans. 2015;44:6449–6456. doi: 10.1039/C5DT00176E. PubMed DOI

Timofeev S.V., Anufriev S.A., Sivaev I.B., Bregadze V.I. Synthesis of cobalt bis(8-methylthio-1,2-dicarbollide)- pentacarbonyltungsten complexes. Russ. Chem. Bull. 2018;67:570–572. doi: 10.1007/s11172-018-2112-9. DOI

Bogdanova E.V., Stogniy M.Y., Suponitsky K.Y., Sivaev I.B., Bregadze V.I. Synthesis of boronated amidines by addition of amines to nitrilium derivative of cobalt bis(dicarbollide) Molecules. 2021;26:16. PubMed PMC

Leoncini A., Huskens J., Verboom W. Ligands for f-element extraction used in the nuclear fuel cycle. Chem. Soc. Rev. 2017;46:7229–7273. PubMed

Logunov M.V., Voroshilov Y.A., Babain V.A., Skobtsov A.S. Experience of mastering, industrial exploitation, and optimization of the integrated extraction–precipitation technology for fractionation of liquid high-activity wastes at mayak production association. Radiochemistry. 2020;62:700–722. doi: 10.1134/S1066362220060028. DOI

Herbst R.S., Law J.D., Todd T.A., Romanovskii V.N., Babain V.A., Esimantovski V.M., Zaitsev B.N., Smirnov I.V. Development and testing of a cobalt dicarbollide based solvent extraction process for the separation of cesium and strontium from acidic tank waste. Sep. Sci. Technol. 2002;37:1807–1831. doi: 10.1081/SS-120003045. DOI

Grűner B., Kvíčalová M., Plešek J., Šícha V., Císařová I., Lučaníková M., Selucký P. Cobalt bis(dicarbollide) ions functionalized by CMPO-like groups attached to boron by short bonds; efficient extraction agents for separation of trivalent f-block elements from highly acidic nuclear waste. J. Organomet. Chem. 2009;694:1678–1689.

Shishkin D.N., Petrova N.K., Goletskii N.D. On the possibility of extractive fractionation of REEs and TPUs from weakly acid raffinate produced of irradiated fuel elements with a mixture of ChCD and D2EHPA in polar solvent. Radiochemistry. 2020;62:31–36. doi: 10.1134/S1066362220010051. DOI

Shishkin D.N., Petrova N.K., Goletskii N.D., Mamchich M.V., Ushanov A.D., Bizin A.V. Study of the possibility of deep partitioning of the spent nuclear fuel reprocessing raffinate according to the scheme of a pilot demonstration center by extraction with a mixture of CCD, PEO, and HDEHP in a polar solvent. Radiochemistry. 2022;64:294–299. doi: 10.1134/S1066362222030055. DOI

Kumar S., Rao R.V.S. Mass transfer studies in a micromixer-settler: Extraction of Cs and Sr with CCD-PEG-400 solvent from simulated acidic radwaste solutions. J. Radioanal. Nucl. Chem. 2021;329:351–357. doi: 10.1007/s10967-021-07754-4. DOI

Khaydukova M., Militsyn D., Karnaukh M., Grűner B., Selucký P., Babain V., Wilden A., Kirsanov D., Legin A. Modified diamide and phosphine oxide extracting compounds as membrane components for cross-sensitive chemical sensors. Chemosensors. 2019;7:41. doi: 10.3390/chemosensors7030041. DOI

Chaudhury S., Bhattacharyya A., Goswami A. Electrodriven selective transport of cs+ using chlorinated cobalt dicarbollide in polymer inclusion membrane: A novel approach for cesium removal from simulated nuclear waste solution. Environ. Sci. Technol. 2014;48:12994–13000. doi: 10.1021/es503667j. PubMed DOI

Chaudhury S., Bhattacharyya A., Ansari S.A., Goswami A. A new approach for selective Cs+ separation from simulated nuclear waste solution using electrodriven cation transport through hollow fiber supported liquid membranes. J. Membr. Sci. 2018;545:75–80. doi: 10.1016/j.memsci.2017.09.060. DOI

Issa F., Kassiou M., Rendina L.M. Boron in Drug Discovery: Carboranes as unique pharmacophores in biologically active compounds. Chem. Rev. 2011;111:5701–5722. PubMed

Teixidor F., Núñez R., Viñas C. Towards the application of purely inorganic icosahedral boron clusters in emerging nanomedicine. Molecules. 2023;28:24. PubMed PMC

Pinheiro T., Alves L.C., Corregidor V., Teixidor F., Viñas C., Marques F. Metallacarboranes for proton therapy using research accelerators: A pilot study. EPJ Tech. Instrum. 2023;10:5. doi: 10.1140/epjti/s40485-023-00093-6. DOI

Messner K., Vuong B., Tranmer G.K. The boron advantage: The evolution and diversification of boron’s applications in medicinal chemistry. Pharmaceuticals. 2022;15:264. doi: 10.3390/ph15030264. PubMed DOI PMC

Zaulet A., Nuez M., Sillanpää R., Teixidor F., Viñas C. Towards purely inorganic clusters in medicine: Biocompatible divalent cations as counterions of cobaltabis(dicarbollide) and its iodinated derivatives. J. Organomet. Chem. 2021;950:121997. doi: 10.1016/j.jorganchem.2021.121997. DOI

Leśnikowski Z.J. Challenges and opportunities for the application of boron clusters in drug design. J. Med. Chem. 2016;59:7738–7758. doi: 10.1021/acs.jmedchem.5b01932. PubMed DOI

Leśnikowski Z.J. What are the current challenges with the application of boron clusters to drug design. Expert Opin. Drug Discov. 2021;16:481–483. doi: 10.1080/17460441.2021.1867531. PubMed DOI

Gabel D. Boron clusters in medicinal chemistry: Perspectives and problems. Pure Appl. Chem. 2015;87:173–179. doi: 10.1515/pac-2014-1007. DOI

Gozzi M., Schwarze B., Hey-Hawkins E. Preparing (metalla)carboranes for nanomedicine. ChemMedChem. 2021;16:1533–1565. PubMed PMC

Marfavi A., Kavianpour P., Rendina L.M. Carboranes in drug discovery, chemical biology and molecular imaging. Nat. Rev. Chem. 2022;6:486–504. PubMed

Kožíšek M., Cígler P., Lepšík M., Fanfrlík J., Řezáčová P., Brynda J., Pokorná J., Plešek J., Grűner B., Grantz-Šašková K., et al. Inorganic polyhedral metallacarborane inhibitors of HIV protease: A new approach to overcoming antiviral resistance. J. Med. Chem. 2008;51:4839–4843. doi: 10.1021/jm8002334. PubMed DOI

Murphy N., McCarthy E., Dwyer R., Farràs P. Boron clusters as breast cancer therapeutics. J. Inorg. Biochem. 2021;218:11 PubMed

Bednarska-Szczepaniak K., Przelazły E., Kania K.D., Szwed M., Litecká M., Grűner B., Leśnikowski Z.J. Interaction of adenosine, modified using carborane clusters, with ovarian cancer cells: A new anticancer approach against chemoresistance. Cancers. 2021;13:48. doi: 10.3390/cancers13153855. PubMed DOI PMC

Nekvinda J., Różycka D., Rykowski S., Wyszko E., Fedoruk-Wyszomirska A., Gurda D., Orlicka-Płocka M., Giel-Pietraszuk M., Kiliszek A., Rypniewski W., et al. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorganic Chem. 2020;94:16. doi: 10.1016/j.bioorg.2019.103432. PubMed DOI

Beck-Sickinger A.G., Becker D.P., Chepurna O., Das B., Flieger S., Hey-Hawkins E., Hosmane N., Jalisatgi S.S., Nakamura H., Patil R., et al. New boron delivery agents. Cancer. Biother. Radiopharm. 2023;38:160–172. doi: 10.1089/cbr.2022.0060. PubMed DOI PMC

Druzina A.A., Dudarova N.V., Zhidkova O.B., Razumov I.A., Solovieva O.I., Kanygin V.V., Bregadze V.I. Synthesis and cytotoxicity of novel cholesterol-cobalt bis(dicarbollide) conjugates. Mendeleev Commun. 2022;32:354–356. doi: 10.1016/j.mencom.2022.05.021. DOI

Gozzi M., Schwarze B., Hey-Hawkins E. Half- and mixed-sandwich metallacarboranes for potential applications in medicine. Pure Appl. Chem. 2019;91:563–573.

Sivaev I.B., Bregadze V.V. Polyhedral boranes for medical applications: Current status and perspectives. Eur. J. Inorg. Chem. 2009;11:1433–1450.

Wojtczak B.A., Andrysiak A., Grűner B., Leśnikowski Z.J. “Chemical Ligation”: A versatile method for nucleoside modification with boron clusters. Chem. Eur. J. 2008;14:10675–10682. doi: 10.1002/chem.200801053. PubMed DOI

Assaf K.I., Nau W.M. The chaotropic effect as an assembly motif in chemistry. Angew. Chem.-Int. Edit. 2018;57:13968–13981. doi: 10.1002/anie.201804597. PubMed DOI PMC

Assaf K.I., Wilińska J., Gabel D. Ionic boron clusters as superchaotropic anions: Implications for drug design. Boron-Based Compd. Potential Emerg. Appl. Med. 2018:109–125.

Cebula J., Fink K., Boratyński J., Goszczyński T.M. Supramolecular chemistry of anionic boron clusters and its applications in biology. Coord. Chem. Rev. 2023;477:19.

Matějíček P., Cígler P., Procházka K., Král V. Molecular assembly of metallacarboranes in water:  Light scattering and microscopy study. Langmuir. 2006;22:575–581. PubMed

Medoš Z., Bešter-Rogač M. Two-step micellization model: The case of long-chain carboxylates in water. Langmuir. 2017;33:7722–7731. doi: 10.1021/acs.langmuir.7b01700. PubMed DOI

Medoš Z., Friesen S., Buchner R., Bešter-Rogač M. Interplay between aggregation number, micelle charge and hydration of catanionic surfactants. Phys. Chem. Chem. Phys. 2020;22:9998–10009. doi: 10.1039/D0CP00877J. PubMed DOI

Woolley E.M., Burchfield T.E. Model for thermodynamics of ionic surfactant solutions. 2. Enthalpies, heat capacities, and volumes. J. Phys. Chem. 1984;88:2155–2163. doi: 10.1021/j150654a043. DOI

Medoš Z., Hleli B., Tošner Z., Ogrin P., Urbič T., Kogej K., Bešter-Rogač M., Matějíček P. Counterion-induced aggregation of metallacarboranes. J. Phys. Chem. C. 2022;126:5735–5742. doi: 10.1021/acs.jpcc.2c00107. DOI

Merhi T., Jonchère A., Girard L., Diat O., Nuez M., Viñas C., Bauduin P. Highlights on the binding of cobalta-bis-(dicarbollide) with glucose units. Chem. Eur. J. 2020;26:13935–13947. doi: 10.1002/chem.202002123. PubMed DOI

Zaulet A., Teixidor F., Bauduin P., Diat O., Hirva P., Ofori A., Viñas C. Deciphering the role of the cation in anionic cobaltabisdicarbollide clusters. J. Organomet. Chem. 2018;865:214–225.

Fernandez-Alvarez R., Nová L., Uhlík F., Kereïche S., Uchman M., Košovan P., Matějíček P. Interactions of star-like polyelectrolyte micelles with hydrophobic counterions. J. Colloid Interface Sci. 2019;546:371–380. PubMed

Rak J., Kaplánek R., Král V. Solubilization and deaggregation of cobalt bis(dicarbollide) derivatives in water by biocompatible excipients. Bioorg. Med. Chem. Lett. 2010;20:1045–1048. doi: 10.1016/j.bmcl.2009.12.038. PubMed DOI

Goszczyński T.M., Fink K., Kowalski K., Leśnikowski Z.J., Boratyński J. Interactions of boron clusters and their derivatives with serum albumin. Sci. Rep. 2017;7:12. PubMed PMC

Assaf K.I., Begaj B., Frank A., Nilam M., Mougharbel A.S., Kortz U., Nekvinda J., Grűner B., Gabel D., Nau W.M. High-affinity binding of metallacarborane cobalt bis(dicarbollide) anions to cyclodextrins and application to membrane translocation. J. Org. Chem. 2019;84:11790–11798. doi: 10.1021/acs.joc.9b01688. PubMed DOI

Abdelgawwad A.M.A., Xavier J.A.M., Roca-Sanjuán D., Viñas C., Teixidor F., Francés-Monerris A. Light-induced on/off switching of the surfactant character of the o-cobaltabis(dicarbollide) anion with no covalent bond alteration. Angew. Chem. Int. Edit. 2021;60:25753–25757. PubMed PMC

Chazapi I., Diat O., Bauduin P. Aqueous solubilization of hydrophobic compounds by inorganic nano-ions: An unconventional mechanism. J. Colloid Interface Sci. 2023;638:561–568. doi: 10.1016/j.jcis.2023.01.115. PubMed DOI

Rokitskaya T.I., Kosenko I.D., Sivaev I.B., Antonenko Y.N., Bregadze V.I. Fast flip-flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017;19:25122–25128. doi: 10.1039/C7CP04207H. PubMed DOI

Barba-Bon A., Salluce G., Lostalé-Seijo I., Assaf K.I., Hennig A., Montenegro J., Nau W.M. Boron clusters as broadband membrane carriers. Nature. 2022;603:637–642. doi: 10.1038/s41586-022-04413-w. PubMed DOI PMC

Langella E., Esposito D., Monti S.M., Supuran C.T., De Simone G., Alterio V. A combined in silico and structural study opens new perspectives on aliphatic sulfonamides, a still poorly investigated class of ca inhibitors. Biology. 2023;12:281. doi: 10.3390/biology12020281. PubMed DOI PMC

Chen Y., Du F.K., Tang L.Y., Xu J.R., Zhao Y.S., Wu X., Li M.X., Shen J., Wen Q.L., Cho C.H., et al. Carboranes as unique pharmacophores in antitumor medicinal chemistry. Mol. Ther. Oncolytics. 2022;24:400–416. PubMed PMC

Das B.C., Nandwana N.K., Das S., Nandwana V., Shareef M.A., Das Y., Saito M., Weiss L.M., Almaguel F., Hosmane N.S., et al. Boron chemicals in drug discovery and development: Synthesis and medicinal perspective. Molecules. 2022;27:2615. doi: 10.3390/molecules27092615. PubMed DOI PMC

Plešek J. Potential Applications of the Boron Cluster Compounds. Chem. Rev. 1992;92:269–278. doi: 10.1021/cr00010a005. DOI

Zheng Y.K., Liu W.W., Chen Y., Jiang H., Yan H., Kosenko I., Chekulaeva L., Sivaev I., Bregadze V., Wang X.M. A highly potent antibacterial agent targeting methicillin-resistant staphylococcus aureus based on cobalt bis(1,2-dicarbollide) alkoxy derivative. Organometallics. 2017;36:3484–3490.

Jefferson K.K. What drives bacteria to produce a biofilm? FEMS Microbiol. Lett. 2004;236:163–173. doi: 10.1111/j.1574-6968.2004.tb09643.x. PubMed DOI

Archer G.L. Staphylococcus aureus: A Well-Armed Pathogen. Clin. Infect. Dis. 1998;26:1179–1181. doi: 10.1086/520289. PubMed DOI

Campodónico V.L., Gadjeva M., Paradis-Bleau C., Uluer A., Pier G.B. Airway epithelial control of pseudomonas aeruginosa infection in cystic fibrosis. Trends. Mol. Med. 2008;14:120–133. PubMed PMC

Thebault P., Lequeux I., Jouenne T. Antibiofilm strategies. J. Wound. Tech. 2013;21:36–39.

Vaňková E., Lokočová K., Maťátková O., Křížová I., Masák J., Grűner B., Kaule P., Čermák J., Šícha V. Cobalt bis-dicarbollide and its ammonium derivatives are effective antimicrobial and antibiofilm agents. J. Organomet. Chem. 2019;899:8. doi: 10.1016/j.jorganchem.2019.120891. DOI

Kvasničková E., Masák J., Čejka J., Maťátková O., Šícha V. Preparation, characterization, and the selective antimicrobial activity of N-alkylammonium 8-diethyleneglycol cobalt bis-dicarbollide derivatives. J. Organomet. Chem. 2017;827:23–31. doi: 10.1016/j.jorganchem.2016.10.037. DOI

Popova T., Zaulet A., Teixidor F., Alexandrova R., Viñas C. Investigations on antimicrobial activity of cobaltabisdicarbollides. J. Organomet. Chem. 2013;747:229–234. doi: 10.1016/j.jorganchem.2013.07.006. DOI

Totani T., Aono K., Yamamoto K., Tawara K. Synthesis and in vitro antimicrobial property of o-carborane derivatives. J. Med. Chem. 1981;24:1492–1499. doi: 10.1021/jm00144a024. PubMed DOI

Vaňková E., Lokočová K., Kašparová P., Hadravová R., Křížová I., Mat’átková O., Masák J., Šícha V. Cobalt bis-dicarbollide enhances antibiotics action towards staphylococcus epidermidis planktonic growth due to cell envelopes disruption. Pharmaceuticals. 2022;15:534. doi: 10.3390/ph15050534. PubMed DOI PMC

Druzina A.A., Grammatikova N.E., Zhidkova O.B., Nekrasova N.A., Dudarova N.V., Kosenko I.D., Grin M.A., Bregadze V.I. Synthesis and antibacterial activity studies of the conjugates of curcumin with closo-dodecaborate and cobalt bis(dicarbollide) boron clusters. Molecules. 2022;27:2920. doi: 10.3390/molecules27092920. PubMed DOI PMC

Romero I., Martinez-Medina M., Camprubí-Font C., Bennour I., Moreno D., Martínez-Martínez L., Teixidor F., Fox M.A., Viñas C. Metallacarborane assemblies as effective antimicrobial agents, including a highly potent anti-MRSA agent. Organometallics. 2020;39:4253–4264. doi: 10.1021/acs.organomet.0c00315. DOI

Swietnicki W., Goldeman W., Psurski M., Nasulewicz-Goldeman A., Boguszewska-Czubara A., Drab M., Sycz J., Goszczyński T.M. Metallacarborane derivatives effective against pseudomonas aeruginosa and yersinia enterocolitica. Int. J. Mol. Sci. 2021;22:6762. doi: 10.3390/ijms22136762. PubMed DOI PMC

Kosenko I., Ananyev I., Druzina A., Godovikov I., Laskova J., Bregadze V., Studzinska M., Paradowska E., Leśnikowski Z.J., Semioshkin A. Disubstituted cobalt bis(1,2-dicarbollide)(-I) terminal alkynes: Synthesis, reactivity in the Sonogashira reaction and application in the synthesis of cobalt bis(1,2-dicarbollide)(-I) nucleoside conjugates. J. Organomet. Chem. 2017;849:142–149. doi: 10.1016/j.jorganchem.2017.02.030. DOI

Olusanya T.O.B., Haj Ahmad R.R., Ibegbu D.M., Smith J.R., Elkordy A.A. Liposomal drug delivery systems and anticancer drugs. Molecules. 2018;23:907–913. doi: 10.3390/molecules23040907. PubMed DOI PMC

Huang S.T., Wang Y.P., Chen Y.H., Lin C.T., Li W.S., Wu H.C. Liposomal paclitaxel induces fewer hematopoietic and cardiovascular complications than bioequivalent doses of Taxol. Int. J. Oncol. 2018;53:1105–1117. doi: 10.3892/ijo.2018.4449. PubMed DOI PMC

Erdelyi K.E., Antonets A.A., Zhidkova O.B., Druzina A.A., Nazarov A.A., Timofeev S.V., Sivaev I.B., Bregadze V.I. Cobalt and iron bis(dicarbollide) conjugates with cholesterol: Synthesis and evaluation of antiproliferative activity. Russ. Chem. Bull. 2023;72:1059–1065. doi: 10.1007/s11172-023-3871-8. DOI

Dubey R.D., Sarkar A., Shen Z.Y., Bregadze V.I., Sivaev I.B., Druzina A.A., Zhidkova O.B., Shmal’ko A.V., Kosenko I.D., Sreejyothi P., et al. Effects of linkers on the development of liposomal formulation of cholesterol conjugated cobalt bis(dicarbollides) J. Pharm. Sci. 2021;110:1365–1373. doi: 10.1016/j.xphs.2020.12.017. PubMed DOI

Probst T.U., Berryman N.G., Lemmen P., Weissfloch L., Auberger T., Gabel D., Carlsson J., Larsson B. Comparison of inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry with quantitative neutron capture radiography for the determination of boron in biological samples from cancer therapy. J. Anal. At. Spectrom. 1997;12:1115–1122. doi: 10.1039/a700445a. DOI

Laakso J., Kulvik M., Ruokonen I., Vähätalo J., Zilliacus R., Färkkilä M., Kallio M. Atomic emission method for total boron in blood during neutron-capture therapy. Clin. Chem. 2001;47:1796–1803. doi: 10.1093/clinchem/47.10.1796. PubMed DOI

Linko S., Revitzer H., Zilliacus R., Kortesniemi M., Kouri M., Savolainen S. Boron detection from blood samples by ICP-AES and ICP-MS during boron neutron capture therapy. Scand. J. Clin. Lab. Investig. 2008;68:696–702. doi: 10.1080/00365510802100831. PubMed DOI

Kobayashi T., Kanda K. Microanalysis system of ppm-order 10B concentrations in tissue for neutron capture therapy by prompt gamma-ray spectrometry. Nucl. Instrum. Methods Phys. Res. 1983;204:525–531. doi: 10.1016/0167-5087(83)90082-0. DOI

Matsumoto T., Aoki M., Aizawa O. Phantom experiment and calculation for in vivo 10boron analysis by prompt gamma ray spectroscopy. Phys. Med. Biol. 1991;36:329–338. doi: 10.1088/0031-9155/36/3/002. PubMed DOI

Mukai K., Nakagawa Y., Matsumoto K. Prompt gamma ray spectrometry for in vivo measurement of boron-10 concentration in rabbit brain tissue. Neurol. Med. Chir. 1995;35:855–860. doi: 10.2176/nmc.35.855. PubMed DOI

Kashino G., Fukutani S., Suzuki M., Liu Y., Nagata K., Masunaga S.I., Maruhashi A., Tanaka H., Sakurai Y., Kinashi Y., et al. A simple and rapid method for measurement of b-10-para-boronophenylalanine in the blood for boron neutron capture therapy using fluorescence spectrophotometry. J. Radiat. Res. 2009;50:377–382. doi: 10.1269/jrr.09015. PubMed DOI

Efremenko A.V., Ignatova A.A., Grin M.A., Sivaev I.B., Mironov A.F., Bregadze V.I., Feofanov A.V. Chlorin e(6) fused with a cobalt-bis(dicarbollide) nanoparticle provides efficient boron delivery and photoinduced cytotoxicity in cancer cells. Photochem. Photobiol. Sci. 2014;13:92–102. doi: 10.1039/c3pp50226k. PubMed DOI

Efremenko A.V., Ignatova A.A., Borsheva A.A., Grin M.A., Bregadze V.I., Sivaev I.B., Mironov A.F., Feofanov A.V. Cobalt bis(dicarbollide) versus closo-dodecaborate in boronated chlorin e(6) conjugates: Implications for photodynamic and boron-neutron capture therapy. Photochem. Photobiol. Sci. 2012;11:645–652. PubMed

Volovetsky A., Sukhov V., Balalaeva I., Dudenkova V., Shilyagina N., Feofanov A., Efremenko A., Grin M., Mironov A., Sivaev I., et al. Pharmacokinetics of chlorin e(6)-cobalt bis(dicarbollide) conjugate in balb/c mice with engrafted carcinoma. Int. J. Mol. Sci. 2017;18:2556. doi: 10.3390/ijms18122556. PubMed DOI PMC

Fedotova M.K., Usachev M.N., Bogdanova E.V., Diachkova E., Vasil’ev Y., Bregadze V.I., Mironov A.F., Grin M.A. Highly purified conjugates of natural chlorin with cobalt bis(dicarbollide) nanoclusters for PDT and BNCT therapy of cancer. Bioengineering. 2022;9:5. doi: 10.3390/bioengineering9010005. PubMed DOI PMC

Barth R.F., Vicente M.H., Harling O.K., Kiger W., Riley K.J., Binns P.J., Wagner F.M., Suzuki M., Aihara T., Kato I., et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012;7:21. PubMed PMC

Grin M.A., Titeev R.A., Brittal D.I., Ulybina O.V., Tsiprovskiy A.G., Berzina M.Y., Lobanova I.A., Sivaev I.B., Bregadze V.I., Mironov A.F. New conjugates of cobalt bis(dicarbollide) with chlorophyll a derivatives. Mendeleev Commun. 2011;21:84–86.

Al-Warhi T., Sabt A., Elkaeed E.B., Eldehna W.M. Recent advancements of coumarin-based anticancer agents: An up-to-date review. Bioorganic Chem. 2020;103:15 PubMed

Kosenko I., Laskova J., Kozlova A., Semioshkin A., Bregadze V.I. Synthesis of coumarins modified with cobalt bis (1,2-dicarbolide) and closo-dodecaborate boron clusters. J. Organomet. Chem. 2020;921:9. doi: 10.1016/j.jorganchem.2020.121370. DOI

Serdyukov A., Kosenko I., Druzina A., Grin M., Mironov A.F., Bregadze V.I., Laskova J. Anionic polyhedral boron clusters conjugates with 7-diethylamino-4-hydroxycoumarin. Synthesis and lipophilicity determination. J. Organomet. Chem. 2021;946–947:121905.

Nuez-Martínez M., Pedrosa L., Martinez-Rovira I., Yousef I., Diao D., Teixidor F., Stanzani E., Martínez-Soler F., Tortosa A., Sierra À., et al. Synchrotron-based fourier-transform infrared micro-spectroscopy (SR-FTIRM) fingerprint of the small anionic molecule cobaltabis(dicarbollide) uptake in glioma stem cells. Int. J. Mol. Sci. 2021;22:9937. doi: 10.3390/ijms22189937. PubMed DOI PMC

Coghi P., Li J., Hosmane N.S., Zhu Y. Next generation of boron neutron capture therapy (BNCT) agents for cancer treatment. Med. Res. Rev. 2023;43:1809–1830. doi: 10.1002/med.21964. PubMed DOI

Seneviratne D.S., Saifi O., Mackeyev Y., Malouff T., Krishnan S. Next-generation boron drugs and rational translational studies driving the revival of BNCT. Cells. 2023;12:1398. PubMed PMC

Malouff T.D., Seneviratne D.S., Ebner D.K., Stross W.C., Waddle M.R., Trifiletti D.M., Krishnan S. Boron neutron capture therapy: A review of clinical applications. Front. Oncol. 2021;11:351. PubMed PMC

Dymova M.A., Taskaev S.Y., Richter V.A., Kuligina E.V. Boron neutron capture therapy: Current status and future perspectives. Cancer Commun. 2020;40:406–421. doi: 10.1002/cac2.12089. PubMed DOI PMC

Ishola T.A., Chung D.H. Neuroblastoma. Surg. Oncol. 2007;16:149–156. doi: 10.1016/j.suronc.2007.09.005. PubMed DOI

Ross J.A., Davies S.M. Screening for neuroblastoma: Progress and pitfalls. Cancer Epidemiol. Biomarkers Prev. 1999;8:189–194. PubMed

Maris J.M. Recent advances in neuroblastoma. N. Engl. J. Med. 2010;362:2202–2211. doi: 10.1056/NEJMra0804577. PubMed DOI PMC

Peaston R.T., Weinkove C. Measurement of catecholamines and their metabolites. Ann. Clin. Biochem. 2004;41:17–38. doi: 10.1258/000456304322664663. PubMed DOI

Verly I.R.N., van Kuilenburg A.B.P., Abeling N.G.G.M., Goorden S.M.I., Fiocco M., Vaz F.M., van Noesel M.M., Zwaan C.M., Kaspers G.L., Merks J.H.M., et al. Catecholamines profiles at diagnosis: Increased diagnostic sensitivity and correlation with biological and clinical features in neuroblastoma patients. Eur. J. Cancer. 2017;72:235–243. doi: 10.1016/j.ejca.2016.12.002. PubMed DOI

Smith B.R., Gambhir S.S. Nanomaterials for in vivo imaging. Chem. Rev. 2017;117:901–986. PubMed

Hong G.S., Diao S.O., Antaris A.L., Dai H.J. Carbon nanomaterials for biological imaging and nanomedicinal therapy. Chem. Rev. 2015;115:10816–10906. PubMed

Ji D.K., Ménard-Moyon C., Bianco A. Physically-triggered nanosystems based on two-dimensional materials for cancer theranostics. Adv. Drug Deliv. Rev. 2019;138:211–232. PubMed

Wang J.T.W., Klippstein R., Martincic M., Pach E., Feldman R., Šefl M., Michel Y., Asker D., Sosabowski J.K., Kalbac M., et al. Neutron activated Sm-153 sealed in carbon nanocapsules for in vivo imaging and tumor radiotherapy. ACS Nano. 2020;14:129–141. doi: 10.1021/acsnano.9b04898. PubMed DOI

Ferrer-Ugalde A., Sandoval S., Pulagam K.R., Muñoz-Juan A., Laromaine A., Llop J., Tobias G., Núñez R. Radiolabeled cobaltabis(dicarbollide) anion-graphene oxide nanocomposites for in vivo bioimaging and boron delivery. ACS Appl. Nano Mater. 2021;4:1613–1625. doi: 10.1021/acsanm.0c03079. DOI

Pulagam K.R., Henriksen-Lacey M., Uribe K.B., Renero-Lecuna C., Kumar J., Charalampopoulou A., Facoetti A., Protti N., Gómez-Vallejo V., Baz Z., et al. In vivo evaluation of multifunctional gold nanorods for boron neutron capture and photothermal therapies. ACS Appl. Mater. Interfaces. 2021;13:49589–49601. doi: 10.1021/acsami.0c17575. PubMed DOI

Morris J.H., Gysling H.J., Reed D. Electrochemistry of boron compounds. Chem. Rev. 1985;85:51–76. doi: 10.1021/cr00065a003. DOI

Hao E., Zhang M., Wenbo E., Kadish K.M., Fronczek F.R., Courtney B.H., Vicente M.G.H. Synthesis and spectroelectrochemistry of N-cobaltacarborane porphyrin conjugates. Bioconjugate Chem. 2008;19:2171–2181. doi: 10.1021/bc800265w. PubMed DOI PMC

Nar I., Gül A., Sivaev I.B., Hamuryudan E. Cobaltacarborane functionalized phthalocyanines: Synthesis, photophysical, electrochemical and spectroelectrochemical properties. Synth. Met. 2015;210:376–385. doi: 10.1016/j.synthmet.2015.10.021. DOI

Núñez R., Tutusaus O., Teixidor F., Viñas C., Sillanpää R., Kivekäs R. Highly stable neutral and positively charged dicarbollide sandwich complexes. Chem. Eur. J. 2005;11:5637–5647. doi: 10.1002/chem.200500288. PubMed DOI

Fojt L., Grűner B., Šícha V., Nekvinda J., Vespalec R., Fojta M. Electrochemistry of icosahedral cobalt bis(dicarbollide) ions and their carbon and boron substituted derivatives in aqueous phosphate buffers. Electrochim. Acta. 2020;342:136112. doi: 10.1016/j.electacta.2020.136112. DOI

Shishkanova T.V., Sinica A. Electrochemically deposited cobalt bis(dicarbollide) derivative and the detection of neuroblastoma markers on the electrode surface. J. Electroanal. Chem. 2022;921:7. doi: 10.1016/j.jelechem.2022.116674. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Carbon-Substituted Amines of the Cobalt Bis(dicarbollide) Ion: Stereochemistry and Acid-Base Properties

. 2024 Oct 28 ; 63 (43) : 20600-20616. [epub] 20241011

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...