Nitric oxide synthases activation and inhibition by metallacarborane-cluster-based isoform-specific affectors
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM052419
NIGMS NIH HHS - United States
GM52419
NIGMS NIH HHS - United States
PubMed
23075390
PubMed Central
PMC3538847
DOI
10.1021/jm300805x
Knihovny.cz E-zdroje
- MeSH
- chemické modely MeSH
- kobalt chemie MeSH
- lidé MeSH
- molekulární struktura MeSH
- organokovové sloučeniny chemická syntéza farmakologie MeSH
- protein - isoformy MeSH
- sloučeniny boru chemická syntéza farmakologie MeSH
- synthasa oxidu dusnatého antagonisté a inhibitory metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- kobalt MeSH
- organokovové sloučeniny MeSH
- protein - isoformy MeSH
- sloučeniny boru MeSH
- synthasa oxidu dusnatého MeSH
A small library of boron-cluster- and metallacarborane-cluster-based ligands was designed, prepared, and tested for isoform-selective activation or inhibition of the three nitric oxide synthase isoforms. On the basis of the concept of creating a hydrophobic analogue of a natural substrate, a stable and nontoxic basic boron cluster system, previously used for boron neutron capture therapy, was modified by the addition of positively charged moieties to its periphery, providing hydrophobic and nonclassical hydrogen bonding interactions with the protein. Several of these compounds show efficacy for inhibition of NO synthesis with differential effects on the various nitric oxide synthase isoforms.
Zobrazit více v PubMed
Masters BS. In: Nitric Oxide, Biology and Pathobiology. Ignarro LJ, editor. Academic Press; New York: 2000.
Roman LJ, Martásek P, Masters BSS. Intrinsic and extrinsic modulation of nitric oxide synthase activity. Chem Rev. 2002;102(4):1179–1189. PubMed
Michel T, Feron O. Nitric oxide synthases: Which, where, how, and why? J Clin Invest. 1997;100(9):2146–2152. PubMed PMC
Alderton WK, Cooper CE, Knowles RG. Nitric oxide synthases: structure, function and inhibition. Biochem J. 2001;357:593–615. PubMed PMC
Stuehr DJ, Santolini J, Wang ZQ, Wei CC, Adak S. Update on mechanism and catalytic regulation in the NO synthases. J Biol Chem. 2004;279(35):36167–36170. PubMed
Andrew PJ, Mayer B. Enzymatic function of nitric oxide synthases. Cardiovasc Res. 1999;43(3):521–531. PubMed
Li HY, Poulos TL. Structure-function studies on nitric oxide synthases. J Inorg Biochem. 2005;99(1):293–305. PubMed
Bruckdorfer R. The basics about nitric oxide. Mol Aspects Med. 2005;26(1–2):3–31. PubMed
Gomez-Vidal JA, Martásek P, Roman LJ, Silverman RB. Potent and selective conformationally restricted neuronal nitric oxide synthase inhibitors. J Med Chem. 2004;47(3):703–710. PubMed
Hah JM, Martásek P, Roman LJ, Silverman RB. Aromatic reduced amide bond peptidomimetics as selective inhibitors of neuronal nitric oxide synthase. J Med Chem. 2003;46(9):1661–1669. PubMed
Hah JM, Roman LJ, Martásek P, Silverman RB. Reduced amide bond peptidomimetics. (4S)-N-(4-amino-5-[aminoalkyl]aminopentyl)-N'-nitroguanidines, potent and highly selective inhibitors of neuronal nitric oxide synthase. J Med Chem. 2001;44(16):2667–2670. PubMed
Huang H, Martásek P, Roman LJ, Masters BSS, Silverman RB. N-omega-nitroarginine-containing dipeptide amides. Potent and highly selective inhibitors of neuronal nitric oxide synthase. J Med Chem. 1999;42(16):3147–3153. PubMed
Huang H, Martásek P, Roman LJ, Silverman RB. Synthesis and evaluation of peptidomimetics as selective inhibitors and active site probes of nitric oxide synthases. J Med Chem. 2000;43(15):2938–2945. PubMed
Huang H, Martásek P, Roman LJ, Silverman RB. Synthesis and evaluation of dipeptide amides containing N-omega-nitroarginine and D-2,4-diaminobutyric acids as inhibitors of neuronal nitric oxide synthase. J Enzyme Inhib. 2001;16(3):233–239. PubMed
Lee Y, Marletta MA, Martásek P, Roman LJ, Masters BSS, Silverman RB. Conformationally-restricted arginine analogues as alternative substrates and inhibitors of nitric oxide syntheses. Bioorg Med Chem. 1999;7(6):1097–1104. PubMed
Lee Y, Martásek P, Roman LJ, Masters BSS, Silverman RB. Imidazole-containing amino acids as selective inhibitors of nitric oxide synthases. Bioorg Med Chem. 1999;7(9):1941–1951. PubMed
Silverman RB, Huang H, Marletta MA, Martásek P. Selective inhibition of neuronal nitric oxide synthase by N-omega-nitroarginine- and phenylalanine-containing dipeptides and dipeptide esters. J Med Chem. 1997;40(18):2813–2817. PubMed
Zhang HQ, Fast W, Marletta MA, Martásek P, Silverman RB. Potent and selective inhibition of neuronal nitric oxide synthase by N-omega-propyl-L-arginine. J Med Chem. 1997;40(24):3869–3870. PubMed
Silverman RB. Design of selective neuronal nitric oxide synthase inhibitors for the prevention and treatment of neurodegenerative diseases. Acc Chem Res. 2009;42(3):439–451. PubMed PMC
Ji H, Tan S, Igarashi J, Li H, Derrick M, Martásek P, Roman LJ, Vásquez-Vivar J, Poulos TL, Silverman RB. Selective neuronal nitric oxide synthase inhibitors and the prevention of cerebral palsy. Ann Neurol. 2009;65(2):209–217. PubMed PMC
Erdal EP, Litzinger EA, Seo JW, Zhu YQ, Ji HT, Silverman RB. Selective neuronal nitric oxide synthase inhibitors. Curr Top Med Chem. 2005;5(7):603–624. PubMed
Issa F, Kassiou M, Rendina LM. Boron in Drug Discovery: Carboranes as Unique Pharmacophores in Biologically Active Compounds. Chem Rev. 2011;111(9):5701–5722. PubMed
Scholz M, Hey-Hawkins E. Carbaboranes as Pharmacophores: Properties, Synthesis, and Application Strategies. Chem Rev. 2011;111(11):7035–7062. PubMed
Hawthorne MF. The Role of Chemistry in the Development of Boron Neutron-Capture Therapy of Cancer. Angew Chem Int Ed Eng. 1993;32(7):950–984.
Tjarks W. The use of boron clusters in the rational design of boronated nucleosides for neutron capture therapy of cancer. J Organomet Chem. 2000;614:37–47.
Bregadze VI, Sivaev IB, Glazun SA. Polyhedral boron compounds as potential diagnostic and therapeutic antitumor agents. Anticancer Agents Med Chem. 2006;6(2):75–109. PubMed
Crossley EL, Ziolkowski EJ, Coderre JA, Rendina LM. Boronated DNA-binding compounds as potential agents for boron neutron capture therapy. Mini Rev Med Chem. 2007;7(3):303–313. PubMed
Valliant JF, Guenther KJ, King AS, Morel P, Schaffer P, Sogbein OO, Stephenson KA. The medicinal chemistry of carboranes. Coord Chem Rev. 2002;232(1–2):173–230.
Armstrong AF, Valliant JF. The bioinorganic and medicinal chemistry of carboranes: from new drug discovery to molecular imaging and therapy. Dalton Trans. 2007;(38):4240–4251. PubMed
Hawthorne MF, Maderna A. Applications of radiolabeled boron clusters to the diagnosis and treatment of cancer. Chem Rev. 1999;99(12):3421–3434. PubMed
Soloway AH, Tjarks W, Barnum BA, Rong FG, Barth RF, Codogni IM, Wilson JG. The Chemistry of Neutron Capture Therapy. Chem Rev. 1998;98(4):1515–1562. PubMed
Lesnikowski ZJ. Boron units as pharmacophores - New applications and opportunities of boron cluster chemistry. Collect Czech Chem Commun. 2007;72(12):1646–1658.
Cígler P, Kožíšek M, Řezáaová P, Brynda J, Otwinowski Z, Pokorná J, Plešek J, Grüner B, Doleaková-Marešová L, Máša M, Sedláaek J, Bodem J, Kräusslich HG, Král V, Konvalinka J. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc Natl Acad Sci U S A. 2005;102(43):15394–15399. PubMed PMC
Kožíšek M, Cígler P, Lepšík M, Fanfrlík J, Řezáaová P, Brynda J, Pokorná J, Plešek J, Grüner B, Šašková KG, Václavíková J, Král V, Konvalinka J. Inorganic polyhedral metallacarborane inhibitors of HIV protease: A new approach to overcoming antiviral resistance. J Med Chem. 2008;51(15):4839–4843. PubMed
Řezáaová P, Pokorná J, Brynda J, Kožíšek M, Cígler P, Lepšík M, Fanfrlík J, Rezáa J, Šašková KG, Sieglová I, Plešek J, Šícha V, Grüner B, Oberwinkler H, Sedláaek J, Kräusslich HG, Hobza P, Král V, Konvalinka J. Design of HIV Protease Inhibitors Based on Inorganic Polyhedral Metallacarboranes. J Med Chem. 2009;52(22):7132–7141. PubMed
Scholz M, Bensdorf K, Gust R, Hey-Hawkins E. Asborin: The Carbaborane Analogue of Aspirin. ChemMedChem. 2009;4(5):746–748. PubMed
Scholz M, Kalueerovif GN, Kommera H, Paschke R, Will J, Sheldrick WS, Hey-Hawkins E. Carbaboranes as pharmacophores: Similarities and differences between aspirin and asborin. Eur J Med Chem. 2011;46(4):1131–1139. PubMed
Page MFZ, Jalisatgi SS, Maderna A, Hawthorne MF. Design and synthesis of a candidate alpha-human thrombin irreversible inhibitor containing a hydrophobic carborane pharmacophore. Synthesis. 2008;(4):555–563.
Endo Y, Yoshimi T, Kimura K, Itai A. Protein kinase C modulators bearing dicarba-closo-dodecaborane as a hydrophobic pharmacophore. Bioorg Med Chem Lett. 1999;9(17):2561–2564. PubMed
Tsuji M, Koiso Y, Takahashi H, Hashimoto Y, Endo Y. Modulators of tumor necrosis factor alpha production bearing dicarba-closo-dodecaborane as a hydrophobic pharmacophore. Biol Pharm Bull. 2000;23(4):513–516. PubMed
Hawthorne MF, Young DC, Wegner PA. Carbametallic Boron Hydride Derivatives .I. Apparent Analogs of Ferrocene and Ferricinium Ion. J Am Chem Soc. 1965;87(8):1818–1819.
Plešek J. Potential Applications of the Boron Cluster Compounds. Chem Rev. 1992;92(2):269–278.
Plešek J, Hemánek S, Franken A, Císaová I, Nachtigal C. Dimethyl sulfate induced nucleophilic substitution of the [bis(1,2-dicarbollido)-3-cobalt(1-)]ate ion. Syntheses, properties and structures of its 8,8'-mu-sulfato, 8-phenyl and 8-dioxane derivatives. Collect Czech Chem Commun. 1997;62(1):47–56.
Sivaev IB, Bregadze VI. Chemistry of cobalt bis(dicarbollides). A review. Collect Czech Chem Commun. 1999;64(5):783–805.
Plešek J, Grüner B, Báaa J, Fusek J, Císaová I. Syntheses of the B-(8)-hydroxy- and B((8),(8)')-dihydroxy-derivatives of the bis(1,2-dicarbollido)-3-colbalt(1-)ate ion by its reductive acetoxylation and hydroxylation: molecular structure of [8,8 '-mu-CH3C(O)(2)(1,2-C2B9H10)(2)-3-Co](0) zwitterion determined by X-ray diffraction analysis. J Organomet Chem. 2002;649(2):181–190.
Plešek J, Grüner B, Císaová I, Báaa J, Selucký P, Rais J. Functionalized cobalt bis(dicarbollide) ions as selective extraction reagents for removal of M2+ and M3+ cations from nuclear waste, crystal and molecular structures of the [8,8 '-mu-CIP(O)(O)(2)(1,2-C2B9H10)(2)-3,3 '-Co]HN(C2H5)(3) and [8,8 '-mu-Et2NP(O)(O)(2) (1,2-C2B9H10)(2)-3,3 '-Co](HN(CH3)(3)) J Organomet Chem. 2002;657(1–2):59–70.
Matijíaek P, Cígler P, Procházka K, Král V. Molecular assembly of metallacarboranes in water: Light scattering and microscopy study. Langmuir. 2006;22(2):575–581. PubMed
Matijíaek P, Cígler P, Olejniczak AB, Andrysiak A, Wojtczak B, Procházka K, Lesnikowski ZJ. Aggregation behavior of nucleoside-boron cluster conjugates in aqueous solutions. Langmuir. 2008;24(6):2625–2630. PubMed
Semioshkin AA, Sivaev IB, Bregadze VI. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008;(8):977–992. PubMed
Sivaev IB, Bregadze VV. Polyhedral Boranes for Medical Applications: Current Status and Perspectives. Eur J Inorg Chem. 2009;(11):1433–1450.
Rak J, Kaplánek R, Král V. Solubilization and deaggregation of cobalt bis(dicarbollide) derivatives in water by biocompatible excipients. Bioorg Med Chem Lett. 2010;20(3):1045–1048. PubMed
Rak J, Jakubek M, Kaplánek R, Matijíaek P, Král V. Cobalt bis(dicarbollide) derivatives: Solubilization and self-assembly suppression. Eur J Med Chem. 2011;46(4):1140–1146. PubMed
Fanfrlík J, Lepšik M, Horinek D, Havlas Z, Hobza P. Interaction of carboranes with biomolecules: Formation of dihydrogen bonds. ChemPhysChem. 2006;7(5):1100–1105. PubMed
Li HY, Shimizu H, Flinspach M, Jamal J, Yang WP, Xian M, Cai TW, Wen EZ, Jia QA, Wang PG, Poulos TL. The novel binding mode of N-Alkyl-N '-hydroxyguanidine to neuronal nitric oxide synthase provides mechanistic insights into NO biosynthesis. Biochemistry. 2002;41(47):13868–13875. PubMed
Flinspach M, Li HY, Jamal J, Yang WP, Huang H, Silverman RB, Poulos TL. Structures of the neuronal and endothelial nitric oxide synthase heme domain with D-nitroarginine-containing dipeptide inhibitors bound. Biochemistry. 2004;43(18):5181–5187. PubMed
Raman CS, Li H, Martásek P, Král V, Masters BS, Poulos TL. Crystal structure of constitutive endothelial nitric oxide synthase: a paradigm for pterin function involving a novel metal center. Cell. 1998;95(7):939–50. PubMed
Fischmann TO, Hruza A, Niu XD, Fossetta JD, Lunn CA, Dolphin E, Prongay AJ, Reichert P, Lundell DJ, Narula SK, Weber PC. Structural characterization of nitric oxide synthase isoforms reveals striking active-site conservation. Nature Struct Biol. 1999;6(3):233–242. PubMed
Crane BR, Arvai AS, Ghosh DK, Wu CQ, Getzoff ED, Stuehr DJ, Tainer JA. Structure of nitric oxide synthase oxygenase dimer with pterin and substrate. Science. 1998;279(5359):2121–2126. PubMed
Martásek P, Liu Q, Liu JW, Roman LJ, Gross SS, Sessa WC, Masters BSS. Characterization of bovine endothelial nitric oxide synthase expressed in E-coli. Biochem Biophys Res Commun. 1996;219(2):359–365. PubMed
Roman LJ, Martásek P, Miller RT, Harris DE, de La Garza MA, Shea TM, Kim JJ, Masters BS. The C termini of constitutive nitric-oxide synthases control electron flow through the flavin and heme domains and affect modulation by calmodulin. J Biol Chem. 2000;275(38):29225–29232. PubMed
Roman LJ, Miller RT, de la Garza MA, Kim JJP, Masters BSS. The C terminus of mouse macrophage inducible nitric-oxide synthase attenuates electron flow through the flavin domain. J Biol Chem. 2000;275(29):21914–21919. PubMed
Roman LJ, Sheta EA, Martásek P, Gross SS, Liu Q, Masters BSS. High-Level Expression of Functional-Rat Neuronal Nitric-Oxide Synthase in Escherichia-Coli. Proc Natl Acad Sci U S A. 1995;92(18):8428–8432. PubMed PMC
Zhang MJ, Vogel HJ. Characterization of the Calmodulin-Binding Domain of Rat Cerebellar Nitric-Oxide Synthase. J Biol Chem. 1994;269(2):981–985. PubMed
Hevel JM, Marletta MA. Nitric-oxide synthase assays. Methods Enzymol. 1994;233:250–258. PubMed
Connors KA. Binding Constants. John Wiley & Sons; New York: 1981.
Plešek J, Rajabi FH, Vangani V, Fusek J. Constitution and Properties of the 8,8(')-Mu-H2no (1,2-C2b9h10)2–3-Co Bridged Cobaltaborane. Collect Czech Chem Commun. 1994;59(6):1326–1336.
Plešek J, Grüner B, Hemánek S, Fusek J, Votavová H. Constitution and Hplc Resolution of Enantiomers of the [8,4'-Mu-R2n-Commo-(1,2-C2b9h10)2-3-Co] Complex - the 3rd Isomer of Nitrogen-Bridged Bisicosahedral Cobaltacarborane. Collect Czech Chem Commun. 1994;59(2):374–380.
Plešek J, Hemánek S, Baše K, Todd LJ, Wright WF. Zwitterionic compounds of 8,8'-X(C2B9H10)2Co series with monoatomic O, S, Se, Te, N bridges between carborane ligands. Collect Czech Chem Commun. 1976;41(12):3509–3515.
Janoušek Z, Plešek J, Hemánek S, Baše K, Todd LJ, Wright WF. Synthesis and characteristics of sulfur interligand bridge-derivatives and of some S-substituted compounds in the (C2B9H11)2Co-series - conformations of (C2B9H11)2Mx-metallocarboranes. Collect Czech Chem Commun. 1981;46(11):2818–2833.
Grüner B, Císaová I, jáslavský J, Bonnetot B, Cornu D. Synthesis of 12-hydroxy and 12-dioxane derivatives of the closo-1-carbadodecaborate(1-) ion. Variations on the Plesek's cobalt bis(dicarbollide) pattern. Collect Czech Chem Commun. 2002;67(7):953–964.
Holub J, Grüner B, Císaová I, Fusek J, Plzák Z, Teixidor F, Viñas C, Štíbr B. A series of the twelve-vertex ferratricarbollides [2-(eta(5)-C5H5)-9-X-closo-2,1,7,9-FeC3B8H10] (Where x = H2N, MeHN, Me2N, (BuHN)-H-t, Bu-t(Me)N). A highly stable metallatricarbaborane system with amine functions in the para position to the metal center. Inorg Chem. 1999;38(12):2775–2780. PubMed
Hertler WR, Raasch MS. Chemistry of Boranes .14. Amination of B10h10-2 + B12h12-2 with Hydroxylamine-O-Sulfonic Acid. J Am Chem Soc. 1964;86(18):3661–3668.
Grüner B, Bonnetot B, Mongeot H. Synthesis of N- and B-substituted derivatives of closo-amino-undecahydro-dodecaborate(1-) anion. Collect Czech Chem Commun. 1997;62(8):1185–1204.
Sivaev IB, Starikova ZA, Sjöberg S, Bregadze VI. Synthesis of functional derivatives of the [3,3 '-Co(1,2-C2B2H11)(2)](-) anion. J Organomet Chem. 2002;649(1–2):1–8.
Katritzky AR, Rogovoy BV. Recent developments in guanylating agents. Arkivoc. 2005:49–87.
Lee YB, Folk JE. Branched-chain and unsaturated 1,7-diaminoheptane derivatives as deoxyhypusine synthase inhibitors. Bioorg Med Chem. 1998;6(3):253–270. PubMed
Kraus T, Budešínský M, Závada J. Synthesis of per-6-guanidinylated cyclodextrins. Tetrahedron Lett. 2006;47(5):679–681.