Employment of chiral columns with superficially porous particles in chiral separations of cobalt bis (dicarbollide) and nido-7,8-C2 B9 H12 (1-) derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
168120
Grant Agency of Charles University
2114409S
Czech Science Foundation
Y-0026
Welch Foundation
PubMed
37461229
DOI
10.1002/chir.23606
Knihovny.cz E-zdroje
- Klíčová slova
- carboranes, chiral separations, cobalt bis (dicarbollides), cyclodextrin, nido-carboranes, superficially porous particles, vancomycin,
- Publikační typ
- časopisecké články MeSH
Derivatives of the nido-7,8-C2 B9 H12 (1-) (dicarbollide ion) and [3,3'-Co-(1,2-C2 B9 H11 )2 ](1-) cobalt sandwich (COSAN) ion represent groups of extremely chemically and thermally stable abiotic compounds. They are being investigated in many research areas, that is, medicinal chemistry, material sciences, analytical chemistry, and electrochemistry. The chirality of these compounds remains still grossly overlooked, what is also reflected in limited number of reports on their chiral separations. Continued progress depends on reliable, fast, and cost-effective methods for such separations. Recently, chiral separations of COSAN derivatives were achieved in liquid chromatography and supercritical fluid chromatography. Only five anionic derivatives of nido-7,8-C2 B9 H12 (1-) were successfully enantioseparated in liquid chromatography. Efforts to separate anionic nido-7,8-C2 B9 H12 (1-) in supercritical chromatography have failed, and only a few dicarbollide ions were separated using liquid chromatography. Generally, all chiral separations in liquid chromatography took about 30 min. Herein, we identify a versatile column capable of separating both COSAN and nido-7,8-C2 B9 H12 (1-) derivatives and achieve faster analyses times employing commercially available superficially porous chiral stationary phases. The semisynthetic hydroxypropyl β-cyclodextrin-based column (CDShell-RSP) is identified as the column of choice from the tested columns by separating 19 of 27 compounds from each structural motifs tested mainly in less than 10 min. The dihydroxyalkyl, oxygen-bridged hydroxyalkyl, and bisphenylene-bridged COSAN derivatives were baseline separated in less than 5 min exceeding the results of supercritical fluid chromatography. Methods developed herein will aid synthetic chemists without the possession of a supercritical fluid chromatograph to achieve fast chiral separations of COSAN and derivatives of nido-7,8-C2 B9 H12 (1-) on a common liquid chromatograph without the need of dedicated instrumentation.
Department of Chemistry and Biochemistry The University of Texas at Arlington Arlington Texas USA
Faculty of Pharmacy in Hradec Králové Charles University Hradec Králové Czech Republic
Institute of Inorganic Chemistry Academy of Sciences of the Czech Republic Řež Czech Republic
Zobrazit více v PubMed
Grimes RN. Carboranes. 3rd ed. Academic Press; 2016.
Dash BP, Satapathy R, Swain BR, Mahanta CS, Jena BB, Hosmane NS. Cobalt bis (dicarbollide) anion and its derivatives. J Organomet Chem. 2017;170:849-850. doi:10.1016/j.jorganchem.2017.04.006
Grimes RN. Chapter 7-eleven-vertex carboranes. In: Grimes RN, ed. Carboranes. Vol. 3. Academic Press; 2016:179-247.
Pathak K, Saha K, Ghosh S. Chapter 5-nanovehicles and boron clusters. In: Zhu Y, ed. Fundamentals and Applications of Boron Chemistry. Vol. 2. Elsevier; 2022:291-319.
Teixidor F, Viñas C, Planas JG, Romero I, Núñez R. Chapter 1-advances in the catalytic and photocatalytic behavior of carborane derived metal complexes. In: Diéguez M, Núñez R, eds. Advances in Catalysis. Vol. 71. Academic Press; 2022:1-45.
Grüner B, Selucký P, Lučaníková M. Recent progress in extraction agents based on cobalt bis (dicarbollides) for partitioning of radionuclides from high-level nuclear waste. In: Hosmane NS, ed. Boron Science, New Technologies and Applications. Vol. 1. CRC Press; 2012:463-490.
Stoica AI, Vinas C, Teixidor F. History of cobaltabis (dicarbollide) in potentiometry, no need for ionophores to get an excellent selectivity. Molecules. 2022;27(23):8312. doi:10.3390/molecules27238312
Nunez R, Tarres M, Ferrer-Ugalde A, de Biani FF, Teixidor F. Electrochemistry and photoluminescence of icosahedral carboranes, boranes, metallacarboranes, and their derivatives. Chem Rev. 2016;116(23):14307-14378. doi:10.1021/acs.chemrev.6b00198
Sykora D, Vosmanska M, Matejka P, Kral V. Immobilized metallcarborane as a new type of stationary phase for high performance liquid chromatography. J Chromatogr A. 2011;1218(20):3029-3036. doi:10.1016/j.chroma.2011.03.057
Sykora D, Ridka K, Tesarova E, Kalikova K, Kaplanek R, Kral V. Characterization of novel metallacarborane-based sorbents by linear solvation energy relationships. J Chromatogr A. 2014;1371:220-226. doi:10.1016/j.chroma.2014.10.081
Murphy N, McCarthy E, Dwyer R, Farras P. Boron clusters as breast cancer therapeutics. J Inorg Biochem. 2021;218:111412. doi:10.1016/j.jinorgbio.2021.111412
Novopashina DS, Vorobyeva MA, Venyaminova A. Recent advances in the synthesis of high boron-loaded nucleic acids for BNCT. Front Chem. 2021;9:619052. doi:10.3389/fchem.2021.619052
Avdeeva VV, Garaev TM, Malinina EA, Zhizhin KY, Kuznetsov NT. Physiologically active compounds based on membranotropic cage carriers-derivatives of adamantane and polyhedral boron clusters (review). Russ J Inorg Chem. 2022;67(1):28-47. doi:10.1134/S0036023622010028
Messner K, Vuong B, Tranmer GK. The boron advantage: the evolution and diversification of boron's applications in medicinal chemistry. Pharmaceuticals. 2022;15(3):264. doi:10.3390/ph15030264
Kugler M, Nekvinda J, Holub J, et al. Inhibitors of CA IX enzyme based on polyhedral boron compounds. Chembiochem. 2021;22(18):2741-2761. doi:10.1002/cbic.202100121
Fink K, Uchman M. Boron cluster compounds as new chemical leads for antimicrobial therapy. Coord Chem Rev. 2021;431:213684. doi:10.1016/j.ccr.2020.213684
Fink K, Boratyński J, Paprocka M, Goszczyński TM. Metallacarboranes as a tool for enhancing the activity of therapeutic peptides. Ann N Y Acad Sci. 2019;1457(1):128-141. doi:10.1111/nyas.14201
Fuentes I, Garcia-Mendiola T, Sato S, et al. Metallacarboranes on the road to anticancer therapies: cellular uptake, DNA interaction, and biological evaluation of cobaltabisdicarbollide COSAN (−). Chem─Eur J. 2018;24(65):17239-17254. doi:10.1002/chem.201803178
Lesnikowski ZJ. Challenges and opportunities for the application of boron clusters in drug design. J Med Chem. 2016;59(17):7738-7758. doi:10.1021/acs.jmedchem.5b01932
Řezáčová P, Cígler P, Matějíček P, Pokorná J, Grüner B, Konvalinka J. Chapter 1.3.-medicinal application of carboranes: inhibition of HIV protease. In: Hosmane NS, ed. Boron Science, New Technologies and Applications. Vol. 1. CRC Press; 2012:45-63.
Gruner B, Plzak Z. High-performance liquid chromatographic separations of boron-cluster compounds. J Chromatogr A. 1997;789(1-2):497-517. doi:10.1016/S0021-9673(97)00497-4
Plesek J. The age of chiral deltahedral borane derivatives. Inorg Chim Acta. 1999;289(1-2):45-50. doi:10.1016/S0020-1693(99)00056-0
Development of new stereoisomeric drugs. (accessed: March 2023) https://www.fda.gov/regulatory-information/search-fda-guidance-documents/development-new-stereoisomeric-drugs
Horakova H, Gruner B, Vespalec R. Emerging subject for chiral separation science: cluster boron compounds. Chirality. 2011;23(4):307-319. doi:10.1002/chir.20918
Horáček O, Marvalová J, Štilcová K, Holub J, Grüner B, Kučera R. Reversed-phase chromatography as an effective tool for the chiral separation of anionic and zwitterionic carboranes using polysaccharide-based chiral selectors. J Chromatogr A. 2022;1672:463051. doi:10.1016/j.chroma.2022.463051
Mangelings D, Vander Heyden Y, Vespalec R. Chiral separability of boron cluster species studied by screening approaches utilizing polysaccharide-based chiral stationary phases. Biomed Chromatogr. 2014;28(5):694-707. doi:10.1002/bmc.3091
Horáček O, Nováková L, Tüzün E, Grüner B, Švec F, Kučera R. Advanced tool for chiral separations of anionic and zwitterionic (metalla)carboranes: supercritical fluid chromatography. Anal Chem. 2022;94(50):17551-17558. doi:10.1021/acs.analchem.2c03895
Horakova H, Vespalec R. Chiral separability of hydrophobic boron cluster anions with native cyclodextrins in water-methanol background electrolytes. Electrophoresis. 2007;28(20):3639-3649. doi:10.1002/elps.200600814
Horakova H, Vespalec R. Influence of substituents on selectivity and efficiency of chiral separations of anions containing single nido-7,8-dicarbaundecaborane cluster with alpha-cyclodextrin. J Chromatogr A. 2007;1143(1-2):143-152. doi:10.1016/j.chroma.2006.12.089
Horacek O, Papajova-Janetkova M, Gruner B, et al. The first chiral HPLC separation of dicarba-nido-undecarborate anions and their chromatographic behavior. Talanta. 2021;222:121652. doi:10.1016/j.talanta.2020.121652
Grüner B, Cisařová I, Franken A, Plešek J. Resolution of the [6,6′-μ-(CH3)2P-(1,7-(C2B9H10)2)−2-Co] bridged cobaltacarborane to enantiomers pure by chiral HPLC, circular dichroism spectra and absolute configurations by X-ray diffraction. Tetrahedron: Asymmetry. 1998;9(1):79-88. doi:10.1016/S0957-4166(97)00605-8
Plešek J, Grüner B, Vaněk T, Votavová H. Chiral resolution of enantiomers of asymmetric cobaltacarboranes with a monoatomic bridge between ligands by liquid chromatography on a β-cyclodextrin column. J Chromatogr A. 1993;633(1):73-80. doi:10.1016/0021-9673(93)83139-J
El Anwar S, Pazderova L, Bavol D, et al. Structurally rigidified cobalt bis (dicarbollide) derivatives, a chiral platform for labelling of biomolecules and new materials. Chem Commun. 2022;58(15):2572-2575. doi:10.1039/D1CC06979A
Borges EM, Rostagno MA, Meireles MAA. Sub-2 μm fully porous and partially porous (core-shell) stationary phases for reversed phase liquid chromatography. RSC Adv. 2014;4(44):22875-22887. doi:10.1039/C3RA45418E
Spudeit DA, Breitbach ZS, Dolzan MD, Micke GA, Armstrong DW. Superficially porous particle based hydroxypropyl-β-cyclodextrin stationary phase for high-efficiency enantiomeric separations. Chirality. 2015;27(11):788-794. doi:10.1002/chir.22526
Hellinghausen G, Readel ER, Wahab MF, et al. Mass spectrometry-compatible enantiomeric separations of 100 pesticides using core-shell chiral stationary phases and evaluation of iterative curve fitting models for overlapping peaks. Chromatographia. 2019;82(1):221-233. doi:10.1007/s10337-018-3604-3
Hellinghausen G, Roy D, Lee JT, et al. Effective methodologies for enantiomeric separations of 150 pharmacology and toxicology related 1°, 2°, and 3° amines with core-shell chiral stationary phases. J Pharm Biomed Anal. 2018;155:70-81. doi:10.1016/j.jpba.2018.03.032
Patel DC, Breitbach ZS, Wahab MF, Barhate CL, Armstrong DW. Gone in seconds: praxis, performance, and peculiarities of ultrafast chiral liquid chromatography with superficially porous particles. Anal Chem. 2015;87(18):9137-9148. doi:10.1021/acs.analchem.5b00715
Plesek J, Gruner B, Fusek J, Votavova H. Asymmetric cobaltacarboranes [6,6′-μ-R-S(1,7-C2B9H10)2-2-Co](−) with a monosulfur bridge between ligands and HPLC resolution of the enantiomers. Collect Czechoslov Chem Commun. 1993;58(12):2936-2943. doi:10.1135/cccc19932936
Plesek J, Hermanek S. The (η-1,7′-2,2′)4,8′-8,4′-(Bis-μ-o-phenylene)bisdicarbollidocobalt(1-)ate ion [3-Co-4,8′-8,4′(o-C6H4)2(1,2-C2B9H9)2](−). The first doubly bridged metallacarborane complex. Synthesis, properties and structure. Collect Czechoslov Chem Commun. 1995;60(8):1297-1302. doi:10.1135/cccc19951297
Grüner B, Švec P, Šícha V, Padělková Z. Direct and facile synthesis of carbon substituted alkylhydroxy derivatives of cobalt bis(1,2-dicarbollide), versatile building blocks for synthetic purposes. Dalton Trans. 2012;41(25):7498-7512. doi:10.1039/c2dt30128h
Plesek J, Cisarova I, Backovsky J. Cobalt bis(1,2-dicarbollide) ion with a disulfur bridge between B(8) and B(8). X-ray structure, absolute configuration of one enantiomer, and implications. Collect Czechoslov Chem Commun. 2002;67(5):569-576. doi:10.1135/cccc20020569
Nekvinda J, Švehla J, Císařová I, Grüner B. Chemistry of cobalt bis(1,2-dicarbollide) ion; the synthesis of carbon substituted alkylamino derivatives from hydroxyalkyl derivatives via methylsulfonyl or p-toluenesulfonyl esters. J Organomet Chem. 2015;798:112-120. doi:10.1016/j.jorganchem.2015.06.032
Rudakov DA, Kurman PV, Potkin VI. Synthesis and deborination of polyhalo-substituted ortho-carboranes. Russ J Gen Chem. 2011;81(6):1137-1142. doi:10.1134/S1070363211060107
Hawthorne MF, Young DC, Garrett PM, et al. The preparation and characterization of the (3)-1,2- and (3)-1,7-dicarbadodecahydroundecaborate (−1) ions. J Am Chem Soc. 1968;90(4):862-868. doi:10.1021/ja01006a006
Shirokii VL, Rudakov DA, Bazhanov AV, et al. Electrochemical halogenation of the single-charged anion of dodecahydro-7,8-dicarba-nido-undecaborate. Russ J Electrochem. 2004;40(2):212-214. doi:10.1023/B:RUEL.0000016338.23698.61
Rudakov DA, Potkin VI, Lantsova IV. Halogenation and thiocyanation of the univalent anion of dodecahydro-7,8-dicarba-nido-undecaborate in a diaphragm electrochemical cell. Russ J Electrochem. 2009;45(7):813-817. doi:10.1134/S1023193509070179
Yoo J, Hwang JW, Do Y. Facile and mild deboronation of o-carboranes using cesium fluoride. Inorg Chem. 2001;40(3):568-570. doi:10.1021/ic000768k
Plešek J, Janousek Z, Heřmánek S. 9-(Dimethyl sulfide)-7,8-dicarba-nido-undecaborane(11), 9-[(CH3)2S]-7,8-C2B9H11. Inorganic Synthesis. 1983;22:239-241.
Plešek J, Grüner B, Maloň P. Synthesis and properties of (±)- and (+)-4-MeS-3-C2H5-1,2,3-C2CoB9H10. Collect Czechoslov Chem Commun. 1993;58(5):1087-1092. doi:10.1135/cccc19931087
Plešek J, Grüner B, Heřmánek S, Fusek J, Votavová H. Constitution and HPLC resolution of enantiomers of the [8,4′-μ-R2N-commo-(1,2-C2B9H10)2-3-Co] complex: the third isomer of nitrogen-bridged Bis. Collect Czech Chem Commun. 1994;59(2):374-380. doi:10.1135/cccc19940374
Plešek J, Grüner B, Maloň P. Liquid chromatographic resolution of enantiomers of deltahedral carborane and metallaborane derivatives. J Chromatogr A. 1992;626(2):197-206. doi:10.1016/0021-9673(92)85410-U
Rosair GM, Welch AJ, Weller AS, Zahn SK. Sterically encumbered charge-compensated carbaboranes: synthesis and reactivity molecular structures of 7-Ph-11-SMe2-7,8-nido-C2B9H10 and 1-Ph-3,3-(CO)2-7-SMe2-3,1,2-closo-RhC2B9H8. J Organomet Chem. 1997;536-537:299-308. doi:10.1016/S0022-328X(96)06740-X