Interaction of Adenosine, Modified Using Carborane Clusters, with Ovarian Cancer Cells: A New Anticancer Approach against Chemoresistance
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
2015/17/B/NZ3/03764
Narodowe Centrum Nauki
PubMed
34359756
PubMed Central
PMC8345486
DOI
10.3390/cancers13153855
PII: cancers13153855
Knihovny.cz E-zdroje
- Klíčová slova
- apoptosis, cancer spheroids, chemoresistance, cisplatin, metallacarboranes, nucleoside derivatives, ovarian cancer, reactive oxygen species,
- Publikační typ
- časopisecké články MeSH
Platinum compounds remain the first-line drugs for the treatment of most lethal gynecological malignancies and ovarian cancers. Acquired platinum resistance remains a major challenge in gynecological oncology. Considering the unique physicochemical properties of the metallacarboranes modifier and the significant role of nucleoside derivatives as anticancer antimetabolites, we designed and synthesized a set of adenosine conjugates with metallacarboranes containing iron, cobalt, or chromium as semi-abiotic compounds that influence the cisplatin sensitivity of ovarian cancer cells. Adherent cultures of ovarian carcinoma cell lines and multicellular spheroids, ranging from sensitive to highly resistant including experimental cell lines "not responding" to platinum drugs were used. Iron-containing metallacarborane conjugates showed the best anticancer activity, especially against resistant cells. Compound modified at the C2' nucleoside position showed the best activity in resistant cancer cells and highly resistant cancer spheroids exposed to cisplatin, increasing cell cycle arrest, apoptosis or necrosis, and reactive oxygen species production. Moreover, it showed high cellular accumulation and did not induce cross-resistance to cisplatin, carboplatin, doxorubicin, paclitaxel, or gemcitabine in long-term cultures. The reference nido-carborane derivative (no metal ions) and unmodified nucleosides were not as effective. These findings indicate that metallacarborane modification of adenosine may sensitize ovarian cancer cells to cisplatin in combination treatment.
Zobrazit více v PubMed
Lheureux S., Gourley C., Vergote I., Oza A.M. Epithelial ovarian cancer. Lancet. 2019;393:1240–1253. doi: 10.1016/S0140-6736(18)32552-2. PubMed DOI
Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018;68:7–30. doi: 10.3322/caac.21442. PubMed DOI
Bowtell D.D., Böhm S., Ahmed A.A., Aspuria P.-J., Bast R.C., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019. PubMed DOI PMC
Jayson G.C., Kohn E.C., Kitchener H.C., Ledermann J.A. Ovarian cancer. Lancet. 2014;9951:1376–1388. doi: 10.1016/S0140-6736(13)62146-7. PubMed DOI
Blay J., White T.D., Hoskin D.W. The Extracellular Fluid of Solid Carcinomas Contains Immunosuppressive Concentrations of Adenosine. Cancer Res. 1997;57:2602–2605. PubMed
Von Strandmann E.P., Reinartz S., Wager U., Müller R. Tumor–Host Cell Interactions in Ovarian Cancer: Pathways to Therapy Failure. Trends Cancer. 2017;3:137–148. doi: 10.1016/j.trecan.2016.12.005. PubMed DOI
Zou X., Zhao Y., Liang X., Wang H., Zhu Y., Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front. Immunol. 2021;12:641937. doi: 10.3389/fimmu.2021.641937. PubMed DOI PMC
Yamaguchi H., Maruyama T., Urade Y., Nagata S. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. eLife. 2014;3:e02172. doi: 10.7554/eLife.02172. PubMed DOI PMC
Allard B., Longhi M.S., Robson S.C., Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol. Rev. 2017;276:121–144. doi: 10.1111/imr.12528. PubMed DOI PMC
Azambuja J.H., Ludwig N., Braganhol E., Whiteside T.L. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int. J. Mol. Sci. 2019;20:5698. doi: 10.3390/ijms20225698. PubMed DOI PMC
Sadej R., Skladanowski A.C. Dual, enzymatic and non-enzymatic, function of ecto-5′-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim. Pol. 2012;59:7–52. doi: 10.18388/abp.2012_2105. PubMed DOI
Jiang T., Xu X., Qiao M., Li X., Zhao C., Zhou F., Gao G., Wu F., Chen X., Su C., et al. Comprehensive evaluation of NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC Cancer. 2018;18:50. doi: 10.1186/s12885-018-4073-7. PubMed DOI PMC
Martínez-Ramírez A.S., Díaz-Muñoz M., Battastini A.M., Campos-Contreras A., Olvera A., Bergamin L., Glaser T., Moritz C.E.J., Ulrich H., Vázquez-Cuevas F.G. Cellular Migration Ability Is Modulated by Extracellular Purines in Ovarian Carcinoma SKOV-3 Cells. J. Cell. Biochem. 2017;118:4468–4478. doi: 10.1002/jcb.26104. PubMed DOI
Robak T., Błoński J., Urbańska-Ryś H., Błasińska-Morawiec M., Skotnicki A. 2-Chlorodeoxyadenosine (Cladribine) in the treatment of patients with chronic lymphocytic leukemia 55 years old and younger. Leukemia. 1999;13:518–523. doi: 10.1038/sj.leu.2401368. PubMed DOI
Sandoval A., Consoli U., Plunkett W. Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin. Cancer Res. 1996;2:1731–1741. PubMed
Bontemps F., Delacauw A., Cardoen S., Van Den Neste E., Van Den Berghe G. Metabolism and cytotoxic effects of 2-chloroadenine, the major catabolite of 2-chloro-2′-deoxyadenosine. Biochem. Pharmacol. 2000;59:1237–1243. doi: 10.1016/S0006-2952(00)00258-6. PubMed DOI
Bednarska-Szczepaniak K., Krzyżanowski D., Klink M., Nowak M. Adenosine Analogues as Opposite Modulators of the Cisplatin Resistance of Ovarian Cancer Cells. Anti-Cancer Agents Med. Chem. 2019;19:473–486. doi: 10.2174/1871520619666190118113201. PubMed DOI
Leśnikowski Z.J. What are the current challenges with the application of boron clusters to drug design? Expert Opin. Drug Discov. 2020;16:481–483. doi: 10.1080/17460441.2021.1867531. PubMed DOI
Stockmann P., Gozzi M., Kuhnert R., Sárosi M.B., Hey-Hawkins E. New keys for old locks: Carborane-containing drugs as platforms for mechanism-based therapies. Chem. Soc. Rev. 2019;48:3497–3512. doi: 10.1039/C9CS00197B. PubMed DOI
Cígler P., Kozísek M., Rezácová P., Brynda J., Otwinowski Z., Pokorná J., Plešek J., Grüner B., Dolecková-Maresová L., Mása M., et al. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. USA. 2005;102:15394–15399. doi: 10.1073/pnas.0507577102. PubMed DOI PMC
Grüner B., Brynda J., Das V., Šícha V., Štěpánková J., Nekvinda J., Holub J., Pospíšilová K., Fábry M., Pachl P., et al. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J. Med. Chem. 2019;62:9560–9575. doi: 10.1021/acs.jmedchem.9b00945. PubMed DOI
Grüner B., Kugler M., El Anwar S., Holub J., Nekvinda J., Bavol D., Růžičková Z., Pospíšilová K., Fábry M., Král V., et al. Cobalt Bis(dicarbollide) Alkylsulfonamides: Potent and Highly Selective Inhibitors of Tumor Specific Carbonic Anhydrase IX. ChemPlusChem. 2020;86:351. doi: 10.1002/cplu.202000717. PubMed DOI
Nekvinda J., Różycka D., Rykowski S., Wyszko E., Fedoruk-Wyszomirska A., Gurda D., Orlicka-Płocka M., Giel-Pietraszuk M., Kiliszek A., Rypniewski W., et al. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorganic Chem. 2020;94:103432. doi: 10.1016/j.bioorg.2019.103432. PubMed DOI
Olejniczak A., Nawrot B., Leśnikowski Z. DNA Modified with Boron–Metal Cluster Complexes [M(C2B9H11)2]—Synthesis, Properties, and Applications. Int. J. Mol. Sci. 2018;19:3501. doi: 10.3390/ijms19113501. PubMed DOI PMC
Białek-Pietras M., Olejniczak A.B., Tachikawa S., Nakamura H., Leśnikowski Z.J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates. Bioorganic Med. Chem. 2013;21:1136–1142. doi: 10.1016/j.bmc.2012.12.039. PubMed DOI
Byun Y., Narayanasamy S., Johnsamuel J., Bandyopadhyaya A.K., Tiwari R., Al-Madhoun A.S., Barth R.F., Eriksson S., Tjarks W. 3-Carboranyl Thymidine Analogues (3CTAs) and Other Boronated Nucleosides for Boron Neutron Capture Therapy. Anticancer Agents Med. Chem. 2006;6:127–144. doi: 10.2174/187152006776119171. PubMed DOI
Kaniowski D., Ebenryter-Olbińska K., Sobczak M., Wojtczak B., Janczak S., Leśnikowski Z., Nawrot B. High Boron-loaded DNA-Oligomers as Potential Boron Neutron Capture Therapy and Antisense Oligonucleotide Dual-Action Anticancer Agents. Molecules. 2017;22:1393. doi: 10.3390/molecules22091393. PubMed DOI PMC
Leśnikowski Z.J., Paradowska E., Olejniczak A.B., Studzińska M., Seekamp P., Schüßler U., Gabel D., Schinazi R.F., Plešek J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes and their nucleoside conjugates. Bioorganic Med. Chem. 2005;13:4168–4175. doi: 10.1016/j.bmc.2005.04.042. PubMed DOI
Adamska-Bartłomiejczyk A., Bednarska K., Białek-Pietras M., Kiliańska Z.M., Mieczkowski A., Olejniczak A.B., Paradowska E., Studzińska M., Sułowska Z., Żołnierczyk J.D., et al. Boron-Based Compounds: Potential and Emerging Applications in Medicine. John Wiley & Sons; Hoboken, NJ, USA: 2018. Boron Cluster Modifications with Antiviral, Anticancer, and Modulation of Purinergic Receptors’ Activities Based on Nucleoside Structures.
Bednarska K., Olejniczak A.B., Wojtczak B.A., Sułowska Z., Leśnikowski Z.J. Adenosine and 2′-Deoxyadenosine Modified with Boron Cluster Pharmacophores as New Classes of Human Blood Platelet Function Modulators. ChemMedChem. 2010;5:749–756. doi: 10.1002/cmdc.201000075. PubMed DOI
Bednarska K., Olejniczak A.B., Piskala A., Klink M., Sulowska Z., Lesnikowski Z.J. Effect of adenosine modified with a boron cluster pharmacophore on reactive oxygen species production by human neutrophils. Bioorganic Med. Chem. 2012;20:6621–6629. doi: 10.1016/j.bmc.2012.09.039. PubMed DOI
Bednarska K., Olejniczak A.B., Klink M., Sułowska Z., Leśnikowski Z.J. Modulation of human neutrophil activity by adenosine modified with a carborane pharmacophore. Bioorganic Med. Chem. Lett. 2014;24:3073–3078. doi: 10.1016/j.bmcl.2014.05.010. PubMed DOI
Olejniczak A.B., Semenuk A., Kwiatkowski M., Lesnikowski Z.J. Synthesis of adenosine containing carborane modification. J. Organomet. Chem. 2003;680:124–126. doi: 10.1016/S0022-328X(03)00217-1. DOI
Olejniczak A.B., Plešek J., Leśnikowski Z.J. Nucleoside-Metallacarborane Conjugates for Base-Specific Metal Labeling of DNA. Chem. Eur. J. 2006;13:311–318. doi: 10.1002/chem.200600740. PubMed DOI
Olejniczak A.B., Grűner B., Šicha V., Broniarek S., Lesnikowski Z.J. Metallacarboranes as Labels for Multipotential Electrochemical Coding of DNA. [3-Chromium bis(dicarbollide)](-1)ate and Its Nucleoside Conjugates. Electroanalysis. 2009;21:501–506. doi: 10.1002/elan.200804434. DOI
Olejniczak A.B., Mucha P., Grüner B., Lesnikowski Z.J. DNA-Dinucleotides Bearing a 3′,3′-Cobalt- or 3′,3′-Iron-1,2,1′,2′-dicarbollide Complex. Organometallics. 2007;26:3272–3274. doi: 10.1021/om070102z. DOI
Wojtczak B.A., Andrysiak A., Grüner B., Lesnikowski Z.J. “Chemical Ligation”: A Versatile Method for Nucleoside Modification with Boron Clusters. Chem. Eur. J. 2008;14:10675–10682. doi: 10.1002/chem.200801053. PubMed DOI
Wojtczak B.A., Olejniczak A.B., Lesnikowski Z.J. Nucleoside Modification with Boron Clusters and Their Metal Complexes. Curr. Protoc. Nucleic Acid Chem. 2009;36:4–37. doi: 10.1002/0471142700.nc0437s38. PubMed DOI
Hamilton T.C., Young R.C., McKoy W.M., Grotzinger K.R., Green J.A., Chu E.W., Whang-Peng J., Rogan A.M., Green W.R., Ozols R.F. Characterization of a Human Ovarian Carcinoma Cell Line (NIH:OVCAR-3) with Androgen and Estrogen Receptors. Cancer Res. 1983;43:5379–5389. PubMed
Egawa-Takata T., Endo H., Fujita M., Ueda Y., Miyatake T., Okuyama H., Yoshino K., Kamiura S., Enomoto T., Kimura T., et al. Early reduction of glucose uptake after cisplatin treatment is a marker of cisplatin sensitivity in ovarian cancer. Cancer Sci. 2010;101:2171–2178. doi: 10.1111/j.1349-7006.2010.01670.x. PubMed DOI PMC
Bieging K.T., Mello S.S., Attardi L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer. 2014;14:359–370. doi: 10.1038/nrc3711. PubMed DOI PMC
Brooks C.L., Gu W. The impact of acetylation and deacetylation on the p53 pathway. Protein Cell. 2011;2:456–462. doi: 10.1007/s13238-011-1063-9. PubMed DOI PMC
Xia C., Meng Q., Liu L.-Z., Rojanasakul Y., Wang X.-R., Jiang B.-H. Reactive Oxygen Species Regulate Angiogenesis and Tumor Growth through Vascular Endothelial Growth Factor. Cancer Res. 2007;67:10823–10830. doi: 10.1158/0008-5472.CAN-07-0783. PubMed DOI
Rushworth S.A., Zaitseva L., Murray M.Y., Shah N.M., Bowles K.M., MacEwan D.J. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 2012;120:5188–5198. doi: 10.1182/blood-2012-04-422121. PubMed DOI
Chowanadisai W., Messerli S.M., Miller D.H., Medina J.E., Hamilton J.W., Messerli M.A., Brodsky A.S. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS ONE. 2016;11:e0151089. doi: 10.1371/journal.pone.0151089. PubMed DOI PMC
Weiswald L.-B., Bellet D., Dangles-Marie V. Spherical Cancer Models in Tumor Biology. Neoplasia. 2015;17:1–15. doi: 10.1016/j.neo.2014.12.004. PubMed DOI PMC
Plešek J., Heřmánek S., Franken A., Císařová I., Nachtigal C. Dimethyl Sulfate Induced Nucleophilic Substitution of the [Bis(1,2-dicarbollido)-3-cobalt(1-)]ate Ion. Syntheses, Properties and Structures of Its 8,8′-μ-Sulfato, 8-Phenyland 8-Dioxane Derivatives. Collect. Czechoslov. Chem. Commun. 1997;62:47–56. doi: 10.1135/cccc19970047. DOI
Plešek J., Grüner B., Macháček J., Císařová I., Čáslavský J. 8-Dioxane ferra(III) bis(dicarbollide): A paramagnetic functional molecule as versatile building block for introduction of a Fe(III) centre into organic molecules. J. Organomet. Chem. 2007;692:4801–4804. doi: 10.1016/j.jorganchem.2007.07.026. DOI
Forward J.M., Michael D., Mingos P., Müller T.E., Williams D.J., Yan Y.-K. Synthesis and structural characterization of metallacarborane sandwich salts with tetrathiafulvalene (ttf) [M(C2B9H11)2][ttf] (M = Cr, Fe, Ni) J. Organomet. Chem. 1994;467:207–216. doi: 10.1016/0022-328X(94)80007-3. DOI
Čižmár E., Šoltésová D., Kazheva O.N., Alexandrov G.G., Kravchenko A.V., Chekulaeva L.A., Kosenko I.D., Sivaev I.B., Bregadze V.I., Fedorchenko A.V., et al. Large magnetic anisotropy of chromium(III) ions in a bis(ethylenedithio)tetrathiafulvalenium salt of chromium bis(dicarbollide), (ET)2[3,3′-Cr(1,2-C2B9H11)2] Transit. Met. Chem. 2018;43:647–655. doi: 10.1007/s11243-018-0253-1. DOI
Bandman M.A., Knobler C.B., Hawthorne M.F. The synthesis and structural characterization of the first gallacarborane sandwich. Inorg. Chem. 1989;28:1204–1206. doi: 10.1021/ic00306a002. DOI
Semioshkin A.A., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008;8:977–992. doi: 10.1039/b715363e. PubMed DOI
Olejniczak A., Wojtczak B., Lesnikowski Z.J. 2′-Deoxyadenosine Bearing Hydrophobic Carborane Pharmacophore. Nucleosides Nucleotides Nucleic Acids. 2007;26:1611–1613. doi: 10.1080/15257770701548733. PubMed DOI
Sagi G., Otvos L., Ikeda S., Andrei G., Snoeck R., De Clercq E. Synthesis and Antiviral Activities of 8-Alkynyl-, 8-Alkenyl-, and 8-Alkyl-2′-deoxyadenosine Analogs. J. Med. Chem. 1994;37:1307–1311. doi: 10.1021/jm00035a010. PubMed DOI
Jawalekar A.M., Meeuwenoord N., Cremers J.S.G., Overkleeft H.S., van der Marel G.A., Rutjes F.P.J.T., van Delft F.L. Conjugation of Nucleosides and Oligonucleotides by [3+2] Cycloaddition. J. Org. Chem. 2007;73:287–290. doi: 10.1021/jo702023s. PubMed DOI
Cortez A.J., Tudrej P., Kujawa K.A., Lisowska K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol. 2017;81:17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC
Barth R.F., Vicente M.H., Harling O.K., Kiger W., Riley K.J., Binns P.J., Wagner F.M., Suzuki M., Aihara T., Kato I., et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012;7:146. doi: 10.1186/1748-717X-7-146. PubMed DOI PMC
Grimes R.N. Carboranes in the chemist’s toolbox. Dalton Trans. 2015;44:5939–5956. doi: 10.1039/C5DT00231A. PubMed DOI
Murphy N., McCarthy E., Dwyer R., Farràs P. Boron clusters as breast cancer therapeutics. J. Inorg. Biochem. 2021;218:111412. doi: 10.1016/j.jinorgbio.2021.111412. PubMed DOI
Tarrés M., Canetta E., Paul E., Forbes J., Azzouni K., Viñas C., Teixidor F., Harwood A.J. Biological interaction of living cells with COSAN-based synthetic vesicles. Chem. Commun. 2014;50:3370–3372. doi: 10.1039/C3CC49658A. PubMed DOI PMC
Fuentes I., García-Mendiola T., Sato S., Pita M., Nakamura H., Lorenzo E., Teixidor F., Marques F., Viñas C. Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]–. Chem. A Eur. J. 2018;24:17239–17254. doi: 10.1002/chem.201803178. PubMed DOI
Rokitskaya T.I., Kosenko I.D., Sivaev I.B., Antonenko Y.N., Bregadze V.I. Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017;19:25122–25128. doi: 10.1039/C7CP04207H. PubMed DOI
Siddik Z.H., Mims B., Lozano G., Thai G. Independent Pathways of p53 Induction by Cisplatin and X-Rays in a Cisplatin-resistant Ovarian Tumor Cell Line. Cancer Res. 1998;4:698–703. PubMed
Fujioka S., Niu J., Schmidt C., Sclabas G.M., Peng B., Uwagawa T., Li Z., Evans D.B., Abbruzzese J.L., Chiao P.J. NF-κB and AP-1 Connection: Mechanism of NF-κB-Dependent Regulation of AP-1 Activity. Mol. Cell. Biol. 2004;24:7806–7819. doi: 10.1128/MCB.24.17.7806-7819.2004. PubMed DOI PMC
Sodek K.L., Ringuette M.J., Brown T.J. Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int. J. Cancer. 2009;124:2060–2070. doi: 10.1002/ijc.24188. PubMed DOI
Repetto G., del Peso A., Zurita J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008;3:1125–1131. doi: 10.1038/nprot.2008.75. PubMed DOI
Klapperstück T., Glanz D., Klapperstück M., Wohlrab J. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytom. Part A J. Int. Soc. Adv. Cytom. 2009;75:593–608. doi: 10.1002/cyto.a.20735. PubMed DOI
Wagner W., Sachrajda I., Pułaski Ł., Hałatek T., Dastych J. Application of cellular biosensors for analysis of bioactivity associated with airborne particulate matter. Toxicol. Vitr. 2011;25:1132–1142. doi: 10.1016/j.tiv.2011.03.019. PubMed DOI
Mankiewicz-Boczek J., Karwaciak I., Ratajewski M., Gągała I., Jurczak T., Zalewski M., Pułaski Ł. Application of cellular biosensors for detection of atypical toxic bioactivity in microcystin-containing cyanobacterial extracts. Aquat. Toxicol. 2015;168:1–10. doi: 10.1016/j.aquatox.2015.09.004. PubMed DOI
Lim J.C., Kania K.D., Wijesuriya H., Chawla S., Sethi J.K., Pulaski L., Romero I.A., Couraud P.O., Weksler B.B., Hladky S.B., et al. Activation of -catenin signalling by GSK-3 inhibition increases P-glycoprotein expression in brain endothelial cells. J. Neurochem. 2008;106:1855–1865. doi: 10.1111/j.1471-4159.2008.05537.x. PubMed DOI PMC
Sheldrick G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC
Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC
Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI
Diamond—Crystal and Molecular Structure Visualization Crystal Impact, Version 4.6.3. H. Putz & K. Brandenburg GbR. Kreuzherrenstr. 102, 53227 Bonn. Germany. 2020. [(accessed on 21 January 2021)]; Available online: http://www.Crystalimpact.Com/Diamond.