Interaction of Adenosine, Modified Using Carborane Clusters, with Ovarian Cancer Cells: A New Anticancer Approach against Chemoresistance

. 2021 Jul 30 ; 13 (15) : . [epub] 20210730

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34359756

Grantová podpora
2015/17/B/NZ3/03764 Narodowe Centrum Nauki

Platinum compounds remain the first-line drugs for the treatment of most lethal gynecological malignancies and ovarian cancers. Acquired platinum resistance remains a major challenge in gynecological oncology. Considering the unique physicochemical properties of the metallacarboranes modifier and the significant role of nucleoside derivatives as anticancer antimetabolites, we designed and synthesized a set of adenosine conjugates with metallacarboranes containing iron, cobalt, or chromium as semi-abiotic compounds that influence the cisplatin sensitivity of ovarian cancer cells. Adherent cultures of ovarian carcinoma cell lines and multicellular spheroids, ranging from sensitive to highly resistant including experimental cell lines "not responding" to platinum drugs were used. Iron-containing metallacarborane conjugates showed the best anticancer activity, especially against resistant cells. Compound modified at the C2' nucleoside position showed the best activity in resistant cancer cells and highly resistant cancer spheroids exposed to cisplatin, increasing cell cycle arrest, apoptosis or necrosis, and reactive oxygen species production. Moreover, it showed high cellular accumulation and did not induce cross-resistance to cisplatin, carboplatin, doxorubicin, paclitaxel, or gemcitabine in long-term cultures. The reference nido-carborane derivative (no metal ions) and unmodified nucleosides were not as effective. These findings indicate that metallacarborane modification of adenosine may sensitize ovarian cancer cells to cisplatin in combination treatment.

Zobrazit více v PubMed

Lheureux S., Gourley C., Vergote I., Oza A.M. Epithelial ovarian cancer. Lancet. 2019;393:1240–1253. doi: 10.1016/S0140-6736(18)32552-2. PubMed DOI

Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2018. CA Cancer J. Clin. 2018;68:7–30. doi: 10.3322/caac.21442. PubMed DOI

Bowtell D.D., Böhm S., Ahmed A.A., Aspuria P.-J., Bast R.C., Beral V., Berek J.S., Birrer M.J., Blagden S., Bookman M.A., et al. Rethinking ovarian cancer II: Reducing mortality from high-grade serous ovarian cancer. Nat. Rev. Cancer. 2015;15:668–679. doi: 10.1038/nrc4019. PubMed DOI PMC

Jayson G.C., Kohn E.C., Kitchener H.C., Ledermann J.A. Ovarian cancer. Lancet. 2014;9951:1376–1388. doi: 10.1016/S0140-6736(13)62146-7. PubMed DOI

Blay J., White T.D., Hoskin D.W. The Extracellular Fluid of Solid Carcinomas Contains Immunosuppressive Concentrations of Adenosine. Cancer Res. 1997;57:2602–2605. PubMed

Von Strandmann E.P., Reinartz S., Wager U., Müller R. Tumor–Host Cell Interactions in Ovarian Cancer: Pathways to Therapy Failure. Trends Cancer. 2017;3:137–148. doi: 10.1016/j.trecan.2016.12.005. PubMed DOI

Zou X., Zhao Y., Liang X., Wang H., Zhu Y., Shao Q. Double Insurance for OC: miRNA-Mediated Platinum Resistance and Immune Escape. Front. Immunol. 2021;12:641937. doi: 10.3389/fimmu.2021.641937. PubMed DOI PMC

Yamaguchi H., Maruyama T., Urade Y., Nagata S. Immunosuppression via adenosine receptor activation by adenosine monophosphate released from apoptotic cells. eLife. 2014;3:e02172. doi: 10.7554/eLife.02172. PubMed DOI PMC

Allard B., Longhi M.S., Robson S.C., Stagg J. The ectonucleotidases CD39 and CD73: Novel checkpoint inhibitor targets. Immunol. Rev. 2017;276:121–144. doi: 10.1111/imr.12528. PubMed DOI PMC

Azambuja J.H., Ludwig N., Braganhol E., Whiteside T.L. Inhibition of the Adenosinergic Pathway in Cancer Rejuvenates Innate and Adaptive Immunity. Int. J. Mol. Sci. 2019;20:5698. doi: 10.3390/ijms20225698. PubMed DOI PMC

Sadej R., Skladanowski A.C. Dual, enzymatic and non-enzymatic, function of ecto-5′-nucleotidase (eN, CD73) in migration and invasion of A375 melanoma cells. Acta Biochim. Pol. 2012;59:7–52. doi: 10.18388/abp.2012_2105. PubMed DOI

Jiang T., Xu X., Qiao M., Li X., Zhao C., Zhou F., Gao G., Wu F., Chen X., Su C., et al. Comprehensive evaluation of NT5E/CD73 expression and its prognostic significance in distinct types of cancers. BMC Cancer. 2018;18:50. doi: 10.1186/s12885-018-4073-7. PubMed DOI PMC

Martínez-Ramírez A.S., Díaz-Muñoz M., Battastini A.M., Campos-Contreras A., Olvera A., Bergamin L., Glaser T., Moritz C.E.J., Ulrich H., Vázquez-Cuevas F.G. Cellular Migration Ability Is Modulated by Extracellular Purines in Ovarian Carcinoma SKOV-3 Cells. J. Cell. Biochem. 2017;118:4468–4478. doi: 10.1002/jcb.26104. PubMed DOI

Robak T., Błoński J., Urbańska-Ryś H., Błasińska-Morawiec M., Skotnicki A. 2-Chlorodeoxyadenosine (Cladribine) in the treatment of patients with chronic lymphocytic leukemia 55 years old and younger. Leukemia. 1999;13:518–523. doi: 10.1038/sj.leu.2401368. PubMed DOI

Sandoval A., Consoli U., Plunkett W. Fludarabine-mediated inhibition of nucleotide excision repair induces apoptosis in quiescent human lymphocytes. Clin. Cancer Res. 1996;2:1731–1741. PubMed

Bontemps F., Delacauw A., Cardoen S., Van Den Neste E., Van Den Berghe G. Metabolism and cytotoxic effects of 2-chloroadenine, the major catabolite of 2-chloro-2′-deoxyadenosine. Biochem. Pharmacol. 2000;59:1237–1243. doi: 10.1016/S0006-2952(00)00258-6. PubMed DOI

Bednarska-Szczepaniak K., Krzyżanowski D., Klink M., Nowak M. Adenosine Analogues as Opposite Modulators of the Cisplatin Resistance of Ovarian Cancer Cells. Anti-Cancer Agents Med. Chem. 2019;19:473–486. doi: 10.2174/1871520619666190118113201. PubMed DOI

Leśnikowski Z.J. What are the current challenges with the application of boron clusters to drug design? Expert Opin. Drug Discov. 2020;16:481–483. doi: 10.1080/17460441.2021.1867531. PubMed DOI

Stockmann P., Gozzi M., Kuhnert R., Sárosi M.B., Hey-Hawkins E. New keys for old locks: Carborane-containing drugs as platforms for mechanism-based therapies. Chem. Soc. Rev. 2019;48:3497–3512. doi: 10.1039/C9CS00197B. PubMed DOI

Cígler P., Kozísek M., Rezácová P., Brynda J., Otwinowski Z., Pokorná J., Plešek J., Grüner B., Dolecková-Maresová L., Mása M., et al. From nonpeptide toward noncarbon protease inhibitors: Metallacarboranes as specific and potent inhibitors of HIV protease. Proc. Natl. Acad. Sci. USA. 2005;102:15394–15399. doi: 10.1073/pnas.0507577102. PubMed DOI PMC

Grüner B., Brynda J., Das V., Šícha V., Štěpánková J., Nekvinda J., Holub J., Pospíšilová K., Fábry M., Pachl P., et al. Metallacarborane Sulfamides: Unconventional, Specific, and Highly Selective Inhibitors of Carbonic Anhydrase IX. J. Med. Chem. 2019;62:9560–9575. doi: 10.1021/acs.jmedchem.9b00945. PubMed DOI

Grüner B., Kugler M., El Anwar S., Holub J., Nekvinda J., Bavol D., Růžičková Z., Pospíšilová K., Fábry M., Král V., et al. Cobalt Bis(dicarbollide) Alkylsulfonamides: Potent and Highly Selective Inhibitors of Tumor Specific Carbonic Anhydrase IX. ChemPlusChem. 2020;86:351. doi: 10.1002/cplu.202000717. PubMed DOI

Nekvinda J., Różycka D., Rykowski S., Wyszko E., Fedoruk-Wyszomirska A., Gurda D., Orlicka-Płocka M., Giel-Pietraszuk M., Kiliszek A., Rypniewski W., et al. Synthesis of naphthalimide-carborane and metallacarborane conjugates: Anticancer activity, DNA binding ability. Bioorganic Chem. 2020;94:103432. doi: 10.1016/j.bioorg.2019.103432. PubMed DOI

Olejniczak A., Nawrot B., Leśnikowski Z. DNA Modified with Boron–Metal Cluster Complexes [M(C2B9H11)2]—Synthesis, Properties, and Applications. Int. J. Mol. Sci. 2018;19:3501. doi: 10.3390/ijms19113501. PubMed DOI PMC

Białek-Pietras M., Olejniczak A.B., Tachikawa S., Nakamura H., Leśnikowski Z.J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes bearing cobalt, iron and chromium and their cholesterol conjugates. Bioorganic Med. Chem. 2013;21:1136–1142. doi: 10.1016/j.bmc.2012.12.039. PubMed DOI

Byun Y., Narayanasamy S., Johnsamuel J., Bandyopadhyaya A.K., Tiwari R., Al-Madhoun A.S., Barth R.F., Eriksson S., Tjarks W. 3-Carboranyl Thymidine Analogues (3CTAs) and Other Boronated Nucleosides for Boron Neutron Capture Therapy. Anticancer Agents Med. Chem. 2006;6:127–144. doi: 10.2174/187152006776119171. PubMed DOI

Kaniowski D., Ebenryter-Olbińska K., Sobczak M., Wojtczak B., Janczak S., Leśnikowski Z., Nawrot B. High Boron-loaded DNA-Oligomers as Potential Boron Neutron Capture Therapy and Antisense Oligonucleotide Dual-Action Anticancer Agents. Molecules. 2017;22:1393. doi: 10.3390/molecules22091393. PubMed DOI PMC

Leśnikowski Z.J., Paradowska E., Olejniczak A.B., Studzińska M., Seekamp P., Schüßler U., Gabel D., Schinazi R.F., Plešek J. Towards new boron carriers for boron neutron capture therapy: Metallacarboranes and their nucleoside conjugates. Bioorganic Med. Chem. 2005;13:4168–4175. doi: 10.1016/j.bmc.2005.04.042. PubMed DOI

Adamska-Bartłomiejczyk A., Bednarska K., Białek-Pietras M., Kiliańska Z.M., Mieczkowski A., Olejniczak A.B., Paradowska E., Studzińska M., Sułowska Z., Żołnierczyk J.D., et al. Boron-Based Compounds: Potential and Emerging Applications in Medicine. John Wiley & Sons; Hoboken, NJ, USA: 2018. Boron Cluster Modifications with Antiviral, Anticancer, and Modulation of Purinergic Receptors’ Activities Based on Nucleoside Structures.

Bednarska K., Olejniczak A.B., Wojtczak B.A., Sułowska Z., Leśnikowski Z.J. Adenosine and 2′-Deoxyadenosine Modified with Boron Cluster Pharmacophores as New Classes of Human Blood Platelet Function Modulators. ChemMedChem. 2010;5:749–756. doi: 10.1002/cmdc.201000075. PubMed DOI

Bednarska K., Olejniczak A.B., Piskala A., Klink M., Sulowska Z., Lesnikowski Z.J. Effect of adenosine modified with a boron cluster pharmacophore on reactive oxygen species production by human neutrophils. Bioorganic Med. Chem. 2012;20:6621–6629. doi: 10.1016/j.bmc.2012.09.039. PubMed DOI

Bednarska K., Olejniczak A.B., Klink M., Sułowska Z., Leśnikowski Z.J. Modulation of human neutrophil activity by adenosine modified with a carborane pharmacophore. Bioorganic Med. Chem. Lett. 2014;24:3073–3078. doi: 10.1016/j.bmcl.2014.05.010. PubMed DOI

Olejniczak A.B., Semenuk A., Kwiatkowski M., Lesnikowski Z.J. Synthesis of adenosine containing carborane modification. J. Organomet. Chem. 2003;680:124–126. doi: 10.1016/S0022-328X(03)00217-1. DOI

Olejniczak A.B., Plešek J., Leśnikowski Z.J. Nucleoside-Metallacarborane Conjugates for Base-Specific Metal Labeling of DNA. Chem. Eur. J. 2006;13:311–318. doi: 10.1002/chem.200600740. PubMed DOI

Olejniczak A.B., Grűner B., Šicha V., Broniarek S., Lesnikowski Z.J. Metallacarboranes as Labels for Multipotential Electrochemical Coding of DNA. [3-Chromium bis(dicarbollide)](-1)ate and Its Nucleoside Conjugates. Electroanalysis. 2009;21:501–506. doi: 10.1002/elan.200804434. DOI

Olejniczak A.B., Mucha P., Grüner B., Lesnikowski Z.J. DNA-Dinucleotides Bearing a 3′,3′-Cobalt- or 3′,3′-Iron-1,2,1′,2′-dicarbollide Complex. Organometallics. 2007;26:3272–3274. doi: 10.1021/om070102z. DOI

Wojtczak B.A., Andrysiak A., Grüner B., Lesnikowski Z.J. “Chemical Ligation”: A Versatile Method for Nucleoside Modification with Boron Clusters. Chem. Eur. J. 2008;14:10675–10682. doi: 10.1002/chem.200801053. PubMed DOI

Wojtczak B.A., Olejniczak A.B., Lesnikowski Z.J. Nucleoside Modification with Boron Clusters and Their Metal Complexes. Curr. Protoc. Nucleic Acid Chem. 2009;36:4–37. doi: 10.1002/0471142700.nc0437s38. PubMed DOI

Hamilton T.C., Young R.C., McKoy W.M., Grotzinger K.R., Green J.A., Chu E.W., Whang-Peng J., Rogan A.M., Green W.R., Ozols R.F. Characterization of a Human Ovarian Carcinoma Cell Line (NIH:OVCAR-3) with Androgen and Estrogen Receptors. Cancer Res. 1983;43:5379–5389. PubMed

Egawa-Takata T., Endo H., Fujita M., Ueda Y., Miyatake T., Okuyama H., Yoshino K., Kamiura S., Enomoto T., Kimura T., et al. Early reduction of glucose uptake after cisplatin treatment is a marker of cisplatin sensitivity in ovarian cancer. Cancer Sci. 2010;101:2171–2178. doi: 10.1111/j.1349-7006.2010.01670.x. PubMed DOI PMC

Bieging K.T., Mello S.S., Attardi L.D. Unravelling mechanisms of p53-mediated tumour suppression. Nat. Rev. Cancer. 2014;14:359–370. doi: 10.1038/nrc3711. PubMed DOI PMC

Brooks C.L., Gu W. The impact of acetylation and deacetylation on the p53 pathway. Protein Cell. 2011;2:456–462. doi: 10.1007/s13238-011-1063-9. PubMed DOI PMC

Xia C., Meng Q., Liu L.-Z., Rojanasakul Y., Wang X.-R., Jiang B.-H. Reactive Oxygen Species Regulate Angiogenesis and Tumor Growth through Vascular Endothelial Growth Factor. Cancer Res. 2007;67:10823–10830. doi: 10.1158/0008-5472.CAN-07-0783. PubMed DOI

Rushworth S.A., Zaitseva L., Murray M.Y., Shah N.M., Bowles K.M., MacEwan D.J. The high Nrf2 expression in human acute myeloid leukemia is driven by NF-κB and underlies its chemo-resistance. Blood. 2012;120:5188–5198. doi: 10.1182/blood-2012-04-422121. PubMed DOI

Chowanadisai W., Messerli S.M., Miller D.H., Medina J.E., Hamilton J.W., Messerli M.A., Brodsky A.S. Cisplatin Resistant Spheroids Model Clinically Relevant Survival Mechanisms in Ovarian Tumors. PLoS ONE. 2016;11:e0151089. doi: 10.1371/journal.pone.0151089. PubMed DOI PMC

Weiswald L.-B., Bellet D., Dangles-Marie V. Spherical Cancer Models in Tumor Biology. Neoplasia. 2015;17:1–15. doi: 10.1016/j.neo.2014.12.004. PubMed DOI PMC

Plešek J., Heřmánek S., Franken A., Císařová I., Nachtigal C. Dimethyl Sulfate Induced Nucleophilic Substitution of the [Bis(1,2-dicarbollido)-3-cobalt(1-)]ate Ion. Syntheses, Properties and Structures of Its 8,8′-μ-Sulfato, 8-Phenyland 8-Dioxane Derivatives. Collect. Czechoslov. Chem. Commun. 1997;62:47–56. doi: 10.1135/cccc19970047. DOI

Plešek J., Grüner B., Macháček J., Císařová I., Čáslavský J. 8-Dioxane ferra(III) bis(dicarbollide): A paramagnetic functional molecule as versatile building block for introduction of a Fe(III) centre into organic molecules. J. Organomet. Chem. 2007;692:4801–4804. doi: 10.1016/j.jorganchem.2007.07.026. DOI

Forward J.M., Michael D., Mingos P., Müller T.E., Williams D.J., Yan Y.-K. Synthesis and structural characterization of metallacarborane sandwich salts with tetrathiafulvalene (ttf) [M(C2B9H11)2][ttf] (M = Cr, Fe, Ni) J. Organomet. Chem. 1994;467:207–216. doi: 10.1016/0022-328X(94)80007-3. DOI

Čižmár E., Šoltésová D., Kazheva O.N., Alexandrov G.G., Kravchenko A.V., Chekulaeva L.A., Kosenko I.D., Sivaev I.B., Bregadze V.I., Fedorchenko A.V., et al. Large magnetic anisotropy of chromium(III) ions in a bis(ethylenedithio)tetrathiafulvalenium salt of chromium bis(dicarbollide), (ET)2[3,3′-Cr(1,2-C2B9H11)2] Transit. Met. Chem. 2018;43:647–655. doi: 10.1007/s11243-018-0253-1. DOI

Bandman M.A., Knobler C.B., Hawthorne M.F. The synthesis and structural characterization of the first gallacarborane sandwich. Inorg. Chem. 1989;28:1204–1206. doi: 10.1021/ic00306a002. DOI

Semioshkin A.A., Sivaev I.B., Bregadze V.I. Cyclic oxonium derivatives of polyhedral boron hydrides and their synthetic applications. Dalton Trans. 2008;8:977–992. doi: 10.1039/b715363e. PubMed DOI

Olejniczak A., Wojtczak B., Lesnikowski Z.J. 2′-Deoxyadenosine Bearing Hydrophobic Carborane Pharmacophore. Nucleosides Nucleotides Nucleic Acids. 2007;26:1611–1613. doi: 10.1080/15257770701548733. PubMed DOI

Sagi G., Otvos L., Ikeda S., Andrei G., Snoeck R., De Clercq E. Synthesis and Antiviral Activities of 8-Alkynyl-, 8-Alkenyl-, and 8-Alkyl-2′-deoxyadenosine Analogs. J. Med. Chem. 1994;37:1307–1311. doi: 10.1021/jm00035a010. PubMed DOI

Jawalekar A.M., Meeuwenoord N., Cremers J.S.G., Overkleeft H.S., van der Marel G.A., Rutjes F.P.J.T., van Delft F.L. Conjugation of Nucleosides and Oligonucleotides by [3+2] Cycloaddition. J. Org. Chem. 2007;73:287–290. doi: 10.1021/jo702023s. PubMed DOI

Cortez A.J., Tudrej P., Kujawa K.A., Lisowska K.M. Advances in ovarian cancer therapy. Cancer Chemother. Pharmacol. 2017;81:17–38. doi: 10.1007/s00280-017-3501-8. PubMed DOI PMC

Barth R.F., Vicente M.H., Harling O.K., Kiger W., Riley K.J., Binns P.J., Wagner F.M., Suzuki M., Aihara T., Kato I., et al. Current status of boron neutron capture therapy of high grade gliomas and recurrent head and neck cancer. Radiat. Oncol. 2012;7:146. doi: 10.1186/1748-717X-7-146. PubMed DOI PMC

Grimes R.N. Carboranes in the chemist’s toolbox. Dalton Trans. 2015;44:5939–5956. doi: 10.1039/C5DT00231A. PubMed DOI

Murphy N., McCarthy E., Dwyer R., Farràs P. Boron clusters as breast cancer therapeutics. J. Inorg. Biochem. 2021;218:111412. doi: 10.1016/j.jinorgbio.2021.111412. PubMed DOI

Tarrés M., Canetta E., Paul E., Forbes J., Azzouni K., Viñas C., Teixidor F., Harwood A.J. Biological interaction of living cells with COSAN-based synthetic vesicles. Chem. Commun. 2014;50:3370–3372. doi: 10.1039/C3CC49658A. PubMed DOI PMC

Fuentes I., García-Mendiola T., Sato S., Pita M., Nakamura H., Lorenzo E., Teixidor F., Marques F., Viñas C. Metallacarboranes on the Road to Anticancer Therapies: Cellular Uptake, DNA Interaction, and Biological Evaluation of Cobaltabisdicarbollide [COSAN]–. Chem. A Eur. J. 2018;24:17239–17254. doi: 10.1002/chem.201803178. PubMed DOI

Rokitskaya T.I., Kosenko I.D., Sivaev I.B., Antonenko Y.N., Bregadze V.I. Fast flip–flop of halogenated cobalt bis(dicarbollide) anion in a lipid bilayer membrane. Phys. Chem. Chem. Phys. 2017;19:25122–25128. doi: 10.1039/C7CP04207H. PubMed DOI

Siddik Z.H., Mims B., Lozano G., Thai G. Independent Pathways of p53 Induction by Cisplatin and X-Rays in a Cisplatin-resistant Ovarian Tumor Cell Line. Cancer Res. 1998;4:698–703. PubMed

Fujioka S., Niu J., Schmidt C., Sclabas G.M., Peng B., Uwagawa T., Li Z., Evans D.B., Abbruzzese J.L., Chiao P.J. NF-κB and AP-1 Connection: Mechanism of NF-κB-Dependent Regulation of AP-1 Activity. Mol. Cell. Biol. 2004;24:7806–7819. doi: 10.1128/MCB.24.17.7806-7819.2004. PubMed DOI PMC

Sodek K.L., Ringuette M.J., Brown T.J. Compact spheroid formation by ovarian cancer cells is associated with contractile behavior and an invasive phenotype. Int. J. Cancer. 2009;124:2060–2070. doi: 10.1002/ijc.24188. PubMed DOI

Repetto G., del Peso A., Zurita J.L. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat. Protoc. 2008;3:1125–1131. doi: 10.1038/nprot.2008.75. PubMed DOI

Klapperstück T., Glanz D., Klapperstück M., Wohlrab J. Methodological aspects of measuring absolute values of membrane potential in human cells by flow cytometry. Cytom. Part A J. Int. Soc. Adv. Cytom. 2009;75:593–608. doi: 10.1002/cyto.a.20735. PubMed DOI

Wagner W., Sachrajda I., Pułaski Ł., Hałatek T., Dastych J. Application of cellular biosensors for analysis of bioactivity associated with airborne particulate matter. Toxicol. Vitr. 2011;25:1132–1142. doi: 10.1016/j.tiv.2011.03.019. PubMed DOI

Mankiewicz-Boczek J., Karwaciak I., Ratajewski M., Gągała I., Jurczak T., Zalewski M., Pułaski Ł. Application of cellular biosensors for detection of atypical toxic bioactivity in microcystin-containing cyanobacterial extracts. Aquat. Toxicol. 2015;168:1–10. doi: 10.1016/j.aquatox.2015.09.004. PubMed DOI

Lim J.C., Kania K.D., Wijesuriya H., Chawla S., Sethi J.K., Pulaski L., Romero I.A., Couraud P.O., Weksler B.B., Hladky S.B., et al. Activation of -catenin signalling by GSK-3 inhibition increases P-glycoprotein expression in brain endothelial cells. J. Neurochem. 2008;106:1855–1865. doi: 10.1111/j.1471-4159.2008.05537.x. PubMed DOI PMC

Sheldrick G.M. SHELXT–Integrated space-group and crystal-structure determination. Acta Crystallogr. Sect. A Found. Adv. 2015;71:3–8. doi: 10.1107/S2053273314026370. PubMed DOI PMC

Sheldrick G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C Struct. Chem. 2015;71:3–8. doi: 10.1107/S2053229614024218. PubMed DOI PMC

Dolomanov O.V., Bourhis L.J., Gildea R.J., Howard J.A.K., Puschmann H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Crystallogr. 2009;42:339–341. doi: 10.1107/S0021889808042726. DOI

Diamond—Crystal and Molecular Structure Visualization Crystal Impact, Version 4.6.3. H. Putz & K. Brandenburg GbR. Kreuzherrenstr. 102, 53227 Bonn. Germany. 2020. [(accessed on 21 January 2021)]; Available online: http://www.Crystalimpact.Com/Diamond.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...