Synthesis and Characterization of Lignin-Silver Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
A2_FPBT_2022_057
SPECIFIC UNIVERSITY RESEARCH UCT Prague
Formas, Project No.2020-01258
Swedish Research Council for Environment, Agricultural Sciences and Spatial Planning
PubMed
38792221
PubMed Central
PMC11123738
DOI
10.3390/molecules29102360
PII: molecules29102360
Knihovny.cz E-zdroje
- Klíčová slova
- green synthesis, lignin-silver nanoparticles, plasmon resonance,
- Publikační typ
- časopisecké články MeSH
Metal nanoparticle synthesis via environmentally friendly methods is gaining interest for their potential advantages over conventional physico-chemical approaches. Herein, we propose a robust green synthesis route for lignin-modified silver nanoparticles, utilizing the recovery of lignin as a renewable raw material and exploring its application in valuable areas. Through a systematic approach combining UV-Vis spectroscopy with AAS and DLS, we identified repeatable and scalable reaction conditions in an aqueous solution at pH 11 for homogeneous silver nanoparticles with high uniformity. The TEM median sizes ranged from 12 to 15 nm with circularity between 0.985 and 0.993. The silver nanoparticles yield exceeded 0.010 mol L-1, comparable with traditional physico-chemical methods, with a minimal loss of silver precursor ranging between 0.5 and 3.9%. Characterization by XRD and XPS revealed the presence of Ag-O bonding involving lignin functional groups on the pure face-centered cubic structure of metallic silver. Moreover, the lignin-modified silver nanoparticles generated a localized thermal effect upon near-infrared laser irradiation (808 nm), potentially allowing for targeted applications in the biomedical field. Our study showcases the potential of lignin as a renewable reducing and capping agent for silver nanoparticle synthesis, addressing some shortcomings of green synthesis approaches and contributing to the development of suitable nanomaterials.
Central Laboratories University of Chemistry and Technology 166 28 Prague Czech Republic
Department of Biotechnology University of Chemistry and Technology 166 28 Prague Czech Republic
Department of Microbiology Tumor and Cell Biology Karolinska Institutet 171 77 Stockholm Sweden
Zobrazit více v PubMed
Maťátková O., Michailidu J., Miškovská A., Kolouchová I., Masák J., Čejková A. Antimicrobial properties and applications of metal nanoparticles biosynthesized by green methods. Biotechnol. Adv. 2022;58:107905. doi: 10.1016/j.biotechadv.2022.107905. PubMed DOI
Ying S., Guan Z., Ofoegbu P.C., Clubb P., Rico C., He F., Hong J. Green synthesis of nanoparticles: Current developments and limitations. Environ. Technol. Innov. 2022;26:102336. doi: 10.1016/j.eti.2022.102336. DOI
Thoresen P.P., Matsakas L., Rova U., Christakopoulos P. Recent advances in organosolv fractionation: Towards biomass fractionation technology of the future. Bioresour. Technol. 2020;306:123189. doi: 10.1016/j.biortech.2020.123189. PubMed DOI
Bajwa D., Pourhashem G., Ullah A.H., Bajwa S. A concise review of current lignin production, applications, products and their environmental impact. Ind. Crops Prod. 2019;139:111526. doi: 10.1016/j.indcrop.2019.111526. DOI
Iravani S., Varma R.S. Greener synthesis of lignin nanoparticles and their applications. Green Chem. 2020;22:612–636. doi: 10.1039/C9GC02835H. DOI
Chio C., Sain M., Qin W. Lignin utilization: A review of lignin depolymerization from various aspects. Renew. Sustain. Energy Rev. 2019;107:232–249. doi: 10.1016/j.rser.2019.03.008. DOI
Vance M.E., Kuiken T., Vejerano E.P., McGinnis S.P., Hochella M.F., Jr., Rejeski D., Hull M.S. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 2015;6:1769–1780. doi: 10.3762/bjnano.6.181. PubMed DOI PMC
Hou W., Cronin S.B. A Review of Surface Plasmon Resonance-Enhanced Photocatalysis. Adv. Funct. Mater. 2013;23:1612–1619. doi: 10.1002/adfm.201202148. DOI
Ho W.-J., Fen S.-K., Liu J.-J. Plasmonic effects of silver nanoparticles with various dimensions embedded and non-embedded in silicon dioxide antireflective coating on silicon solar cells. Appl. Phys. A. 2017;124:29. doi: 10.1007/s00339-017-1451-y. DOI
Mogensen K.B., Kneipp K. Size-Dependent Shifts of Plasmon Resonance in Silver Nanoparticle Films Using Controlled Dissolution: Monitoring the Onset of Surface Screening Effects. J. Phys. Chem. C. 2014;118:28075–28083. doi: 10.1021/jp505632n. DOI
Sharma V., Verma D., Okram G.S. Influence of surfactant, particle size and dispersion medium on surface plasmon resonance of silver nanoparticles. J. Phys. Condens. Matter. 2020;32:145302. doi: 10.1088/1361-648X/ab601a. PubMed DOI
Agnihotri S., Mukherji S., Mukherji S. Size-controlled silver nanoparticles synthesized over the range 5–100 nm using the same protocol and their antibacterial efficacy. RSC Adv. 2014;4:3974–3983. doi: 10.1039/C3RA44507K. DOI
Paramelle D., Sadovoy A., Gorelik S., Free P., Hobley J., Fernig D.G. A rapid method to estimate the concentration of citrate capped silver nanoparticles from UV-visible light spectra. Analyst. 2014;139:4855–4861. doi: 10.1039/C4AN00978A. PubMed DOI
Fernando I., Zhou Y. Impact of pH on the stability, dissolution and aggregation kinetics of silver nanoparticles. Chemosphere. 2019;216:297–305. doi: 10.1016/j.chemosphere.2018.10.122. PubMed DOI
De Leersnyder I., De Gelder L., Van Driessche I., Vermeir P. Revealing the importance of aging, environment, size and stabilization mechanisms on the stability of metal nanoparticles: A case study for silver nanoparticles in a minimally defined and complex undefined bacterial growth medium. Nanomaterials. 2019;9:1684. doi: 10.3390/nano9121684. PubMed DOI PMC
Takesue M., Tomura T., Yamada M., Hata K., Kuwamoto S., Yonezawa T. Size of Elementary Clusters and Process Period in Silver Nanoparticle Formation. J. Am. Chem. Soc. 2011;133:14164–14167. doi: 10.1021/ja202815y. PubMed DOI
Iravani S., Korbekandi H., Mirmohammadi S.V., Zolfaghari B. Synthesis of silver nanoparticles: Chemical, physical and biological methods. Res. Pharm. Sci. 2014;9:385–406. PubMed PMC
Shankar S., Rhim J.-W. Preparation and characterization of agar/lignin/silver nanoparticles composite films with ultraviolet light barrier and antibacterial properties. Food Hydrocoll. 2017;71:76–84. doi: 10.1016/j.foodhyd.2017.05.002. DOI
Xue Y., Qiu X., Liu Z., Li Y. Facile and Efficient Synthesis of Silver Nanoparticles Based on Biorefinery Wood Lignin and Its Application as the Optical Sensor. ACS Sustain. Chem. Eng. 2018;6:7695–7703. doi: 10.1021/acssuschemeng.8b00578. DOI
Hu S., Hsieh Y.-L. Silver nanoparticle synthesis using lignin as reducing and capping agents: A kinetic and mechanistic study. Int. J. Biol. Macromol. 2016;82:856–862. doi: 10.1016/j.ijbiomac.2015.09.066. PubMed DOI
Nishimura S., Mott D., Takagaki A., Maenosono S., Ebitani K. Role of base in the formation of silver nanoparticles synthesized using sodium acrylate as a dual reducing and encapsulating agent. Phys. Chem. Chem. Phys. 2011;13:9335–9343. doi: 10.1039/C0CP02985H. PubMed DOI
Kwon S.G., Hyeon T. Formation Mechanisms of Uniform Nanocrystals via Hot-Injection and Heat-Up Methods. Small. 2011;7:2685–2702. doi: 10.1002/smll.201002022. PubMed DOI
González A.L., Noguez C., Beránek J., Barnard A.S. Size, Shape, Stability, and Color of Plasmonic Silver Nanoparticles. J. Phys. Chem. C. 2014;118:9128–9136. doi: 10.1021/jp5018168. DOI
Mock J.J., Barbic M., Smith D.R., Schultz D.A., Schultz S. Shape effects in plasmon resonance of individual colloidal silver nanoparticles. J. Chem. Phys. 2002;116:6755–6759. doi: 10.1063/1.1462610. DOI
Serra A., Filippo E., Re M., Palmisano M., Vittori-Antisari M., Buccolieri A., Manno D. Non-functionalized silver nanoparticles for a localized surface plasmon resonance-based glucose sensor. Nanotechnology. 2009;20:165501. doi: 10.1088/0957-4484/20/16/165501. PubMed DOI
Vodnik V.V., Božanić D.K., Bibić N., Šaponjić Z.V., Nedeljković J.M. Optical properties of shaped silver nanoparticles. J. Nanosci. Nanotechnol. 2008;8:3511–3515. doi: 10.1166/jnn.2008.144. PubMed DOI
Aziz S.B., Abdulwahid R.T., Rasheed M.A., Abdullah O.G., Ahmed H.M. Polymer Blending as a Novel Approach for Tuning the SPR Peaks of Silver Nanoparticles. Polymers. 2017;9:486. doi: 10.3390/polym9100486. PubMed DOI PMC
Hollertz R., Arwin H., Faure B., Zhang Y., Bergström L., Wågberg L. Dielectric properties of lignin and glucomannan as determined by spectroscopic ellipsometry and Lifshitz estimates of non-retarded Hamaker constants. Cellulose. 2013;20:1639–1648. doi: 10.1007/s10570-013-9980-9. DOI
Ashraf J.M., Ansari M.A., Khan H.M., Alzohairy M.A., Choi I. Green synthesis of silver nanoparticles and characterization of their inhibitory effects on AGEs formation using biophysical techniques. Sci. Rep. 2016;6:20414. doi: 10.1038/srep20414. PubMed DOI PMC
Vekilov P.G. Nucleation. Cryst. Growth Des. 2010;10:5007–5019. doi: 10.1021/cg1011633. PubMed DOI PMC
Hatami N., Ghader S. Induction time of silver nanoparticles precipitation: Experiment and modeling. Cryst. Res. Technol. 2009;44:953–960. doi: 10.1002/crat.200900177. DOI
Ghader S., Manteghian M., Kokabi M., Mamoory R.S. Induction Time of Reaction Crystallization of Silver Nanoparticles. Chem. Eng. Technol. 2007;30:1129–1133. doi: 10.1002/ceat.200700154. DOI
Schall J.M., Capellades G., Myerson A.S. Methods for estimating supersaturation in antisolvent crystallization systems. CrystEngComm. 2019;21:5811–5817. doi: 10.1039/C9CE00843H. DOI
Henglein A., Giersig M. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate. J. Phys. Chem. B. 1999;103:9533–9539. doi: 10.1021/jp9925334. DOI
Kashchiev D., van Rosmalen G.M. Review: Nucleation in solutions revisited. Cryst. Res. Technol. 2003;38:555–574. doi: 10.1002/crat.200310070. DOI
Thanh N.T.K., Maclean N., Mahiddine S. Mechanisms of Nucleation and Growth of Nanoparticles in Solution. Chem. Rev. 2014;114:7610–7630. doi: 10.1021/cr400544s. PubMed DOI
Wang W., Gu B. Concentrated Dispersions. Volume 878. American Chemical Society; Washington, DC, USA: 2004. Preparation and Characterization of Silver Nanoparticles at High Concentrations; pp. 1–14. (ACS Symposium Series).
Pal T., Sau T.K., Jana N.R. Reversible Formation and Dissolution of Silver Nanoparticles in Aqueous Surfactant Media. Langmuir. 1997;13:1481–1485. doi: 10.1021/la960834o. DOI
Cai Y., Tan F., Qiao X., Wang W., Chen J., Qiu X. Room-temperature synthesis of silica supported silver nanoparticles in basic ethanol solution and their antibacterial activity. RSC Adv. 2016;6:18407–18412. doi: 10.1039/C5RA27053G. DOI
Murray B.J., Li Q., Newberg J.T., Menke E.J., Hemminger J.C., Penner R.M. Shape- and Size-Selective Electrochemical Synthesis of Dispersed Silver(I) Oxide Colloids. Nano Lett. 2005;5:2319–2324. doi: 10.1021/nl051834o. PubMed DOI
Huang Z.Y., Mills G., Hajek B. Spontaneous formation of silver particles in basic 2-propanol. J. Phys. Chem. 1993;97:11542–11550. doi: 10.1021/j100146a031. DOI
Nayak G., Trivedi M.K., Branton A., Trivedi D., Jana S. The physicochemical and thermal properties of consciousness energy healing treated silver oxide (Ag2O) Asp. Min. Miner. Sci. 2018;2:1–6.
Dürauer A., Hobiger S., Walther C., Jungbauer A. Mixing at the microscale: Power input in shaken microtiter plates. Biotechnol. J. 2016;11:1539–1549. doi: 10.1002/biot.201600027. PubMed DOI
Bhattacharjee S. DLS and zeta potential—What they are and what they are not? J. Control. Release. 2016;235:337–351. doi: 10.1016/j.jconrel.2016.06.017. PubMed DOI
Li X., Shen J., Du A., Zhang Z., Gao G., Yang H., Wu J. Facile synthesis of silver nanoparticles with high concentration via a CTAB-induced silver mirror reaction. Colloids Surf. A Physicochem. Eng. Asp. 2012;400:73–79. doi: 10.1016/j.colsurfa.2012.03.002. DOI
Pryshchepa O., Pomastowski P., Buszewski B. Silver nanoparticles: Synthesis, investigation techniques, and properties. Adv. Colloid Interface Sci. 2020;284:102246. doi: 10.1016/j.cis.2020.102246. PubMed DOI
Yao W., Weng Y., Catchmark J.M. Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose. 2020;27:5563–5579. doi: 10.1007/s10570-020-03177-8. DOI
Santos P.S.B.D., Erdocia X., Gatto D.A., Labidi J. Characterisation of Kraft lignin separated by gradient acid precipitation. Ind. Crops Prod. 2014;55:149–154. doi: 10.1016/j.indcrop.2014.01.023. DOI
Budtova T., Navard P. Cellulose in NaOH–water based solvents: A review. Cellulose. 2016;23:5–55. doi: 10.1007/s10570-015-0779-8. DOI
Nishiyama Y., Kuga S., Okano T. Mechanism of mercerization revealed by X-ray diffraction. J. Wood Sci. 2000;46:452–457. doi: 10.1007/BF00765803. DOI
Kamida K., Okajima K., Matsui T., Kowsaka K. Study on the Solubility of Cellulose in Aqueous Alkali Solution by Deuteration IR and 13C NMR. Polym. J. 1984;16:857–866. doi: 10.1295/polymj.16.857. DOI
Le Moigne N., Navard P. Dissolution mechanisms of wood cellulose fibres in NaOH–water. Cellulose. 2010;17:31–45. doi: 10.1007/s10570-009-9370-5. DOI
Miškovská A., Michailidu J., Kolouchová I.J., Barone L., Gornati R., Montali A., Tettamanti G., Berini F., Marinelli F., Masák J., et al. Biological activity of silver nanoparticles synthesized using viticultural waste. Microb. Pathog. 2024;190:106613. doi: 10.1016/j.micpath.2024.106613. PubMed DOI
Sosa F.H.B., Abranches D.O., da Costa Lopes A.M., Coutinho J.A.P., da Costa M.C. Kraft Lignin Solubility and Its Chemical Modification in Deep Eutectic Solvents. ACS Sustain. Chem. Eng. 2020;8:18577–18589. doi: 10.1021/acssuschemeng.0c06655. DOI
Shen Q., Zhang T., Zhu M.-F. A comparison of the surface properties of lignin and sulfonated lignins by FTIR spectroscopy and wicking technique. Colloids Surf. A Physicochem. Eng. Asp. 2008;320:57–60. doi: 10.1016/j.colsurfa.2008.01.012. DOI
Horikawa Y., Hirano S., Mihashi A., Kobayashi Y., Zhai S., Sugiyama J. Prediction of Lignin Contents from Infrared Spectroscopy: Chemical Digestion and Lignin/Biomass Ratios of Cryptomeria japonica. Appl. Biochem. Biotechnol. 2019;188:1066–1076. doi: 10.1007/s12010-019-02965-8. PubMed DOI
Rashid T., Kait C.F., Murugesan T. A “Fourier Transformed Infrared” Compound Study of Lignin Recovered from a Formic Acid Process. Procedia Eng. 2016;148:1312–1319. doi: 10.1016/j.proeng.2016.06.547. DOI
Volkov V.V., Nuti F., Takaoka Y., Chelli R., Papini A.M., Righini R. Hydration and Hydrogen Bonding of Carbonyls in Dimyristoyl-Phosphatidylcholine Bilayer. J. Am. Chem. Soc. 2006;128:9466–9471. doi: 10.1021/ja0614621. PubMed DOI
Petridis L., Smith J.C. Conformations of Low-Molecular-Weight Lignin Polymers in Water. ChemSusChem. 2016;9:289–295. doi: 10.1002/cssc.201501350. PubMed DOI
Westereng B., Cannella D., Wittrup Agger J., Jørgensen H., Larsen Andersen M., Eijsink V.G.H., Felby C. Enzymatic cellulose oxidation is linked to lignin by long-range electron transfer. Sci. Rep. 2015;5:18561. doi: 10.1038/srep18561. PubMed DOI PMC
Kaur R., Ahluwalia G.K., Bakshi M.S. Lignin-Induced Click Synthesis of Au, Ag, Pd, and Iron Oxide Nanoparticles and Their Nanocomposites in Aqueous Bulk and at the Solid–Liquid Interface. ACS Sustain. Chem. Eng. 2023;11:11819–11833. doi: 10.1021/acssuschemeng.3c01471. DOI
Saratale R.G., Saratale G.D., Ghodake G., Cho S.-K., Kadam A., Kumar G., Jeon B.-H., Pant D., Bhatnagar A., Shin H.S. Wheat straw extracted lignin in silver nanoparticles synthesis: Expanding its prophecy towards antineoplastic potency and hydrogen peroxide sensing ability. Int. J. Biol. Macromol. 2019;128:391–400. doi: 10.1016/j.ijbiomac.2019.01.120. PubMed DOI
Si M., Yan X., Liu M., Shi M., Wang Z., Wang S., Zhang J., Gao C., Chai L., Shi Y. In Situ Lignin Bioconversion Promotes Complete Carbohydrate Conversion of Rice Straw by Cupriavidus basilensis B-8. ACS Sustain. Chem. Eng. 2018;6:7969–7978. doi: 10.1021/acssuschemeng.8b01336. DOI
Tian G., Zhong X., Wu X., Wang Z. Self-Assembly Preparation of Nano-Lignin/Cationic Polyacrylamide Complexes. Polymers. 2021;13:1726. doi: 10.3390/polym13111726. PubMed DOI PMC
Ratnaweera D.R., Saha D., Pingali S.V., Labbé N., Naskar A.K., Dadmun M. The impact of lignin source on its self-assembly in solution. RSC Adv. 2015;5:67258–67266. doi: 10.1039/C5RA13485D. DOI
Wang J., Qian Y., Li L., Qiu X. Atomic Force Microscopy and Molecular Dynamics Simulations for Study of Lignin Solution Self-Assembly Mechanisms in Organic–Aqueous Solvent Mixtures. ChemSusChem. 2020;13:4420–4427. doi: 10.1002/cssc.201903132. PubMed DOI
Peng Y., Wang W., Cao J. Preparation of sodium ligninsulfonate-layered double hydroxide and its effects on wood flour/polypropylene composites during accelerated UV weathering. Polym. Compos. 2018;39:2451–2460. doi: 10.1002/pc.24230. DOI
Collier W., Kalasinsky V.F., Schultz T.P. Infrared study of lignin: Assignment of methoxyl CH bending and stretching bands. Holzforschung. 1997;51:167–168.
Biesinger M.C., Lau L.W.M., Gerson A.R., Smart R.S.C. Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Sc, Ti, V, Cu and Zn. Appl. Surf. Sci. 2010;257:887–898. doi: 10.1016/j.apsusc.2010.07.086. DOI
Ran F., Li C., Hao Z., Zhang X., Dai L., Si C., Shen Z., Qiu Z., Wang J. Combined bactericidal process of lignin and silver in a hybrid nanoparticle on E. coli. Adv. Compos. Hybrid Mater. 2022;5:1841–1851. doi: 10.1007/s42114-022-00460-z. PubMed DOI PMC
Ferraria A.M., Carapeto A.P., Botelho do Rego A.M. X-ray photoelectron spectroscopy: Silver salts revisited. Vacuum. 2012;86:1988–1991. doi: 10.1016/j.vacuum.2012.05.031. DOI
Durán N., Nakazato G., Seabra A.B. Antimicrobial activity of biogenic silver nanoparticles, and silver chloride nanoparticles: An overview and comments. Appl. Microbiol. Biotechnol. 2016;100:6555–6570. doi: 10.1007/s00253-016-7657-7. PubMed DOI
Zook J.M., Long S.E., Cleveland D., Geronimo C.L.A., MacCuspie R.I. Measuring silver nanoparticle dissolution in complex biological and environmental matrices using UV–visible absorbance. Anal. Bioanal. Chem. 2011;401:1993–2002. doi: 10.1007/s00216-011-5266-y. PubMed DOI
Sotiriou G.A., Blattmann C.O., Deligiannakis Y. Nanoantioxidant-driven plasmon enhanced proton-coupled electron transfer. Nanoscale. 2016;8:796–803. doi: 10.1039/C5NR04942C. PubMed DOI
Fan M., Thompson M., Andrade M.L., Brolo A.G. Silver Nanoparticles on a Plastic Platform for Localized Surface Plasmon Resonance Biosensing. Anal. Chem. 2010;82:6350–6352. doi: 10.1021/ac101495m. PubMed DOI
Haes A.J., Duyne R.P.V. Preliminary studies and potential applications of localized surface plasmon resonance spectroscopy in medical diagnostics. Expert Rev. Mol. Diagn. 2004;4:527–537. doi: 10.1586/14737159.4.4.527. PubMed DOI
Singh A., Hou W.-C., Lin T.-F., Zepp R.G. Roles of Silver–Chloride Complexations in Sunlight-Driven Formation of Silver Nanoparticles. Environ. Sci. Technol. 2019;53:11162–11169. doi: 10.1021/acs.est.9b02115. PubMed DOI PMC
Rong H., Garg S., Waite T.D. Transformation of AgCl Particles under Conditions Typical of Natural Waters: Implications for Oxidant Generation. Environ. Sci. Technol. 2018;52:11621–11631. doi: 10.1021/acs.est.8b02902. PubMed DOI
Hoyo J., Ivanova K., Torrent-Burgues J., Tzanov T. Interaction of Silver-Lignin Nanoparticles with Mammalian Mimetic Membranes. Front. Bioeng. Biotechnol. 2020;8:439. doi: 10.3389/fbioe.2020.00439. PubMed DOI PMC
Bondarenko O., Juganson K., Ivask A., Kasemets K., Mortimer M., Kahru A. Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: A critical review. Arch. Toxicol. 2013;87:1181–1200. doi: 10.1007/s00204-013-1079-4. PubMed DOI PMC
Richter A.P., Brown J.S., Bharti B., Wang A., Gangwal S., Houck K., Cohen Hubal E.A., Paunov V.N., Stoyanov S.D., Velev O.D. An environmentally benign antimicrobial nanoparticle based on a silver-infused lignin core. Nat. Nanotechnol. 2015;10:817–823. doi: 10.1038/nnano.2015.141. PubMed DOI
Zhang S., Du C., Wang Z., Han X., Zhang K., Liu L. Reduced cytotoxicity of silver ions to mammalian cells at high concentration due to the formation of silver chloride. Toxicol. Vitr. 2013;27:739–744. doi: 10.1016/j.tiv.2012.12.003. PubMed DOI
Zheng P., Xiang L., Chang J., Lin Q., Xie L., Lan T., Liu J., Gong Z., Tang T., Shuai L., et al. Nanomechanics of Lignin–Cellulase Interactions in Aqueous Solutions. Biomacromolecules. 2021;22:2033–2042. doi: 10.1021/acs.biomac.1c00140. PubMed DOI
Sęczyk Ł., Świeca M., Kapusta I., Gawlik-Dziki U. Protein–Phenolic Interactions as a Factor Affecting the Physicochemical Properties of White Bean Proteins. Molecules. 2019;24:408. doi: 10.3390/molecules24030408. PubMed DOI PMC
Phan H.T.T., Yoda T., Chahal B., Morita M., Takagi M., Vestergaard M.D.C. Structure-dependent interactions of polyphenols with a biomimetic membrane system. Biochim. Biophys. Acta BBA Biomembr. 2014;1838:2670–2677. doi: 10.1016/j.bbamem.2014.07.001. PubMed DOI
Kim D., Amatya R., Hwang S., Lee S., Min K.A., Shin M.C. BSA-Silver Nanoparticles: A Potential Multimodal Therapeutics for Conventional and Photothermal Treatment of Skin Cancer. Pharmaceutics. 2021;13:575. doi: 10.3390/pharmaceutics13040575. PubMed DOI PMC
Merkl P., Zhou S., Zaganiaris A., Shahata M., Eleftheraki A., Thersleff T., Sotiriou G.A. Plasmonic Coupling in Silver Nanoparticle Aggregates and Their Polymer Composite Films for Near-Infrared Photothermal Biofilm Eradication. ACS Appl. Nano Mater. 2021;4:5330–5339. doi: 10.1021/acsanm.1c00668. PubMed DOI PMC
Thoresen P.P., Delgado Vellosillo I., Lange H., Rova U., Christakopoulos P., Matsakas L. Furan Distribution as a Severity Indicator upon Organosolv Fractionation of Hardwood Sawdust through a Novel Ternary Solvent System. ACS Sustain. Chem. Eng. 2024;12:1666–1680. doi: 10.1021/acssuschemeng.3c07236. PubMed DOI PMC
Blott S.J., Pye K. Particle shape: A review and new methods of characterization and classification. Sedimentology. 2008;55:31–63. doi: 10.1111/j.1365-3091.2007.00892.x. DOI