Drought-tolerant and drought-sensitive genotypes of maize (Zea mays L.) differ in contents of endogenous brassinosteroids and their drought-induced changes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
29795656
PubMed Central
PMC5967837
DOI
10.1371/journal.pone.0197870
PII: PONE-D-18-04035
Knihovny.cz E-zdroje
- MeSH
- brassinosteroidy farmakologie MeSH
- fotosyntéza * MeSH
- fyziologický stres * MeSH
- genotyp MeSH
- kukuřice setá účinky léků genetika růst a vývoj MeSH
- listy rostlin účinky léků genetika růst a vývoj MeSH
- období sucha * MeSH
- regulátory růstu rostlin farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- brassinosteroidy MeSH
- regulátory růstu rostlin MeSH
The contents of endogenous brassinosteroids (BRs) together with various aspects of plant morphology, water management, photosynthesis and protection against cell damage were assessed in two maize genotypes that differed in their drought sensitivity. The presence of 28-norbrassinolide in rather high quantities (1-2 pg mg-1 fresh mass) in the leaves of monocot plants is reported for the first time. The intraspecific variability in the presence/content of the individual BRs in drought-stressed plants is also described for the first time. The drought-resistant genotype was characterised by a significantly higher content of total endogenous BRs (particularly typhasterol and 28-norbrassinolide) compared with the drought-sensitive genotype. On the other hand, the drought-sensitive genotype showed higher levels of 28-norcastasterone. Both genotypes also differed in the drought-induced reduction/elevation of the levels of 28-norbrassinolide, 28-norcastasterone, 28-homocastasterone and 28-homodolichosterone. The differences observed between both genotypes in the endogenous BR content are probably correlated with their different degrees of drought sensitivity, which was demonstrated at various levels of plant morphology, physiology and biochemistry.
Zobrazit více v PubMed
McKersie B. Planning for food security in a changing climate. J Exp Bot. 2015; 66: 3435–3450. doi: 10.1093/jxb/eru547 PubMed DOI
Shahzad MA, Jan SU, Afzal F, Khalid M, Gul A, Sharma I, et al. Drought stress and morphophysiological responses in plants In: Ahmad P, editor. Water Stress and Crop Plants: A Sustainable Approach. John Wiley & Sons; 2016. pp. 1–16. doi: 10.1002/9781119054450.ch27 DOI
Merewitz E. Chemical priming-induced drought stress tolerance in plants In: Hossain MA, Wani SH, Bhattacharjee S, Burritt DJ, Phan Tran LS, editors. Drought Stress Tolerance in Plants, Vol. 1, Springer International Publishing; 2016. pp. 77–103. doi: 10.1007/978-3-319-28899-4_4 DOI
Kang YY, Guo SR. Role of brassinosteroids on horticultural crops In: Hayat S, Ahmad A, editors. Brassinosteroids: A Class of Plant Hormone. Springer; 2011. pp. 269–288. doi: 10.1007/978-94-007-0189-2_9 DOI
Bhardwaj R, Sharma I, Kanwar M, Handa N, Kapoor D. Current scenario of applications of brassinosteroids in human wellfare In: Perreira-Netto AB, editor. Brassinosteroids: Practical Applications in Agriculture and Human Health, Bentham Sci. Publ.; 2012. pp. 3–15. doi: 10.2174/97816080529811120101 DOI
Zhang C, Bai M, Chong K. Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep. 2014; 33: 683–696. doi: 10.1007/s00299-014-1578-7 PubMed DOI PMC
Singh J, Nakamura S, Ota Y. Effect of epi-brassinolide on gram (Cicer arietinum) plants grown under water stress in juvenile stage. Indian J Agri Sci. 1993; 63: 395–397.
Li L, van Staden J, Jäger AK. Effects of plant growth regulators on the antioxidant system in seedlings of two maize cultivars subjected to water stress. Plant Growth Regul. 1998; 25: 81–87. doi: 10.1023/A:1010774725695 DOI
Li KR, Feng CH. Effects of brassinolide on drought resistance of Xanthoceras sorbifolia seedlings under water stress. Acta Physiol Plant. 2011; 33: 1293–1300. doi: 10.1007/s11738-010-0661-0 DOI
Talaat NB, Shawky BT. Dual application of 24-epibrassinolide and spermine confers drought stress tolerance in maize (Zea mays L.) by modulating polyamine and protein metabolism. J Plant Growth Regul. 2016; 35: 518–533. doi: 10.1007/s00344-015-9557-y DOI
Talaat NB, Shawky BT, Ibrahim AS. Alleviation of drought-induced oxidative stress in maize (Zea mays L.) plants by dual application of 24-epibrassinolide and spermine. Environ Exp Bot. 2015; 113: 47–58. doi: 10.1016/j.envexpbot.2015.01.006 DOI
Vardhini BV, Rao SSR. Amelioration of osmotic stress by brassinosteroids on seed germination and seedling growth of three varieties of sorghum. Plant Growth Regul. 2003; 41: 25–31. doi: 10.1023/A:1027303518467 DOI
Vardhini BV, Sujatha E, Rao SSR. Brassinosteroids: alleviation of water stress in certain enzymes of sorghum seedlings. J Phytol. 2011; 3: 38–43.
Sairam RK. Effect of homobrassinolide application on plant metabolism and grain yield under irrigated and moisture stress condition of two wheat varieties. Plant Growth Regul. 1994; 14: 173–181. doi: 10.1007/BF00025220 DOI
El-Khallal SM, Nafie EM. Alleviation of drought damage for two cultivars of wheat seedlings by application of growth regulators “Brassinazole and Uniconazole”. Egypt J Physiol Sci. 2000; 24: 297–317.
Shakirova F, Allagulova C, Maslennikova D, Fedorova K, Yuldashev R, Lubyanova A, et al. Involvement of dehydrins in 24-epibrassinolide-induced protection of wheat plants against drought stress. Plant Physiol. Biochem. 2016; 108: 539–548. doi: 10.1016/j.plaphy.2016.07.013 PubMed DOI
Jangid KK, Dwivedi P. Physiological and biochemical changes by nitric oxide and brassinosteroid in tomato (Lycopersicon esculentum Mill.) under drought stress. Acta Physiol Plant. 2017; 39: 73 doi: 10.1007/s11738-017-2373-1 DOI
Li KR, Wang HH, Han G, Wang QJ, Fan J. Effects of brassinolide on the survival, growth and drought resistance of Robinia pseudoacacia seedlings under water-stress. New Forests. 2008; 35: 255–266. doi: 10.1007/s11056-007-9075-2 DOI
Li L, van Staden J. Effects of plant growth regulators on the antioxidant system in callus of two maize cultivars subjected to water stress. Plant Growth Regul. 1998; 24: 55–66. doi: 10.1023/A:1005954532397 DOI
Li L, van Staden J. Effects of plant growth regulators on drought resistance of two maize cultivars. S Afr J Bot. 1998; 64: 116–120. doi: 10.1016/S0254-6299(15)30844-9 DOI
García A, Rodríguez T, Héctor E, Núñez M. Effecto del análogo de brassinoesteroide MH-5 en el crecimiento in vitro del arroz (Oryza sativa L.) en condiciones de déficit hídrico. Cultivos Tropicales. 2005; 26: 89–93.
Jäger CE, Symons GM, Ross JJ, Reid JB. Do brassinosteroids mediate the water-stress response? Physiol Plant. 2008; 133: 417–425. doi: 10.1111/j.1399-3054.2008.01057.x PubMed DOI
Gruszka D, Janeczko A, Dziurka M, Pociecha E, Oklešťková J, Szarejko I. Barley brassinosteroid mutants provide an insight into phytohormonal homeostasis in plant reaction to drought stress. Front Plant Sci. 2016; 7: 1824 doi: 10.3389/fpls.2016.01824 PubMed DOI PMC
Pociecha E, Dziurka M, Oklešťková J, Janeczko A. Brassinosteroids increase winter survival of winter rye (Secale cereale L.) by affecting photosynthetic capacity and carbohydrate metabolism during the cold acclimation process. Plant Growth Regul. 2016; 80: 127–135. doi: 10.1007/s10725-016-0149-z DOI
Benešová M, Holá D, Fischer L, Jedelský PL, Hnilička F, Wilhelmová N, et al. The physiology and proteomics of drought tolerance in maize: early stomatal closure as a cause of lower tolerance to short-term dehydration? PLoS ONE. 2012; 7: e38017 doi: 10.1371/journal.pone.0038017 PubMed DOI PMC
Holá D, Benešová M, Fischer L, Haisel D, Hnilička F, Hniličková H, et al. The disadvantages of being a hybrid during drought: A combined analysis of plant morphology, physiology and leaf proteome in maize. PLoS ONE. 2017; 12: e0176121 doi: 10.1371/journal.pone.0176121 PubMed DOI PMC
Tarkowská D, Novák O, Oklešťková J, Strnad M. The determination of 22 natural brassinosteroids in a minute sample of plant tissue by UHPLC–ESI–MS/MS. Anal Bioanal Chem. 2016; 408: 6799–6812. doi: 10.1007/s00216-016-9807-2 PubMed DOI
Rittenberg D, Foster GL. A new procedure for quantitative analysis by isotope dilution, with application to the determination of amino acids and fatty acids. J Biol Chem. 1940; 133: 737–744.
Strasser RJ, Srivastava A, Tsimilli-Michael M. The fluorescence transient as a tool to characterize and screen photosynthetic samples In: Mohanty P, Yunus U, Pathre M, editors. Probing Photosynthesis: Mechanism, Regulation and Adaptation. Taylor and Francis; 2000. pp. 445–483.
Stirbet AD, Govindjee. On the relation between the Kautsky effect (chlorophyll a fluorescence induction) and Photosystem II: Basics and application of the OJIP fluorescence transient. J Photochem Photobiol B-Biol. 2011; 104: 236–257. doi: 10.1016/j.jphotobiol.2010.12.010 PubMed DOI
Yusuf MA, Kumar D, Rajwanshi R, Strasser RJ, Tsimilli-Michael M, Govindjee, et al. Overexpression of γ-tocopherol methyl transferase gene in transgenic Brassica juncea plants alleviates abiotic stress: physiological and chlorophyll a fluorescence measurements. Biochim Biophys Acta–Bioenergetics. 2010; 1797: 1428–1438. doi: 10.1016/j.bbabio.2010.02.002 PubMed DOI
Wellburn AR. The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol. 1994; 144: 207–313. doi: 10.1016/S0176-1617(11)81192-2 DOI
Rothová O, Holá D, Kočová M, Tůmová L, Hnilička F, Hniličková H, et al. 24-Epibrassinolide and 20-hydroxyecdysone affect photosynthesis differently in maize and spinach. Steroids. 2014; 85: 44–57. doi: 10.1016/j.steroids.2014.04.006 PubMed DOI
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999; 207: 604–611. doi: 10.1007/s004250050524 PubMed DOI
Velikova V., Yordanov I., Edreva A. Oxidative stress and some antioxidant systems in acid rain-treated bean plants: protective role of exogenous polyamines. Plant Sci. 2000; 151: 59–66. doi: 10.1016/S0168-9452(99)00197-1 DOI
Nakano Y., Asada K. Hydrogen-peroxide is scavenged by ascorbate-specific peroxidase in spinach-chloroplasts. Plant Cell Physiol. 1981; 22: 867–880. doi: 10.1093/oxfordjournals.pcp.a076232 DOI
Aebi H. Catalase in vitro. Methods Enzymol. 1984; 105: 121–126. doi: 10.1016/S0076-6879(84)05016-3 PubMed DOI
Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Anal Biochem. 1976; 72: 248–254. doi: 10.1016/0003-2697(76)90527-3 PubMed DOI
Bates LS, Waldren RP, Teare ID. Rapid determination of free proline for water-stress studies. Plant Soil. 1973; 39: 205–207. doi: 10.1007/BF00018060 DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple tests. J. R. Stat. Soc. Ser. B-Stat. Methodol. 1995; 57: 289–300. doi: 10.2307/2346101 DOI
Horváth I, Vigh L, van Hasselt PR, Woltjes J, Kuiper PJC. Lipid composition in leaves of cucumber genotypes as affected by different temperature regimes and grafting. Physiol Plant. 1983; 57: 532–536. doi: 10.1111/j.1399-3054.1983.tb02781.x DOI
Liu WH, Yong GP, Fang L, Wang SK, Bai HJ, Jiang JH, et al. Free and conjugated phytosterols in cured tobacco leaves: Influence of genotype, growing region, and stalk position. J Agric Food Chem. 2008; 56:185–189. doi: 10.1021/jf0722708 PubMed DOI
Suzuki Y, Yamaguchi I, Yokota T, Takahashi N. Identification of castasterone, typhasterol and teasterone from the pollen of Zea mays. Agric Biol Chem. 1986; 50: 3133–3138. doi: 10.1080/00021369.1986.10867873 DOI
Bajguz A. Brassinosteroids–occurence and chemical structures in plants In: Hayat S, Ahmad A, editors. Brassinosteroids: A Class of Plant Hormone. Springer; 2011. pp. 143–192. doi: 10.1007/978-94-007-0189-2 DOI
Tarkowská D, Novák O, Floková K, Tarkowski P, Turečková V, Grúz J, et al. Quo vadis plant hormone analysis? Planta. 2014; 240: 55–76. doi: 10.1007/s00425-014-2063-9 PubMed DOI
Oklešťková J, Tarkowská D, Eyer L, Elbert T, Marek A, Smržová Z, et al. Immunoaffinity chromatography combined with tandem mass spectrometry: A new tool for the selective capture and analysis of brassinosteroid plant hormones. Talanta. 2017; 170: 432–440. doi: 10.1016/j.talanta.2017.04.044 PubMed DOI
Joo SH, Jang MS, Kim MK, Lee JE, Kim SK. Biosynthetic relationship between C28-brassinosteroids and C29-brassinosteroids in rice (Oryza sativa) seedlings. Phytochemistry. 2015; 111: 84–90. doi: 10.1016/j.phytochem.2014.11.006 PubMed DOI
Vriet C, Russinova E, Reuzeau C. From squalene to brassinolide: The steroid metabolic and signaling pathways across the plant kingdom. Mol Plant. 2013; 6: 1738–1757. doi: 10.1093/mp/sst096 PubMed DOI
Kim TW, Hwang JY, Kim YS, Joo SH, Chang SC, Lee JS, et al. Arabidopsis CYP85A2, a cytochrome P450, mediates the Baeyer-Villiger oxidation of castasterone to brassinolide in brassinosteroid biosynthesis. Plant Cell. 2005; 17: 2397–2412. doi: 10.1105/tpc.105.033738 PubMed DOI PMC
Nomura T, Kushiro T, Yokota T, Kamiya Y, Bishop GJ, Yamaguchi S. The last reaction producing brassinolide is catalyzed by cytochrome P450s, CYP85A3 in tomato and CYP85A2 in Arabidopsis. J Biol Chem. 2005; 280: 17873–17879. doi: 10.1074/jbc.M414592200 PubMed DOI
Choe S. Brassinosteroid biosynthesis and inactivation. Physiol Plant. 2006; 126: 539–548. doi: 10.1111/j.1399-3054.2006.00681.x DOI
Abe H. Rice-lamina inclination, endogenous levels in plant tissues and accumulation during pollen development of brassinosteroids In: Cutler HG, Yokota T, Adam G, editors. Brassinosteroids: Chemistry, Bioactivity and Applications, American Chemical Society; 1991. pp. 200–207. doi: 10.1021/bk-1991-0474 DOI
Bishop G, Nomura T, Yokota T, Montoya T, Castle J, Harrison K, et al. Dwarfism and cytochrome P450-mediated C-6 oxidation of plant steroid hormones. Biochem Soc Trans. 2006; 34: 1199–1201. doi: 10.1042/BST0341199 PubMed DOI
Kim BK, Fujioka S, Takatsuto S, Tsujimoto S, Choe S. Castasterone is a likely end product of brassinosteroid biosynthetic pathway in rice. Biochem Biophys Res Commun. 2008; 374: 614–619. doi: 10.1016/j.bbrc.2008.07.073 PubMed DOI
Makarevitch I, Thompson A, Muehlbauer GJ, Springer NM. Brd1 gene in maize encodes a brassinosteroid C-6 oxidase. PLoS ONE. 2012; 7: e30798 doi: 10.1371/journal.pone.0030798 PubMed DOI PMC
Vriet C, Lemmens K, Vandepoele K, Reuzeau C, Russinova E. Evolutionary trails of plant steroid genes. Trends Plant Sci. 2015; 20: 301–308. doi: 10.1016/j.tplants.2015.03.006 PubMed DOI
Janeczko A, Swaczynová J. Endogenous brassinosteroids in wheat treated with 24-epibrassinolide. Biol Plant. 2010; 54: 477–482. doi: 10.1007/s10535-010-0084-1 DOI
Janeczko A, Biesaga‐Kościelniak J, Oklešťková J, Filek M, Dziurka M, Szarek‐Łukaszewska G, et al. Role of 24‐epibrassinolide in wheat production: physiological effects and uptake. J Agron Crop Sci. 2010; 196: 311–321. doi: 10.1111/j.1439-037X.2009.00413.x DOI
Janeczko A, Oklešťková J, Pociecha E, Kościelniak J, Mirek M. Physiological effects and transport of 24-epibrassinolide in heat-stressed barley. Acta Physiol Plant. 2011; 33: 1249–1259. doi: 10.1007/s11738-010-0655-y DOI
Hategan L, Godza B, Szekeres M. Regulation of brassinosteroid metabolism In: Hayat S, Ahmad A, editors. Brassinosteroids: A Class of Plant Hormone. Springer; 2011. pp. 57–81. doi: 10.1007/978-94-007-0189-2_3 DOI
Belkhadir Y, Jaillais Y. The molecular circuitry of brassinosteroid signaling. New Phytol. 2015; 206: 522–540. doi: 10.1111/nph.13269 PubMed DOI
Corvalán C, Choe S. Identification of brassinosteroid genes in Brachypodium dystachion. BMC Plant Biol. 2017; 17: 5 doi: 10.1186/s12870-016-0965-3 PubMed DOI PMC
Tao Y, Zheng J, Xu Z, Zhang X, Zhang K, Wang G. Functional analysis of ZmDWF1, a maize homolog of the Arabidopsis brassinosteroids biosynthetic DWF1/DIM gene. Plant Sci. 2004; 167: 743–751. doi: 10.1016/j.plantsci.2004.05.012 DOI
Kim YS, Kim TW, Kim SK. Brassinosteroids are inherently biosynthesized in the primary roots of maize, Zea mays L. Phytochemistry. 2005; 66: 1000–1006. doi: 10.1016/j.phytochem.2005.03.007 PubMed DOI
Kim YS, Kim TW, Chang SC, Pharis RP, Lee JS, Han TJ, et al. Regulation of castasterone level in primary roots of maize, Zea mays. Physiol Plant. 2006; 127: 28–37. doi: 10.1111/j.1399-3054.2006.00650.x DOI
Best NB, Hartwig T, Budka J, Fujioka S, Johal GS, Schulz B, et al. nana plant2 encodes a maize ortholog of the Arabidopsis brassinosteroid biosynthesis protein Dwarf1, identifying developmental interactions between brassinosteroids and gibberellins. Plant Physiol. 2016. 171: 2633–2647. doi: 10.1104/pp.16.00399 PubMed DOI PMC
Liu T, Zhang J, Wang M, Wang Z, Li G, Qu L, et al. Expression and functional analysis of ZmDWF4, an ortholog of Arabidopsis DWF4 from maize (Zea mays L.). Plant Cell Rep. 2007; 26: 2091–2099. doi: 10.1007/s00299-007-0418-4 PubMed DOI
Hartwig T, Chuck GS, Fujioka S, Klempien A, Weizbauer R, Potluri DPV, et al. Brassinosteroid control of sex determination in maize. Proc Natl Acad Sci USA. 2011; 108: 19814–19819. doi: 10.1073/pnas.1108359108 PubMed DOI PMC
Kir G, Ye H, Nelissen H, Neelakandan AK, Kusnandar AS, Luo A, et al. RNA interference knockdown of BRASSINOSTEROID INSENSITIVE1 in maize reveals novel functions for brassinosteroid signaling in controlling plant architecture. Plant Physiol. 2015; 169: 826–839. doi: 10.1104/pp.15.00367 PubMed DOI PMC
Sekhon RS, Lin H, Childs KL, Hansey CN, Buell CR, de Leon N, et al. Genome‐wide atlas of transcription during maize development. Plant J 2011; 66: 553–563. doi: 10.1111/j.1365-313X.2011.04527.x PubMed DOI
Stelpflug SC, Sekhon RS, Vaillancourt B, Hirsch CN, Buell R, de Leon N, et al. An expanded maize gene expression atlas based on RNA sequencing and its use to explore root development. Plant Genome 2016; 9 doi: 10.3835/plantgenome2015.04.0025 PubMed DOI
Chen J., Yin Y. WRKY transcription factors are involved in brassinosteroid signaling and mediate the crosstalk between plant growth and drought tolerance. Plant Signal Behav. 2017; 12:, e1365212 doi: 10.1080/15592324.2017.1365212 PubMed DOI PMC
Chen J, Nolan TM, Ye H, Zhang M, Tong H, Xin P, et al. Arabidopsis WRKY46, WRKY54, and WRKY70 transcription factors are involved in brassinosteroid-regulated plant growth and drought responses. Plant Cell 2017; 29: 1425–1439. doi: 10.1105/tpc.17.00364 PubMed DOI PMC
Ye H, Liu S, Tang B, Chen J, Xie Z, Nolan TM, et al. RD26 mediates crosstalk between drought and brassinosteroid signalling pathways. Nature Commun. 2017; 8: 14573 doi: 10.1038/ncomms14573 PubMed DOI PMC
Nolan T, Chen J, Yin Y. Cross-talk of brassinosteroid signaling in controlling growth and stress response. Biochem J. 2017; 474: 2641–2661. doi: 10.1042/BCJ20160633 PubMed DOI PMC
Kagale S, Divi UK, Krochko JE, Keller WA, Krishna P. Brassinosteroid confers tolerance in Arabidopsis thaliana and Brassica napus to a range of abiotic stresses. Planta. 2007; 225:353–364. doi: 10.1007/s00425-006-0361-6 PubMed DOI
Sahni S, Prasad BD, Liu Q, Grbic V, Sharpe A, Singh SP, et al. Overexpression of the brassinosteroid biosynthetic gene DWF4 in Brassica napus simultaneously increases seed yield and stress tolerance. Sci Rep. 2016; 6: 28298 doi: 10.1038/srep28298 PubMed DOI PMC
Wei LJ, Deng XG, Zhu T, Zheng T, Li PX, Wu JQ, et al. Ethylene is involved in brassinosteroids induced alternative respiratory pathway in cucumber (Cucumis sativus L.) seedlings response to abiotic stress. Front Plant Sci. 2015; 6: 982 doi: 10.3389/fpls.2015.00982 PubMed DOI PMC
Deng XG, Zhu T, Zhang DW, Lin HH. The alternative respiratory pathway is involved in brassinosteroid-induced environmental stress tolerance in Nicotiana benthamiana. J Exp Bot. 2015; 66: 6219–6232. doi: 10.1093/jxb/erv328 PubMed DOI PMC
Zhou X, Zhang N, Yang J, Si H. Functional analysis of potato CPD gene: A rate-limiting enzyme in brassinosteroid biosynthesis under polyethylene glycol-induced osmotic stress. Crop Sci. 2016; 56: 2675–2687. doi: 10.1016/j.plaphy.2018.01.027 DOI
Feng Y, Yin Y, Fei S. Down-regulation of BdBRI1, a putative brassinosteroid receptor gene produces a dwarf phenotype with enhanced drought tolerance in Brachypodium distachyon. Plant Sci. 2015; 234: 163–173. doi: 10.1016/j.plantsci.2015.02.015 PubMed DOI
Janeczko A, Gruszka D, Pociecha E, Dziurka M, Filek M, Jurczyk B., et al. Physiological and biochemical characterisation of watered and drought-stressed barley mutants in the HvDWARF gene encoding C6-oxidase involved in brassinosteroid biosynthesis. Plant Physiol Biochem. 2016; 99: 126–141. doi: 10.1016/j.plaphy.2015.12.003 PubMed DOI
Liu Y, Zhou M, Gao Z, Ren W, Yang F, He H, et al. RNA-Seq Analysis Reveals MAPKKK Family Members Related to Drought Tolerance in Maize. PloS ONE. 2015; 10: e143128 doi: 10.1371/journal.pone.0143128 PubMed DOI PMC
Thatcher SR, Danilevskaya ON, Meng X, Beatty M., Zastrow-Hayes G, Harris C., et al. Genome-wide analysis of alternative splicing during development and drought stress in maize. Plant Physiol. 2016; 170: 589–599. doi: 10.1104/pp.15.01267 PubMed DOI PMC
Miao Z, Han Z, Zhang T, Chen S, Ma C. A systems approach to a spatiotemporal understanding of the drought stress response in maize. Sci Rep. 2017; 7: 6590 doi: 10.1038/s41598-017-06929-y PubMed DOI PMC
Zheng J, Fu J, Gou M, Huai J, Liu Y, Jian M, et al. Genome-wide transcriptome analysis of two maize inbred lines under drought stress. Plant Mol Biol. 2010; 72: 407–421. doi: 10.1007/s11103-009-9579-6 PubMed DOI
Opitz N, Paschold A, Marcon C, Malik WA, Lanz C, Piepho HP et al. Transcriptomic complexity in young maize primary roots in response to low water potentials. BMC Genomics. 2014; 15: 741 doi: 10.1186/1471-2164-15-741 PubMed DOI PMC
Zhang X, Liu X, Zhang D, Tang H, Sun B, Li C, Hao L, et al. Genome-wide identification of gene expression in contrasting maize inbred lines under field drought conditions reveals the significance of transcription factors in drought tolerance. PLoS ONE. 2017; 12: e0179477 org/10.1371/journal.pone.0179477 doi: 10.1371/journal.pone.0179477 PubMed DOI PMC
Plomion C, Lalanne C, Claverol S, Meddour H, Kohler A, Bogeat-Triboulot MB, et al. Mapping the proteome of poplar and application to the discovery of drought-stress responsive proteins. Proteomics. 2006; 6: 6509–6527 doi: 10.1002/pmic.200600362 PubMed DOI
Bogeat-Triboulot MB, Brosché M, Renaut J, Jouve L, Le Thiec D, Fayyaz P, et al. Gradual soil water depletion results in reversible changes of gene expression, protein profiles, ecophysiology, and growth performance in Populus euphratica, a poplar growing in arid regions. Plant Physiol. 2007; 143: 876–892. doi: 10.1104/pp.106.088708 PubMed DOI PMC
Grimplet J, Wheatley MD, Jouira BH, Deluc LG, Cramer GR, Cushman JC. Proteomic and selected metabolite analysis of grape berry tissues under well-watered and water-deficit stress conditions. Proteomics. 2009; 9: 2503–2528. doi: 10.1002/pmic.200800158 PubMed DOI PMC
Shu L, Lou Q, Ma C, Ding W, Zhou J, Wu J, et al. Genetic, proteomic and metabolic analysis of the regulation of energy storage in rice seedlings in response to drought. Proteomics. 2011; 11: 4122–4138. doi: 10.1002/pmic.201000485 PubMed DOI
Skirycz A, Memmy S, De Bodt S, Maleux K, Obata T, Fernie AR, et al. A reciprocal 15N-labeling proteomic analysis of expanding Arabidopsis leaves subjected to osmotic stress indicates importance of mitochondria in preserving plastid functions. J Proteome Res. 2011; 10: 1018–1029. doi: 10.1021/pr100785n PubMed DOI
Horn R, Chudobova I, Hänsel U, Herwartz D, von Koskull-Döring P, Schillberg S. Simultaneous treatment with tebuconazole and abscisic acid induces drought and salinity stress tolerance in Arabidopsis thaliana by maintaining key plastid protein levels. J Proteome Res. 2013; 12: 1266–1281. doi: 10.1021/pr300931u PubMed DOI
Peremarti A, Mare C, Aprile A, Roncaglia E, Cattivelli L, Villegas D, et al. Transcriptomic and proteomic analyses of a pale-green durum wheat mutant shows variations in photosystem components and metabolic deficiencies under drought stress. BMC Genomics. 2014; 15: 125 doi: 10.1186/1471-2164-15-125 PubMed DOI PMC
Tripathi P, Rabara RC, Reese RN, Miller MA, Rohila JS, Subramanian S, et al. A toolbox of genes, proteins, metabolites and promoters for improving drought tolerance in soybean includes the metabolite coumestrol and stomatal development genes. BMC Genomics. 2016; 17: 102 doi: 10.1186/s12864-016-2420-0 PubMed DOI PMC
Nolan TM, Brennan B, Yang M, Chen J, Zhang M, Li Z. Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Develop Cell. 2017; 41: 33–46.e7. doi: 10.1016/j.devcel.2017.03.013 PubMed DOI PMC
Lei L, Shi J, Chen J, Zhang M, Sun S, Xie S, et al. Ribosome profiling reveals dynamic translational landscape in maize seedlings under drought stress. Plant J. 2015; 84: 1206–1218. doi: 10.1111/tpj.13073 PubMed DOI
Gruszka D, Gorniak M, Glodowska E, Wierus E, Oklešťková J, Janeczko A, et al. A reverse-genetics mutational analysis of the barley HvDWARF gene results in identification of a series of alleles and mutants with short stature of various degree and disturbance in BR biosynthesis allowing a new insight into the process. Int J Mol Sci. 2016; 17: 600 doi: 10.3390/ijms17040600 PubMed DOI PMC
Yokota T, Nomura T, Nakayama M. Identification of brassinosteroids that appear to be derived from campesterol and cholesterol in tomato shoots. Plant Cell Physiol. 1997; 38: 1291–1294. doi: 10.1093/oxfordjournals.pcp.a029119 DOI
Yokota T, Sato T, Takeuchi Y, Nomura T, Uno K, Watanabe T, et al. Roots and shoots of tomato produce 6-deoxo-28-cathasterone, 6-deoxo-28-nortyphasterol and 6-deoxo-28-norcastasterone, possible precursors of 28-norcastasterone. Phytochemistry. 2001; 58: 233–238. doi: 10.1016/S0031-9422(01)00237-0 PubMed DOI
Kim TW, Chang SC, Lee JS, Takatsuto S, Yokota T, Kim SK. Novel biosynthetic pathway of castasterone from cholesterol in tomato. Plant Physiol. 2004; 135: 1231–1242. doi: 10.1104/pp.104.043588 PubMed DOI PMC
Joo SH, Kim TW, Son SH, Lee WS, Yokota T, Kim SK. Biosynthesis of a cholesterol-derived brassinosteroid, 28-norcastasterone, in Arabidopsis thaliana. J Exp Bot. 2012; 63: 1823–1833. doi: 10.1093/jxb/err354 PubMed DOI PMC
Acharya BR, Assmann SM. Hormone interactions in stomatal function. Plant Mol Biol. 2009; 69: 451–462. doi: 10.1007/s11103-008-9427-0 PubMed DOI
Xia XJ, Gao CJ, Song LX, Zhou YH, Kai S, Yu YQ. Role of H2O2 dynamics in brassinosteroid‐induced stomatal closure and opening in Solanum lycopersicum. Plant Cell Environ. 2014; 37: 2036–2050. doi: 10.1111/pce.12275 PubMed DOI
Haubrick LL, Torsethaugen G, Assmann SM. Effect of brassinolide, alone and in concert with abscisic acid, on control of stomatal aperture and potassium currents of Vicia faba guard cell protoplasts. Physiol Plant. 2006; 128: 134–143. doi: 10.1111/j.1399-3054.2006.00708.x DOI
Ha Y, Shang Y, Nam KH. Brassinosteroids modulate ABA-induced stomatal closure in Arabidopsis. J Exp Bot. 2016; 67: 6297–6308. doi: 10.1093/jxb/erw385 PubMed DOI PMC
Inoue S, Iwashita N, Takahashi Y, Gotoh E, Okuma E, Hayashi M, et al. Brassinosteroid involvement in Arabidopsis thaliana stomatal opening. Plant Cell Physiol. 2017; 58: 1048–1058. doi: 10.1093/pcp/pcx049 PubMed DOI