Challenges in coupling atmospheric electricity with biological systems
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
BB/T003235/1
Biotechnology and Biological Sciences Research Council - United Kingdom
ERC-ADG 743093
European Research Council - International
project III43009
Ministry of Science and Technology
PubMed
32666310
PubMed Central
PMC7782408
DOI
10.1007/s00484-020-01960-7
PII: 10.1007/s00484-020-01960-7
Knihovny.cz E-zdroje
- Klíčová slova
- Aerosols, Biometeorology, Ecosystem connectivity, Electromagnetics, Electroreception, Electrostatics, Ions, Lightning, Potential gradient, Radionuclides, Thunderstorm,
- MeSH
- atmosféra MeSH
- ekosystém * MeSH
- elektřina * MeSH
- Publikační typ
- časopisecké články MeSH
The atmosphere is host to a complex electric environment, ranging from a global electric circuit generating fluctuating atmospheric electric fields to local lightning strikes and ions. While research on interactions of organisms with their electrical environment is deeply rooted in the aquatic environment, it has hitherto been confined to interactions with local electrical phenomena and organismal perception of electric fields. However, there is emerging evidence of coupling between large- and small-scale atmospheric electrical phenomena and various biological processes in terrestrial environments that even appear to be tied to continental waters. Here, we synthesize our current understanding of this connectivity, discussing how atmospheric electricity can affect various levels of biological organization across multiple ecosystems. We identify opportunities for research, highlighting its complexity and interdisciplinary nature and draw attention to both conceptual and technical challenges lying ahead of our future understanding of the relationship between atmospheric electricity and the organization and functioning of biological systems.
Department of Electronic and Electrical Engineering University of Bath Bath UK
Department of Environmental Engineering Demokritus University of Thrace Xanthi Greece
Department of Meteorology University of Reading Reading UK
Geography and Planning Department Universidad de Cantabria Santander Spain
Institute of Geophysics Polish Academy of Sciences Warsaw Poland
Institute of Photonics and Electronics Czech Academy of Sciences Prague Czechia
ISLP Xanthi Branch ENTA Unit ATHENA Research and Innovation Center Xanthi Greece
School of Biological Sciences University of Bristol Bristol UK
School of Chemistry University of Bristol Bristol UK
Vinča Institute of Nuclear Sciences University of Belgrade Belgrade Serbia
Zobrazit více v PubMed
Adlerman EJ, Williams ER. Seasonal variation of the global electrical circuit. J Geophys Res Atmos. 1996;101:29679–29688. doi: 10.1029/96JD01547@10.1002/(ISSN)2169-8996.ATMELECT1. DOI
Agiwal M, Roy A, Saxena N. Next generation 5G wireless networks: a comprehensive survey. IEEE Commun Surveys Tuts. 2016;18(3):1617–1655.
Aplin KL, Harrison RG. A computer-controlled Gerdien atmospheric ion counter. Rev Sci Instrum. 2000;71(8):3037–3041. doi: 10.1063/1.1305511. DOI
Apollonio F, Liberti M, Paffi A, Merla C, Marracino P, Denzi A, Marino C, d’Inzeo G (2013) Feasibility for microwaves energy to affect biological Systems via nonthermal mechanisms: a systematic approach. IEEE T Microw Theory 61(5):2031–2045
Armbruster WS. Evolution of floral form: electrostatic forces, pollination and adaptive compromise. New Phytol. 2001;152:181–183.
Arnason BT, Hart LA, O'Connell-Rodwell CE. The properties of geophysical fields and their effects on elephants and other animals. J Comp Psychol. 2002;116(2):123–132. PubMed
Arnold HR, Pierce ET, Whitson AL. The effect of a living tree upon the fair weather potential gradient. J Atmos Terr Phys. 1965;27:429–430. doi: 10.1016/0021-9169(65)90045-0. DOI
Azan A, Gailliègue F, Mir LM, Breton M. Cell membrane electropulsation: chemical analysis of cell membrane modifications and associated transport mechanisms. In: Kulbacka J, Satkauskas S, editors. Transport across natural and modified biological membranes and its implications in physiology and therapy. Cham: Springer International Publishing; 2017. pp. 59–71. PubMed
Berger TJ, Spadaro JA, Chapin SE, Becker RO. Electrically generated silver ions: quantitative effects on bacterial and mammalian cells. Antimicrob Agents Chemother. 1976;9:357–358. doi: 10.1128/aac.9.2.357. PubMed DOI PMC
Bernstein T. Effects of electricity and lightning on man and animals. J Forensic Sci. 1973;18:10002J. doi: 10.1520/jfs10002j. PubMed DOI
Bespalov VA, Zhulin IB, Taylor BL. Behavioral responses of Escherichia coli to changes in redox potential. Proc Natl Acad Sci U S A. 1996;93:10084–10089. doi: 10.1073/pnas.93.19.10084. PubMed DOI PMC
Bliokh PV, Nikolaenko AP, Fillippov Yu. F (1980) Schumann resonances in the earth-ionosphere cavity, Peter Peregrinus, 166 p
Bortkiewicz A, Gadzicka E, Zmyślony M, Szymczak W. Neurovegetative disturbances in workers exposed to 50 Hz electromagnetic fields. Int J Occup Med Environ Health. 2006;19(1):53–60. PubMed
Brun NR, Koch BEV, Varela M, Peijnenburg WJGM, Spaink HP, Vijver MG. Nanoparticles induce dermal and intestinal innate immune system responses in zebrafish embryos. Environ Sci Nano. 2018;5:904–916. doi: 10.1039/c8en00002f. DOI
Buckley AJ, Wright MD, Henshaw DL. A technique for rapid estimation of the charge distribution of submicron aerosols under atmospheric conditions. Aerosol Sci Technol. 2008;42:1042–1051. doi: 10.1080/02786820802400645. DOI
Bullock TH. Biology of brain waves: natural history and evolution of an informationrich sign of activity. In: Arikan K, Moore N, editors. Advances in electrophysiology in clinical practice and research. Wheaton: Kjellberg; 2002.
Bullock TH, Hopkins CD, Fay RR, editors. Electroreception. Berlin: Springer Science & Business Media; 2006.
Cannon WB. Organization for physiological homeostasis. Physiol Rev. 1929;9(3):399–431.
Chafai DE, Sulimenko V, Havelka D, Kubínová L, Dráber P, Cifra M. Reversible and irreversible modulation of tubulin self-assembly by intense nanosecond pulsed electric fields. Adv Mater. 2019;31:1903636. PubMed
Cherry NJ. Human intelligence: the brain, an electromagnetic system synchronised by the Schumann resonance signal. Med Hypotheses. 2003;60(6):843–844. PubMed
Chrisman SD, Waite CB, Scoville AG, Carnell L (2016) C elegans demonstrates distinct behaviors within a fixed and uniform electric field. PLoS One 11. 10.1371/journal.pone.0151320 PubMed PMC
Christian HJ, et al. Global frequency and distribution of lightning as observed from space by the optical transient detector. J Geophys Res. 2003;108:4005.
Chubb J. The measurement of atmospheric electric fields using pole mounted electrostatic fieldmeters. J Electrost. 2014;72(4):295–300. doi: 10.1016/j.elstat.2014.05.002. DOI
Cifra M, Apollonio F, Liberti M, García-Sánchez T, Mir LM (2020) Possible molecular and cellular mechanisms at the basis of atmospheric electromagnetic field bioeffects. Int J Biometeorol, in press. 10.1007/s00484-020-01885-1 PubMed PMC
Clarke D, Whitney H, Sutton G, Robert D. Detection and learning of floral electric fields by bumblebees. Science. 2013;340:66–69. doi: 10.1126/science.1230883. PubMed DOI
Clarke D, Morley E, Robert D. The bee, the flower, and the electric field: electric ecology and aerial electroreception. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2017;203:737–748. PubMed PMC
Cohen BS, Xiong JQ, Li W. Aerosol inhalation: recent research frontiers. Dordrecht: Springer; 1996. The influence of charge on the deposition behavior of aerosol particles with emphasis on singly charged nanometer sized particles; pp. 153–164.
Corbet S a, Huang S-Q. Buzz pollination in eight bumblebee-pollinated Pedicularis species: does it involve vibration-induced triboelectric charging of pollen grains? Ann Bot. 2014;114:1665–1674. doi: 10.1093/aob/mcu195. PubMed DOI PMC
Crampton W. Electroreception, electrogenesis, and electric signal evolution. J Fish Biol. 2019;95(1):92–134. doi: 10.1111/jfb.13922. PubMed DOI
Demanèche S, Bertolla F, Buret F, et al. Laboratory-scale evidence for lightning-mediated gene transfer in soil. Appl Environ Microbiol. 2001;67:3440–3444. doi: 10.1128/AEM.67.8.3440-3444.2001. PubMed DOI PMC
Draper G, Vincent T, Kroll ME, Swanson J. Childhood cancer in relation to distance from high voltage power lines in England and Wales: a case-control study. BMJ. 2005;330(7503):1290. PubMed PMC
Elhalel G, Price C, Fixler D, Shainberg A. Cardioprotection from stress conditions by weak magnetic fields in the Schumann resonance band. Sci Rep. 2019;9:1645. doi: 10.1038/s41598-018-36341-z. PubMed DOI PMC
Engelmann W, Hellrung W, Johnsson A (1996) Circadian locomotor activity of Musca flies: Recording method and effects of 10 Hz square‐wave electric fields. Bio Electro Magnetics 17(2):100–110 PubMed
Engels S, Schneider N-L, Lefeldt N, Hein CM, Zapka M, Michalik A, Elbers D, Kittel A, Hore PJ, Mouritsen H. Anthropogenic electromagnetic noise disrupts magnetic compass orientation in a migratory bird. Nature. 2014;509:353–356. PubMed
Faraday M. Experimental researches in electricity. London: Bernard Quaritch; 1839.
Fdez-Arroyabe P, Lecha Estela L, Schimt F. Digital divide, biometeorological data infrastructures and human vulnerability definition. Int J Biometeorol. 2018;62:733–740. doi: 10.1007/s00484-017-1398-x. PubMed DOI
Fdez-Arroyabe P, Fornieles-Callejón J, Santurtún A, Szangolies L, Donner RV. Schumann resonance and cardiovascular hospital admission in the area of Granada, Spain: an event coincidence analysis approach. Sci Total Environ. 2020;705:135813. doi: 10.1016/j.scitotenv.2019.135813. PubMed DOI
Fews AP, Henshaw DL, Keitch PA, Close JJ, Wilding RJ. Increased exposure to pollutant aerosols under high voltage power lines. Int J Radiat Biol. 1999;75:1505–1521. doi: 10.1080/095530099139115. PubMed DOI
Fews AP, Henshaw DL, Wilding RJ, Keitch PA. Corona ions from powerlines and increased exposure to pollutant aerosols. Int J Radiat Biol. 1999;75:1523–1531. doi: 10.1080/095530099139124. PubMed DOI
Fletcher LA, Gaunt LF, Beggs CB, Shepherd SJ, Sleigh PA, Noakes CJ, Kerr KG. Bactericidal action of positive and negative ions in air. BMC Microbiol. 2007;7(1):32. PubMed PMC
Freund JA, Schimansky-Geier L, Beisner B, Nieman A, Russell DF, Yakusheva T, Moss F. Behavioral stochastic resonance: how the noise from a Daphnia swarm enhances prey capture by juvenile paddlefish. J Theor Biol. 2002;214:71–83. PubMed
Geraskin SA. Ecological effects of exposure to enhanced levels of ionizing radiation. J Environ Radioact. 2016;162-163:347–357. doi: 10.1016/j.jenvrad.2016.06.012. PubMed DOI
Geraskin SA, Zimina LM, Dikarev VG, Dikareva NS, Zimin VL, Vasiliyev DV, Oudalova AA, Blinova LD, Alexakhin RM. Bioindication of the anthropogenic effects on micropopulations of Pinus sylvestris, L in the vicinity of a plant for the storage and processing of radioactive waste and in the Chernobyl NPP zone. J Environ Radioact. 2003;66:171–180. PubMed
Greggers U, Koch G, Schmidt V, Dürr A, Floriou-Servou A, Piepenbrock D, Göpfert MC, Menzel R. Reception and learning of electric fields in bees. Proc R Soc B Biol Sci. 2013;280(1759):20130528. PubMed PMC
Grota LJ, Reiter RJ, Keng P, Michaelson S. Electric field exposure alters serum melatonin but not pineal melatonin synthesis in male rats. Bioelectromagnetics. 1994;15:427–437. doi: 10.1002/bem.2250150506. PubMed DOI
Guglielmi AV, Pokhotelov OA. Geoelectromagnetic waves. Bristol: Institute of Physics Publishing; 1996. p. 382.
Halberg F. Periodicity analysis a potential tool for biometeorologists. Int J Biometeorol. 1963;7(2):167–191.
Halberg F, Panofsky H. Thermo-variance spectra; method and clinical illustrations. I. Exp Med Surg. 1961;19:284. PubMed
Haldoupis C, Rycroft M, Williams E, Price C. Is the “Earth-ionosphere capacitor” a valid component in the atmospheric global electric circuit? J Atmos Sol Terr Phys. 2017;164:127–131.
Harrison RG. An antenna electrometer system for atmospheric electrical measurements. Rev Sci Instrum. 1997;68(3):1599–1603. doi: 10.1063/1.1147932. DOI
Harrison RG, Carslaw KS. Ion-aerosol-cloud processes in the lower atmosphere. Rev Geophys. 2003;41:3.
Harrison RG, Ingram WJ. Air–earth current measurements at Kew, London, 1909–1979. Atmos Res. 2005;76:49–64. doi: 10.1016/j.atmosres.2004.11.022. DOI
Harrison RG, Nicoll KA, McWilliams KA (2013) Space weather driven changes in lower atmosphere phenomena. J Atmos Sol Terr Phys 98:22–30
Harrison RG, Nicoll KA, Aplin KL. Evaluating stratiform cloud base charge remotely. Geophys Res Lett. 2017;44:6407–6412. doi: 10.1002/2017GL073128. DOI
Hayakawa M, Hattori K, Ando Y. Natural electromagnetic phenomena and electromagnetic theory: a review. IEEJ Trans Fundam Mater. 2004;124:72–79.
Helman DS. Earth electricity: a review of mechanisms which cause telluric currents in the lithosphere. Ann Geophys. 2013;56(5):0564.
Henshaw DL, Ward JP, Matthews JC. Can disturbances in the atmospheric electric field created by powerline corona ions disrupt melatonin production in the pineal gland? J Pineal Res. 2008;45:341–350. PubMed
Hiyama A, Nohara C, Kinjo S, Wataru T, Gima S, Tanahara A, Otaki JM. The biological impacts of the Fukushima nuclear accident on the pale grass blue butterfly. Sci Rep. 2012;2:570. doi: 10.1038/srep00570. PubMed DOI PMC
Hopkins CD. Lightning as background noise for communication among electric fish. Nature. 1973;242(5395):268–270.
Hopkins CD. Evolution of electric communication channels of mormyrids. Behav Ecol Sociobiol. 1980;7(1):1–3.
Hunting ER, Kampfraath AA. Contribution of bacteria to redox potential (Eh) measurements in sediments. Int J Environ Sci Technol. 2013;10:55–62. doi: 10.1007/s13762-012-0080-4. DOI
Hunting ER, Whatley MH, van der Geest HG, Mulder C, Kraak MH, Breure AM, Admiraal W. Invertebrate footprints on detritus processing, bacterial community structure, and spatiotemporal redox profiles. Freshw Sci. 2012;3:724–732.
Hunting ER, Vijver MG, van der Geest HG, Mulder C, Kraak MHS, Breure AM, Admiraal W. Resource niche overlap promotes stability of bacterial community metabolism in experimental microcosms. Front Microbiol. 2015;6:105. PubMed PMC
Hunting ER, Barmentlo SH, Schrama M, van Bodegom PM, Zhai Y, Vijver MG. Agricultural constraints on microbial resource use and niche breadth in drainage ditches. PeerJ. 2017;5:e4175. PubMed PMC
Hunting ER, Harrison RG, Bruder A, van Bodegom PM, van der Geest HG, Kampfraath AA, Vorenhout M, Admiraal W, Cusell C, Gessner MO (2019) Atmospheric electricity influencing biogeochemical processes in soils and sediments. Front Physiol 10. 10.3389/fphys.2019.00378 PubMed PMC
Huss A, Egger M, Hug K, Huwiler-Müntener K, Röösli M. Source of funding and results of studies of health effects of mobile phone use: systematic review of experimental studies. Environ Health Perspect. 2007;115(1):1–4. doi: 10.1289/ehp.9149. PubMed DOI PMC
Israël H. Fundamentals, conductivity, ions. Jerusalem: Israel Program for Scientifc Translations; 1971. Atmospheric electricity; p. 318.
Israël H. Fields, charges, currents. Jerusalem: Israel Program for Scientific Translations; 1973. Atmospheric electricity; p. 479.
Israelsson S, Knudsen E. Effect of radioactive fallout from a nuclear power plant accident on electrical parameters. J Geophys Res. 1986;91:11909–11910. doi: 10.1029/JD091iD11p11909. DOI
Jackson CW, Hunt E, Sharkh S, Newland PL. Static electric fields modify the locomotory behaviour of cockroaches. J Exp Biol. 2011;214(12):2020–2026. PubMed
Jayaratne ER, Ling X, Morawska L. Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines. Sci Total Environ. 2015;526:14–18. doi: 10.1016/j.scitotenv.2015.04.074. PubMed DOI
Kamra AK, Deshpande CG. Possible secular change and land-to-ocean extension of air pollution from measurements of atmospheric electrical conductivity over the Bay of Bengal. J Geophys Res. 1995;100:7105–7110. doi: 10.1029/94JD03246. DOI
Kasting JF, Siefert JL. Life and the evolution of the Earth's atmosphere. Science. 2002;296:1066–1068. PubMed
Kautz M, Berger U, Stoyan D, Vogt J, Khan NI, Diele K, Saint-Paul U, Triet T, Nam VN. Desynchronizing effects of lightning strike disturbances on cyclic forest dynamics in mangrove plantations. Aquat Bot. 2011;95:173–181. doi: 10.1016/j.aquabot.2011.05.005. DOI
Kellogg EW, III, Yost MG. The effects of long-term air ion and DC electric field exposures on survival characteristics in female NAMRU mice. J Gerontol. 1983;41(2):147–153. PubMed
Kocaman A, Altun G, Kaplan AA, Deniz ÖG, Yurt KK, Kaplan S. Genotoxic and carcinogenic effects of non-ionizing electromagnetic fields. Environ Res. 2018;163:71–79. doi: 10.1016/j.envres.2018.01.034. PubMed DOI
König HL, Krueger AP, Lang S, Sönning W, editors. Biologic effects of environmental electromagnetism, topics in environmental physiology and medicine. New York: Springer-Verlag; 1981. p. 332.
Kourtidis K, Szabóné André K, Karagioras A, Nita IA, Sátori G, Bór J, Kastelis N (2020) The influence of circulation weather types on the exposure of the biosphere to atmospheric electric fields. Int J Biometeorol:1–3. 10.1007/s00484-020-01923-y PubMed PMC
Krivolutsky DA, Pokarzhevsky AD. Effects of radioactive fallout on soil animal populations in the 30 km zone of the Chernobyl atomic power plant. Sci Total Environ. 1992;112:69–77. PubMed
Krueger AP, Reed EJ. Biological impact of small air ions. Science. 1976;193:1209–1213. doi: 10.1126/science.959834. PubMed DOI
Krueger AP, Smith RF. Effects of air-ions on the living mammalian trachea. J Gen Physiol. 1958;42:69–82. PubMed PMC
Krueger AP, Andries PC, Kotaka S. The biological mechanism of air ion action. The effect of C02+ in inhaled air on the blood level of 5-hydroxytryptamine in mice. Int J Biometeorol. 1963;7:3–16.
Kuang W, Bloxham J. An earth-like numerical dynamo model. Nature. 1997;389:371–374. doi: 10.1038/38712. DOI
Lanzerotti LJ, Gregori GP. The Earth's Electrical Environment. Washington, D.C.: The National Academies Press; 1986. Telluric currents: the natural environment and interactions with man-made systems; pp. 232–257.
Leblanc F, Aplin KL, Yair Y, Harrison RG, Blanc M, editors. Planetary atmospheric electricity, Space Science Series of ISSI. Berlin: Springer; 2008. p. 532.
Lee ES, Xu B, Zhu Y. Measurements of ultrafine particles carrying different number of charges in on- and near-freeway environments. Atmos Environ. 2012;60:564–572. doi: 10.1016/j.atmosenv.2012.06.085. DOI
Liboff AR, Williams T, Jr, Strong DM, Wistar R., Jr Time-varying magnetic fields: effect on DNA synthesis. Science. 1984;223:818–820. PubMed
Maricq MM. On the electrical charge of motor vehicle exhaust particles. J Aerosol Sci. 2006;37:858–874. doi: 10.1016/j.jaerosci.2005.08.003. DOI
Marlton GJ, Harrison RG, Nicoll KA. Atmospheric point discharge current measurements using a temperature-compensated logarithmic current amplifier. Rev Sci Instrum. 2013;84:066103. doi: 10.1063/1.4810849. PubMed DOI
Marracino P, Havelka D, Průša J, Liberti M, Tuszynski J, Ayoub AT, Apollonio F, Cifra M. Tubulin response to intense nanosecond-scale electric field in molecular dynamics simulation. Sci Rep. 2019;9:10477. doi: 10.1038/s41598-019-46636-4. PubMed DOI PMC
Marron MT, Goodman EM, Greenebaum B. Mitotic delay in the slime mould Physarum polycephalum induced by low intensity 60 and 75 Hz electromagnetic fields. Nature. 1975;254(5495):66–67. PubMed
Maruvada PS (2011) Electric field and ion current environment of HVdc transmission lines: comparison of calculations and measurements. IEEE Trans Power Deliv 27(1):401–410
Matthews JC, Ward JP, Keitch PA, Henshaw DL. Corona ion induced atmospheric potential gradient perturbations near high voltage power lines. Atmos Environ. 2010;44:5093–5100. doi: 10.1016/j.atmosenv.2010.09.007. DOI
Matthews JC, Buckley AJ, Wright MD, Henshaw DL. Comparisons of ground level measurements of ion concentration and potential gradient upwind and downwind of HV power lines in corona. J Electrost. 2012;70:407–417. doi: 10.1016/j.elstat.2012.05.005. DOI
Matthews JC, Wright MD, Biddiscombe MF, et al (2015) Re-creation of aerosol charge state found near HV power lines using a high voltage corona charger. In: Journal of Physics: Conference Series. Institute of Physics Publishing
Matthews J, Wright M, Clarke D, Morley E, Silva HG, Bennett A, et al. Urban and rural measurements of atmospheric potential gradient. J Electrost. 2019;97:42–50.
Maw MG (1962) Some biological effects of atmospheric electricity. In Proceedings of the Entomological Society of Ontario 92: 33–37
Maxwell C. VIII. A dynamical theory of the electromagnetic field. Philos Trans R Soc Lond. 1865;155:459–512. doi: 10.1098/rstl.1865.0008. DOI
McElhinny M, McFadden PL. The magnetic field of the earth: paleomagnetism, the core, and the deep mantle. Cambridge: Academic Press; 1998.
Melandri C, Tarroni G, Prodi V, de Zaiacomo T, Formignani M, Lombardi CC. Deposition of charged particles in the human airways. J Aerosol Sci. 1983;14:657–669. doi: 10.1016/0021-8502(83)90070-8. DOI
Mikolajczyk H. Działanie pól i promieniowania elektromagnetycznego na obiekty biologiczne (influence of electromagnetic field and radiation on biological objects) In: Twardowski J, editor. Biospektroskopia. Warsaw: PWN; 1990. pp. 153–234.
Morley EL, Robert D. Electric fields elicit ballooning in spiders. Curr Biol. 2018;28:2324–2330.e2. doi: 10.1016/j.cub.2018.05.057. PubMed DOI PMC
Naudet V, Revil A. A sandbox experiment to investigate bacteria-mediated redox processes on self-potential signals. Geophys Res Lett. 2005;32:1–4. doi: 10.1029/2005GL022735. DOI
Newman DK, Banfield JF. Geomicrobiology: how molecular-scale interactions underpin biogeochemical systems. Science. 2002;296:1071–1077. doi: 10.1126/science.1010716. PubMed DOI
Nunez PL, Reid L, Bickford RG. The relationship of head size to alpha frequency with implications to a brain wave model. Electroencephalogr Clin Neurophysiol. 1978;44:344–352. PubMed
Palmer SJ, Rycroft MJ, Cermack M. Solar and geomagnetic activity, extremely low frequency magnetic and electric fields and human health at the Earth’s surface. Surv Geophys. 2006;27(5):557–595.
Panagopoulos DJ, Johansson O, Carlo GL. Polarization: a key difference between man-made and natural electromagnetic fields, in regard to biological activity. Sci Rep. 2015;5:14914. PubMed PMC
Pasek M, Block K. Lightning-induced reduction of phosphorus oxidation state. Nat Geosci. 2009;2:553–556. doi: 10.1038/ngeo580. DOI
Peters RC, Bretschneider F. Electric phenomena in the habitat of the catfishIctalurus nebulosus LeS. J Comp Physiol. 1972;81(4):345–362.
Petri AK, Schmiedchen K, Stunder D et al (2017) Biological effects of exposure to static electric fields in humans and vertebrates: a systematic review. Environ Health 16(1):41 PubMed PMC
Price C (2016) ELF electromagnetic waves from lightning: the schumann resonances. Atmosphere (Basel) 7. 10.3390/atmos7090116
Price C, Williams E, Elhalel G, Sentman D. Natural ELF fields in the atmosphere and in living organisms. Int J Biometeorol. 2020;8:1–8. PubMed
Průša J, Cifra M. Molecular dynamics simulation of the nanosecond pulsed electric field effect on kinesin nanomotor. Sci Rep. 2019;9(1):19721. doi: 10.1038/s41598-019-56052-3. PubMed DOI PMC
Reiter RJ (1985) Fields, currents and aerosols in the lower atmosphere, Steinkopff Verlag, NSF Translation TT 76–52030, 714 pp
Reiter RJ, Anderson LE, Buschbom RL, Wilson BW. Reduction of the nocturnal rise in pineal melatonin levels in rats exposed to 60-Hz electric fields in utero and for 23 days after birth. Life Sci. 1988;42:2203–2206. doi: 10.1016/0024-3205(88)90371-2. PubMed DOI
Repacholi MH. Low-level exposure to radiofrequency electromagnetic fields: health effects and research needs. Bioelectromagnetics. 1998;19:1–19. PubMed
Russell CL. 5 G wireless telecommunications expansion: public health and environmental implications. Environ Res. 2018;165:484–495. PubMed
Rycroft MJ, Harrison RG, Nicoll KA, Mareev EA (2008) An overview of Earth’s global electric circuit and atmospheric conductivity. In: Planetary atmospheric electricity. Springer, New York, pp 83–105
Saliev T, Begimbetova D, Masoud A-D, Matkarimov B. Biological effects of non-ionizing electromagnetic fields: two sides of a coin. Prog Biophys Mol Biol. 2019;141(25–36):2019–2036. doi: 10.1016/j.pbiomolbio.2018.07.009. PubMed DOI
Schaller J, Weiske A, Berger F (2013) Thunderbolt in biogeochemistry: galvanic effects of lightning as another source for metal remobilization. Sci Rep 3. 10.1038/srep03122 PubMed PMC
Schmiedchen K, Petri A, Driessen S, et al (2018) Systematic review of biological effects of exposure to static electric fields. Part II: invertebrates and plants. Elsevier PubMed
Schumann WO. Über die strahlungslosen Eigenschwingungen einer leitenden Kugel, die von einer Luftschicht und einer Ionosphärenhülle umgeben ist. Z Nat Forsch A J Phys Sci. 1952;7:149–154. doi: 10.1515/zna-1952-0202. DOI
Sethi TK, El-Ghamry MN, Kloecker GH. Radon and lung cancer. Clin Adv Hematol Oncol. 2012;10:157–164. PubMed
Sheftel V, Chernyshev A. Air conductivity and atmospheric electric field as an indicator of anthropogenic atmospheric pollution. J Geophys Res. 1994;99(D5):10793–10795.
Sollberget A. Significance of biological rhythm study for human biometeorology. Int J Biometeorol. 1963;7(2):193–220.
Sutton GP, Clarke D, Morley EL, Robert D. Mechanosensory hairs in bumblebees (Bombus terrestris) detect weak electric fields. Proc Natl Acad Sci U S A. 2016;113:7261–7265. doi: 10.1073/pnas.1601624113. PubMed DOI PMC
Suvorova LI, Spirin DA, Martyushov VZ, Smirnov EG, Tarasov OV, Shein GP (1993) Assessment of biological and ecological consequences of radioactive contamination of biogeocenoses (in Russian). In: Izrael Yu A (ed) Radiation aspects of the Chernobyl accident, vol. 2, St. Stavroulakis P (ed) (2003), Biological effects of electromagnetic fields mechanisms, modeling, biological effects, therapeutic effects, international standards, exposure criteria Springer-Verlag, Berlin Heidelberg, 793 pp 10.1007/978-3-662-06079-7.
Tuomi TJ (1988) Observations of atmospheric electricity 1986. Geophys Publ 7, 551.506.1, Finish Meteorological Institute, Helsinki, pp 61
Tuszyński JA, Brown JA, Crawford E, Carpenter EJ, Nip MLA, Dixon JM, Satarić MV. Molecular dynamics simulations of tubulin structure and calculations of electrostatic properties of microtubules. Math Comput Model. 2005;41(10):1055–1070.
Tynes T, Haldorsen T. Electromagnetic fields and cancer in children residing near Norwegian high-voltage power lines. Am J Epidemiol. 1997;145(3):219–226. PubMed
Usmani OS, Matthews JC, Wright MD, Meah S, Underwood SR, Barnes PJ, Shallcross DE, Biddiscombe MF. No evidence electric charge increases inhaled ultrafine particle deposition in human lungs. Am J Respir Crit Care Med. 2020;201:1301–1303. PubMed
Valberg PA, van Deventer TE, Repacholi MH. Workgroup report: base stations and wireless networks—radiofrequency (RF) exposures and health consequences. Environ Health Perspect. 2006;115(3):416–424. doi: 10.1289/ehp.9633. PubMed DOI PMC
Valle E d, Marracino P, Pakhomova O, Liberti M, Apollonio F. Nanosecond pulsed electric signals can affect electrostatic environment of proteins below the threshold of conformational effects: the case study of SOD1 with a molecular simulation study. PLoS One. 2019;14(8):e0221685. doi: 10.1371/journal.pone.0221685. PubMed DOI PMC
Volkov AG, Shtessel YB. Electrical signal propagation within and between tomato plants. Bioelectrochemistry. 2018;1:195–205. PubMed
Volland H, editor. Handbook of atmospheric electrodynamics. Boca Raton: CRC Press; 1995. p. 432.
Volland H, editor. Handbook of atmospheric electrodynamics. Boca Raton: CRC Press; 1995. p. 526.
Vonnegut B, Latham DJ, Moore CB, Hunyady SJ. An explanation for anomalous lightning from forest fire clouds. J Geophys Res. 1995;100:5037–5050. doi: 10.1029/94JD02956. DOI
Ward JF. Radiation mutagenesis: the initial DNA lesions responsible. Radiat Res. 1995;142:362–368. doi: 10.2307/3579145. PubMed DOI
Wever R. Human circadian rhythms under the influence of weak electric fields and the different aspects of these studies. Int J Biometeorol. 1973;17:227–232. PubMed
Williams E, Mareev E. Recent progress on the global electrical circuit. Atmos Res. 2014;135–136:208–227.
Williams E, Markson R, Heckman S. Shielding effects of trees on the measurement of the Earth’s electric field: implications for secular variations of the global electrical circuit. Geophys Res Lett. 2005;32:1–4. doi: 10.1029/2005GL023717. DOI
Wilson BW, Anderson LE, Ian Hilton D, Phillips RD. Chronic exposure to 60-Hz electric fields: effects on pineal function in the rat. Bioelectromagnetics. 1981;2:371–380. doi: 10.1002/bem.2250020408. PubMed DOI
Wilson BW, Chess EK, Anderson LE. 60 Hz electric field effects on pineal melatonin rhythms: time course for onset and recovery. Bioelectromagnetics. 1986;7:239–242. doi: 10.1002/bem.2250070213. PubMed DOI
Yamauchi M, Takeda M, Makino M, Owada T, Miyagi I. Settlement process of radioactive dust to the ground inferred by the atmospheric electric field measurement. Ann Geophys. 2012;30:49–56. doi: 10.5194/angeo-30-49-2012. DOI
Zhai Y, Brun NR, Bundschuh M, Schrama M, Hin E, Vijver MG, Hunting ER. Microbially-mediated indirect effects of silver nanoparticles on aquatic invertebrates. Aquat Sci. 2018;80(4):44.