In Vitro Selective Growth-Inhibitory Effect of 8-Hydroxyquinoline on Clostridium perfringens versus Bifidobacteria in a Medium Containing Chicken Ileal Digesta
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
27936245
PubMed Central
PMC5147926
DOI
10.1371/journal.pone.0167638
PII: PONE-D-16-31036
Knihovny.cz E-zdroje
- MeSH
- antibakteriální látky farmakologie MeSH
- Bifidobacterium účinky léků MeSH
- Clostridium perfringens účinky léků MeSH
- ileum mikrobiologie MeSH
- klostridiové infekce prevence a kontrola veterinární virologie MeSH
- kur domácí mikrobiologie MeSH
- nemoci drůbeže prevence a kontrola virologie MeSH
- oxychinolin farmakologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antibakteriální látky MeSH
- oxychinolin MeSH
Clostridium perfringens-induced necrotic enteritis is generally controlled by antibiotics. However, because of increasing antibiotic resistance, other antibacterial agents are required, preferably ones that do not affect the beneficial intestinal microbiota of the host. This study evaluated the in vitro selective growth-inhibitory effect of 8-hydroxyquinoline (8HQ) on C. perfringens vs. bifidobacteria in a medium containing chicken ileal digesta. Prior to the experiments, the minimum inhibitory concentrations of 8HQ and penicillin G were determined by broth microdilution assay. The minimum inhibitory concentration values of 8HQ for C. perfringens were 16-32 times lower than the values for bifidobacteria. Treatment of autoclaved and non-autoclaved chicken ileal digesta with 8HQ showed a selective anticlostridial effect. After incubation of C. perfringens with autoclaved ileal digesta for 3 h, all 8HQ concentrations tested (32-2048 μg/mL) significantly reduced C. perfringens bacterial count. In contrast, the same treatment had no or only a slight effect on bifidobacteria counts. Unlike 8HQ, penicillin G did not exhibit any selectivity. Similar results were obtained after incubation for 24 h. In non-autoclaved ileal digesta, all 8HQ concentrations tested significantly reduced C. perfringens bacterial counts after incubation for 30 min and 3 h, while no effect was observed on bifidobacteria. These results suggest that 8HQ may serve as a prospective veterinary compound for use against necrotic enteritis in poultry.
Zobrazit více v PubMed
Gadbois P, Brennan JJ, Bruce HL, Wilson JB, Aramini JJ. The role of penicillin G potassium in managing Clostridium perfringens in broiler chickens. Avian Dis. 2008; 52: 407–411. 10.1637/8114-091807-Reg PubMed DOI
Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 2011; 40: 341–347. 10.1080/03079457.2011.590967 PubMed DOI
Fuller R. The chicken gut microflora and probiotic supplements. J Poult Sci. 2001; 38: 189–196.
Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well-known antibiotics on Gram-positive bacteria. Clin Microbiol Rev. 2003; 16: 175–188. 10.1128/CMR.16.2.175-188.2003 PubMed DOI PMC
Agunos A, Léger D, Carson C. Review on antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can Vet J. 2012; 53: 1289–1300. PubMed PMC
Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012; 148: 1258–1270. 10.1016/j.cell.2012.01.035 PubMed DOI PMC
Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012; 33: 459–466. 10.1016/j.it.2012.05.003 PubMed DOI PMC
Cheng GY, Hao HH, Xie SY, Wang X, Dai MH, Huang LL, et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol. 2014; 5: 69–83. PubMed PMC
Chen C, Dolla NK, Casadei G, Bremner JB, Lewis K, Kelso MJ. Diarylacylhydrazones: Clostridium-selective antibacterials with activity against stationary-phase cells. Bioorg Med Chemi Lett. 2014; 24: 595–600. PubMed PMC
Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul S. 8-Hydroxyquinolines: a review on their metal cheating properties and medicinal applications. Drug Des Devel Ther. 2013; 7: 1157–1178. 10.2147/DDDT.S49763 PubMed DOI PMC
Kim YM, Jeong EY, Lim JH, Lee HS. Antimicrobial effects of 8-quinolinol. Food Sci Biotechnol. 2006; 15 (5): 817–819.
Novakova J, Vlkova E, Bonusova B, Rada V, Kokoska L. In vitro selective inhibitory effect of 8-hydroxyquinoline against bifidobacteria and clostridia. Anaerobe. 2013; 22: 134–136. 10.1016/j.anaerobe.2013.05.008 PubMed DOI
Novakova J, Dzunkova M, Musilova S, Vlkova E, Kokoska L, Moya A, et al. Selective growth-inhibitory effect of 8-hydroxyquinoline towards Clostridium difficile and Bifidobacterium longum subsp. longum in co-culture analyzed by flow cytometry combined with fluorescent in situ hybridization. J Med Microbiol. 2014; 63: 1663–1669. 10.1099/jmm.0.080796-0 PubMed DOI
Novakova J, Vlkova E, Salmonova H, Pechar R, Rada V, Kokoska L. Anticlostridial agent 8‐hydroxyquinoline improves the isolation of faecal bifidobacteria on modified Wilkins–Chalgren agar with mupirocin. Lett Appl Microbiol. 2016; 62: 330–335. 10.1111/lam.12552 PubMed DOI
Collier CT, Hofacre CL, Payne AM, Anderson DB, Kaiser P, Mackie RI, et al. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet Immunol Immunopathol. 2008; 122: 104–115. 10.1016/j.vetimm.2007.10.014 PubMed DOI
Park SS, Lillehoj HS, Allen PC, Park DW, Fitz Coy S, Bautista DA, et al. Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Dis. 2008; 52: 14–22. 10.1637/7997-041707-Reg PubMed DOI
Lee KW, Lillehoj HS, Jeong W, Jeoung HY, An DJ. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult Sci. 2011; 90: 1381–1390. 10.3382/ps.2010-01319 PubMed DOI
Shojadoost B, Vince AR, Prescott JF. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Vet Res. 2012; 43: 1–12. PubMed PMC
Si W, Gong J, Han Y, Yu H, Brennan J, Zhou H, et al. Quantification of cell proliferation and α-toxin gene expression of Clostridium perfringens in the development of necrotic enteritis in broiler chickens. Appl Environ Microbiol. 2007; 73: 7110–7113. 10.1128/AEM.01108-07 PubMed DOI PMC
Pang Y, Patterson JA, Applegate TJ. The influence of copper concentration and source of ileal microbiota. Poult Sci. 2009; 88: 586–592. 10.3382/ps.2008-00243 PubMed DOI
Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Ther. 2004; 11: 64–66. PubMed
Timbermont L, Lanckriet A, Dewulf J, Nollet N, Schwarzer K, Haesebrouck F, et al. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol. 2010; 39: 117–121. 10.1080/03079451003610586 PubMed DOI
Hecht DW. Susceptibility testing of anaerobic bacteria In: Murray P.R., E.J., Baron MA, Pfaller FC, Tenover RH, Yolken (Eds.), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, D.C., USA; 1999. pp. 1555–1562.
Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006; 106: 290–302. 10.1016/j.jep.2006.04.003 PubMed DOI
Si W, Ni X, Gong J, Yu H, Tsao R, Han Y, et al. Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens. J Appl Microbiol. 2009; 106: 213–220. 10.1111/j.1365-2672.2008.03994.x PubMed DOI
Vasudevan P, Marek P, Nair MKM, Annamalai T, Darre M, Khan M, Venkitanarayanan K. In vitro inactivation of Salmonella Enteritidis in autoclaved chicken cecal contents by caprylic acid. J Appl Poult Res. 2005; 14 (1): 122–125.
Rada V, Petr J. A new selective medium for the isolation of glucose nonfermenting bifidobacteria from hen caeca. J Microbiol Meth. 2000; 43: 127–32. PubMed
SAS Institute. SAS System for Windows, Release 8.2. SAS Institute, Cary, NC, 2001.
Namkung H, Yu H, Gong J, Leeson S. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens. Poult Sci. 2011; 90: 2217–2222. 10.3382/ps.2011-01498 PubMed DOI
Wise MG, Siragusa GR. Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl Environ Microbiol. 2005; 71: 3911–3916. 10.1128/AEM.71.7.3911-3916.2005 PubMed DOI PMC
Kanakaraj R, Harris DL, Songer JG, Bosworth B. A multiplex PCR assay for detection of Clostridium perfringens in faeces and intestinal contents of pigs and in swine feed. Vet Microbiol. 1998; 63: 29–38. PubMed
Jeon JH, Lee CH, Lee HS. Antimicrobial activities of 2-methyl-8-hydroxyquinoline and its derivatives against human intestinal bacteria. J Korean Soc Appl Biol Chem. 2009; 52: 202–205.
Chobot V, Drage S, Hadacek F. Redox properties of 8-quinolinol and implications for its mode of action. Nat Prod Commun. 2011; 6(5): 597–602. PubMed
Fraser RSS, Creanor J. The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin. Biochem J. 1975; 147: 401–10. PubMed PMC
Jung W.J, Mabood F, Souleimanov A, Zhou X., Jaoua S, Kamoun F, et al. Stability and antibacterial activity of bacteriocins produced by Bacillus thurigiensis and Bacillus thurigiensis spp. kurstaki. J Microbiol Biotechnol. 2008. 18 (11): 1836–1840. PubMed
Duarte MC, dos Reis Lage LM, Lage DP, Mesquita JP, Salles BCS, Lavorato SN, et al. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Vet Parasitol. 2016; 217: 81–88. 10.1016/j.vetpar.2016.01.002 PubMed DOI
Magyar K, Varga J, Ferenc S, nee Lauko HS, Fekete P, Romvary A, et al., Synergistic veterinary composition and/or fodder premix and process for preparing same. U.S. Patent No. 4,871,722. Washington, DC: U.S. Patent and Trademark Office. 1989.
Fox LK, Norell RJ. Staphylococcus aureus colonization of teat skin as affected by postmilking teat treatment when exposed to cold and windy conditions. J Dairy Sci. 1994; 77: 2281–2288. 10.3168/jds.S0022-0302(94)77171-X PubMed DOI
Gosselin RE, Smith RP, Hodge HC. Clinical Toxicology of Commercial Products. 5th ed. Baltimore: Williams and Wilkins; 1984. p. II–383.
Tateishi J. Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals. Neuropathology. 2000; 20: Suppl S20–S24.41. Kiwada H, Hayashi M, Fuwa T, Awazu S, Hanano M. The pharmacokinetic study on the fate of 8-hydroxyquinoline in rat. Cell. Pharm. Bull. 1977; 25 (7): 1566–1573. PubMed
Sawada Y, Hayashi M, Awazu S, Hanano M. In vivo and in vitro fates of 8-hydroxyquinoline derivatives in rat. Chem. Pharm. Bull. 26 (5): 1357–1363. PubMed
Yoshinari K, Sakamoto M, Senggunprai L, Yamazoe Y. Clioquinol is sulfated by human jejunum cytosol and SULT1A3, a human-specific dopamine sulfotransferase. Toxicology Lett. 2011; 206 (2): 229–233. PubMed