In Vitro Selective Growth-Inhibitory Effect of 8-Hydroxyquinoline on Clostridium perfringens versus Bifidobacteria in a Medium Containing Chicken Ileal Digesta

. 2016 ; 11 (12) : e0167638. [epub] 20161209

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27936245

Clostridium perfringens-induced necrotic enteritis is generally controlled by antibiotics. However, because of increasing antibiotic resistance, other antibacterial agents are required, preferably ones that do not affect the beneficial intestinal microbiota of the host. This study evaluated the in vitro selective growth-inhibitory effect of 8-hydroxyquinoline (8HQ) on C. perfringens vs. bifidobacteria in a medium containing chicken ileal digesta. Prior to the experiments, the minimum inhibitory concentrations of 8HQ and penicillin G were determined by broth microdilution assay. The minimum inhibitory concentration values of 8HQ for C. perfringens were 16-32 times lower than the values for bifidobacteria. Treatment of autoclaved and non-autoclaved chicken ileal digesta with 8HQ showed a selective anticlostridial effect. After incubation of C. perfringens with autoclaved ileal digesta for 3 h, all 8HQ concentrations tested (32-2048 μg/mL) significantly reduced C. perfringens bacterial count. In contrast, the same treatment had no or only a slight effect on bifidobacteria counts. Unlike 8HQ, penicillin G did not exhibit any selectivity. Similar results were obtained after incubation for 24 h. In non-autoclaved ileal digesta, all 8HQ concentrations tested significantly reduced C. perfringens bacterial counts after incubation for 30 min and 3 h, while no effect was observed on bifidobacteria. These results suggest that 8HQ may serve as a prospective veterinary compound for use against necrotic enteritis in poultry.

Zobrazit více v PubMed

Gadbois P, Brennan JJ, Bruce HL, Wilson JB, Aramini JJ. The role of penicillin G potassium in managing Clostridium perfringens in broiler chickens. Avian Dis. 2008; 52: 407–411. 10.1637/8114-091807-Reg PubMed DOI

Timbermont L, Haesebrouck F, Ducatelle R, Van Immerseel F. Necrotic enteritis in broilers: an updated review on the pathogenesis. Avian Pathol. 2011; 40: 341–347. 10.1080/03079457.2011.590967 PubMed DOI

Fuller R. The chicken gut microflora and probiotic supplements. J Poult Sci. 2001; 38: 189–196.

Butaye P, Devriese LA, Haesebrouck F. Antimicrobial growth promoters used in animal feed: effects of less well-known antibiotics on Gram-positive bacteria. Clin Microbiol Rev. 2003; 16: 175–188. 10.1128/CMR.16.2.175-188.2003 PubMed DOI PMC

Agunos A, Léger D, Carson C. Review on antimicrobial therapy of selected bacterial diseases in broiler chickens in Canada. Can Vet J. 2012; 53: 1289–1300. PubMed PMC

Clemente JC, Ursell LK, Parfrey LW, Knight R. The impact of the gut microbiota on human health: an integrative view. Cell. 2012; 148: 1258–1270. 10.1016/j.cell.2012.01.035 PubMed DOI PMC

Ubeda C, Pamer EG. Antibiotics, microbiota, and immune defense. Trends Immunol. 2012; 33: 459–466. 10.1016/j.it.2012.05.003 PubMed DOI PMC

Cheng GY, Hao HH, Xie SY, Wang X, Dai MH, Huang LL, et al. Antibiotic alternatives: the substitution of antibiotics in animal husbandry? Front Microbiol. 2014; 5: 69–83. PubMed PMC

Chen C, Dolla NK, Casadei G, Bremner JB, Lewis K, Kelso MJ. Diarylacylhydrazones: Clostridium-selective antibacterials with activity against stationary-phase cells. Bioorg Med Chemi Lett. 2014; 24: 595–600. PubMed PMC

Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul S. 8-Hydroxyquinolines: a review on their metal cheating properties and medicinal applications. Drug Des Devel Ther. 2013; 7: 1157–1178. 10.2147/DDDT.S49763 PubMed DOI PMC

Kim YM, Jeong EY, Lim JH, Lee HS. Antimicrobial effects of 8-quinolinol. Food Sci Biotechnol. 2006; 15 (5): 817–819.

Novakova J, Vlkova E, Bonusova B, Rada V, Kokoska L. In vitro selective inhibitory effect of 8-hydroxyquinoline against bifidobacteria and clostridia. Anaerobe. 2013; 22: 134–136. 10.1016/j.anaerobe.2013.05.008 PubMed DOI

Novakova J, Dzunkova M, Musilova S, Vlkova E, Kokoska L, Moya A, et al. Selective growth-inhibitory effect of 8-hydroxyquinoline towards Clostridium difficile and Bifidobacterium longum subsp. longum in co-culture analyzed by flow cytometry combined with fluorescent in situ hybridization. J Med Microbiol. 2014; 63: 1663–1669. 10.1099/jmm.0.080796-0 PubMed DOI

Novakova J, Vlkova E, Salmonova H, Pechar R, Rada V, Kokoska L. Anticlostridial agent 8‐hydroxyquinoline improves the isolation of faecal bifidobacteria on modified Wilkins–Chalgren agar with mupirocin. Lett Appl Microbiol. 2016; 62: 330–335. 10.1111/lam.12552 PubMed DOI

Collier CT, Hofacre CL, Payne AM, Anderson DB, Kaiser P, Mackie RI, et al. Coccidia-induced mucogenesis promotes the onset of necrotic enteritis by supporting Clostridium perfringens growth. Vet Immunol Immunopathol. 2008; 122: 104–115. 10.1016/j.vetimm.2007.10.014 PubMed DOI

Park SS, Lillehoj HS, Allen PC, Park DW, Fitz Coy S, Bautista DA, et al. Immunopathology and cytokine responses in broiler chickens coinfected with Eimeria maxima and Clostridium perfringens with the use of an animal model of necrotic enteritis. Avian Dis. 2008; 52: 14–22. 10.1637/7997-041707-Reg PubMed DOI

Lee KW, Lillehoj HS, Jeong W, Jeoung HY, An DJ. Avian necrotic enteritis: Experimental models, host immunity, pathogenesis, risk factors, and vaccine development. Poult Sci. 2011; 90: 1381–1390. 10.3382/ps.2010-01319 PubMed DOI

Shojadoost B, Vince AR, Prescott JF. The successful experimental induction of necrotic enteritis in chickens by Clostridium perfringens: a critical review. Vet Res. 2012; 43: 1–12. PubMed PMC

Si W, Gong J, Han Y, Yu H, Brennan J, Zhou H, et al. Quantification of cell proliferation and α-toxin gene expression of Clostridium perfringens in the development of necrotic enteritis in broiler chickens. Appl Environ Microbiol. 2007; 73: 7110–7113. 10.1128/AEM.01108-07 PubMed DOI PMC

Pang Y, Patterson JA, Applegate TJ. The influence of copper concentration and source of ileal microbiota. Poult Sci. 2009; 88: 586–592. 10.3382/ps.2008-00243 PubMed DOI

Baumans V. Use of animals in experimental research: an ethical dilemma? Gene Ther. 2004; 11: 64–66. PubMed

Timbermont L, Lanckriet A, Dewulf J, Nollet N, Schwarzer K, Haesebrouck F, et al. Control of Clostridium perfringens-induced necrotic enteritis in broilers by target-released butyric acid, fatty acids and essential oils. Avian Pathol. 2010; 39: 117–121. 10.1080/03079451003610586 PubMed DOI

Hecht DW. Susceptibility testing of anaerobic bacteria In: Murray P.R., E.J., Baron MA, Pfaller FC, Tenover RH, Yolken (Eds.), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, D.C., USA; 1999. pp. 1555–1562.

Cos P, Vlietinck AJ, Berghe DV, Maes L. Anti-infective potential of natural products: How to develop a stronger in vitro ‘proof-of-concept’. J Ethnopharmacol. 2006; 106: 290–302. 10.1016/j.jep.2006.04.003 PubMed DOI

Si W, Ni X, Gong J, Yu H, Tsao R, Han Y, et al. Antimicrobial activity of essential oils and structurally related synthetic food additives towards Clostridium perfringens. J Appl Microbiol. 2009; 106: 213–220. 10.1111/j.1365-2672.2008.03994.x PubMed DOI

Vasudevan P, Marek P, Nair MKM, Annamalai T, Darre M, Khan M, Venkitanarayanan K. In vitro inactivation of Salmonella Enteritidis in autoclaved chicken cecal contents by caprylic acid. J Appl Poult Res. 2005; 14 (1): 122–125.

Rada V, Petr J. A new selective medium for the isolation of glucose nonfermenting bifidobacteria from hen caeca. J Microbiol Meth. 2000; 43: 127–32. PubMed

SAS Institute. SAS System for Windows, Release 8.2. SAS Institute, Cary, NC, 2001.

Namkung H, Yu H, Gong J, Leeson S. Antimicrobial activity of butyrate glycerides toward Salmonella Typhimurium and Clostridium perfringens. Poult Sci. 2011; 90: 2217–2222. 10.3382/ps.2011-01498 PubMed DOI

Wise MG, Siragusa GR. Quantitative detection of Clostridium perfringens in the broiler fowl gastrointestinal tract by real-time PCR. Appl Environ Microbiol. 2005; 71: 3911–3916. 10.1128/AEM.71.7.3911-3916.2005 PubMed DOI PMC

Kanakaraj R, Harris DL, Songer JG, Bosworth B. A multiplex PCR assay for detection of Clostridium perfringens in faeces and intestinal contents of pigs and in swine feed. Vet Microbiol. 1998; 63: 29–38. PubMed

Jeon JH, Lee CH, Lee HS. Antimicrobial activities of 2-methyl-8-hydroxyquinoline and its derivatives against human intestinal bacteria. J Korean Soc Appl Biol Chem. 2009; 52: 202–205.

Chobot V, Drage S, Hadacek F. Redox properties of 8-quinolinol and implications for its mode of action. Nat Prod Commun. 2011; 6(5): 597–602. PubMed

Fraser RSS, Creanor J. The mechanism of inhibition of ribonucleic acid synthesis by 8-hydroxyquinoline and the antibiotic lomofungin. Biochem J. 1975; 147: 401–10. PubMed PMC

Jung W.J, Mabood F, Souleimanov A, Zhou X., Jaoua S, Kamoun F, et al. Stability and antibacterial activity of bacteriocins produced by Bacillus thurigiensis and Bacillus thurigiensis spp. kurstaki. J Microbiol Biotechnol. 2008. 18 (11): 1836–1840. PubMed

Duarte MC, dos Reis Lage LM, Lage DP, Mesquita JP, Salles BCS, Lavorato SN, et al. An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Vet Parasitol. 2016; 217: 81–88. 10.1016/j.vetpar.2016.01.002 PubMed DOI

Magyar K, Varga J, Ferenc S, nee Lauko HS, Fekete P, Romvary A, et al., Synergistic veterinary composition and/or fodder premix and process for preparing same. U.S. Patent No. 4,871,722. Washington, DC: U.S. Patent and Trademark Office. 1989.

Fox LK, Norell RJ. Staphylococcus aureus colonization of teat skin as affected by postmilking teat treatment when exposed to cold and windy conditions. J Dairy Sci. 1994; 77: 2281–2288. 10.3168/jds.S0022-0302(94)77171-X PubMed DOI

Gosselin RE, Smith RP, Hodge HC. Clinical Toxicology of Commercial Products. 5th ed. Baltimore: Williams and Wilkins; 1984. p. II–383.

Tateishi J. Subacute myelo-optico-neuropathy: clioquinol intoxication in humans and animals. Neuropathology. 2000; 20: Suppl S20–S24.41. Kiwada H, Hayashi M, Fuwa T, Awazu S, Hanano M. The pharmacokinetic study on the fate of 8-hydroxyquinoline in rat. Cell. Pharm. Bull. 1977; 25 (7): 1566–1573. PubMed

Sawada Y, Hayashi M, Awazu S, Hanano M. In vivo and in vitro fates of 8-hydroxyquinoline derivatives in rat. Chem. Pharm. Bull. 26 (5): 1357–1363. PubMed

Yoshinari K, Sakamoto M, Senggunprai L, Yamazoe Y. Clioquinol is sulfated by human jejunum cytosol and SULT1A3, a human-specific dopamine sulfotransferase. Toxicology Lett. 2011; 206 (2): 229–233. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...