Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33372146

Grantová podpora
DOC 50 Austrian Science Fund FWF - Austria
P 32225 Austrian Science Fund FWF - Austria

Branched esters of palmitic acid and hydroxy stearic acid are antiinflammatory and antidiabetic lipokines that belong to a family of fatty acid (FA) esters of hydroxy fatty acids (HFAs) called FAHFAs. FAHFAs themselves belong to oligomeric FA esters, known as estolides. Glycerol-bound FAHFAs in triacylglycerols (TAGs), named TAG estolides, serve as metabolite reservoir of FAHFAs mobilized by lipases upon demand. Here, we characterized the involvement of two major metabolic lipases, adipose triglyceride lipase (ATGL) and hormone-sensitive lipase (HSL), in TAG estolide and FAHFA degradation. We synthesized a library of 20 TAG estolide isomers with FAHFAs varying in branching position, chain length, saturation grade, and position on the glycerol backbone and developed an in silico mass spectra library of all predicted catabolic intermediates. We found that ATGL alone or coactivated by comparative gene identification-58 efficiently liberated FAHFAs from TAG estolides with a preference for more compact substrates where the estolide branching point is located near the glycerol ester bond. ATGL was further involved in transesterification and remodeling reactions leading to the formation of TAG estolides with alternative acyl compositions. HSL represented a much more potent estolide bond hydrolase for both TAG estolides and free FAHFAs. FAHFA and TAG estolide accumulation in white adipose tissue of mice lacking HSL argued for a functional role of HSL in estolide catabolism in vivo. Our data show that ATGL and HSL participate in the metabolism of estolides and TAG estolides in distinct manners and are likely to affect the lipokine function of FAHFAs.

Zobrazit více v PubMed

Lee J., et al. , Branched fatty acid esters of hydroxy fatty acids (FAHFAs) protect against colitis by regulating gut innate and adaptive immune responses. J. Biol. Chem. 291, 22207–22217 (2016). PubMed PMC

Yore M. M., et al. , Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014). PubMed PMC

Paluchova V., et al. , Lipokine 5-PAHSA is regulated by adipose triglyceride lipase and primes adipocytes for de novo lipogenesis in mice. Diabetes 69, 300–312 (2020). PubMed PMC

Hammarstedt A., et al. , Adipose tissue dysfunction is associated with low levels of the novel Palmitic Acid Hydroxystearic Acids. Sci. Rep. 8, 15757 (2018). PubMed PMC

Bandak B., Yi L., Roper M. G., Microfluidic-enabled quantitative measurements of insulin release dynamics from single islets of Langerhans in response to 5-palmitic acid hydroxy stearic acid. Lab Chip 18, 2873–2882 (2018). PubMed PMC

Syed I., et al. , PAHSAs attenuate immune responses and promote β cell survival in autoimmune diabetic mice. J. Clin. Invest. 129, 3717–3731 (2019). PubMed PMC

Kuda O., et al. , Docosahexaenoic acid-derived fatty acid esters of hydroxy fatty acids (FAHFAs) with anti-inflammatory properties. Diabetes 65, 2580–2590 (2016). PubMed

Syed I., et al. , Palmitic acid hydroxystearic acids activate GPR40, which is involved in their beneficial effects on glucose homeostasis. Cell Metab. 27, 419–427.e4 (2018). PubMed PMC

Brejchova K., et al. , Understanding FAHFAs: From structure to metabolic regulation. Prog. Lipid Res. 79, 101053 (2020). PubMed

Chen Y. Z., et al. , Fatty acid estolides: A review. J. Am. Oil Chem. Soc. 97, 231–241 (2020).

Kuda O., et al. , Nrf2-Mediated antioxidant defense and peroxiredoxin 6 are linked to biosynthesis of palmitic acid ester of 9-hydroxystearic acid. Diabetes 67, 1190–1199 (2018). PubMed PMC

Brezinova M., et al. , Levels of palmitic acid ester of hydroxystearic acid (PAHSA) are reduced in the breast milk of obese mothers. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1863, 126–131 (2018). PubMed

Lin J. T., Arcinas A., Harden L. R., Fagerquist C. K., Identification of (12-ricinoleoylricinoleoyl)diricinoleoylglycerol, an acylglycerol containing four acyl chains, in castor (Ricinus communis L.) oil by LC-ESI-MS. J. Agric. Food Chem. 54, 3498–3504 (2006). PubMed

Zhang H. X., Olson D. J. H., Van D., Purves R. W., Smith M. A., Rapid identification of triacylglycerol-estolides in plant and fungal oils. Ind. Crops Prod. 37, 186–194 (2012).

Tan D., et al. , Discovery of FAHFA-containing triacylglycerols and their metabolic regulation. J. Am. Chem. Soc. 141, 8798–8806 (2019). PubMed PMC

Brezinova M., et al. , Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1865, 158576 (2020). PubMed

Jenkins C. M., et al. , Identification, cloning, expression, and purification of three novel human calcium-independent phospholipase A2 family members possessing triacylglycerol lipase and acylglycerol transacylase activities. J. Biol. Chem. 279, 48968–48975 (2004). PubMed

Zimmermann R., et al. , Fat mobilization in adipose tissue is promoted by adipose triglyceride lipase. Science 306, 1383–1386 (2004). PubMed

Zhang X., et al. , An epistatic interaction between Pnpla2 and lipe reveals new pathways of adipose tissue lipolysis. Cells 8, 395 (2019). PubMed PMC

Lake A. C., et al. , Expression, regulation, and triglyceride hydrolase activity of Adiponutrin family members. J. Lipid Res. 46, 2477–2487 (2005). PubMed

Gruber A., et al. , The N-terminal region of comparative gene identification-58 (CGI-58) is important for lipid droplet binding and activation of adipose triglyceride lipase. J. Biol. Chem. 285, 12289–12298 (2010). PubMed PMC

Lass A., et al. , Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman syndrome. Cell Metab. 3, 309–319 (2006). PubMed

Lefèvre C., et al. , Mutations in CGI-58, the gene encoding a new protein of the esterase/lipase/thioesterase subfamily, in Chanarin-Dorfman syndrome. Am. J. Hum. Genet. 69, 1002–1012 (2001). PubMed PMC

Jebessa Z. H., et al. , The lipid droplet-associated protein ABHD5 protects the heart through proteolysis of HDAC4. Nat. Metab. 1, 1157–1167 (2019). PubMed PMC

Montero-Moran G., et al. , CGI-58/ABHD5 is a coenzyme A-dependent lysophosphatidic acid acyltransferase. J. Lipid Res. 51, 709–719 (2010). PubMed PMC

Eichmann T. O., et al. , Studies on the substrate and stereo/regioselectivity of adipose triglyceride lipase, hormone-sensitive lipase, and diacylglycerol-O-acyltransferases. J. Biol. Chem. 287, 41446–41457 (2012). PubMed PMC

Fredrikson G., Tornqvist H., Belfrage P., Hormone-sensitive lipase and monoacylglycerol lipase are both required for complete degradation of adipocyte triacylglycerol. Biochim. Biophys. Acta 876, 288–293 (1986). PubMed

Sekiya M., et al. , Hormone-sensitive lipase is involved in hepatic cholesteryl ester hydrolysis. J. Lipid Res. 49, 1829–1838 (2008). PubMed

Rodriguez J. A., et al. , In vitro stereoselective hydrolysis of diacylglycerols by hormone-sensitive lipase. Biochim. Biophys. Acta 1801, 77–83 (2010). PubMed

Wei S., et al. , Retinyl ester hydrolysis and retinol efflux from BFC-1beta adipocytes. J. Biol. Chem. 272, 14159–14165 (1997). PubMed

Granneman J. G., et al. , Analysis of lipolytic protein trafficking and interactions in adipocytes. J. Biol. Chem. 282, 5726–5735 (2007). PubMed

Krintel C., Mörgelin M., Logan D. T., Holm C., Phosphorylation of hormone-sensitive lipase by protein kinase A in vitro promotes an increase in its hydrophobic surface area. FEBS J. 276, 4752–4762 (2009). PubMed

Krintel C., et al. , Ser649 and Ser650 are the major determinants of protein kinase A-mediated activation of human hormone-sensitive lipase against lipid substrates. PLoS One 3, e3756 (2008). PubMed PMC

Balas L., et al. , Regiocontrolled syntheses of FAHFAs and LC-MS/MS differentiation of regioisomers. Org. Biomol. Chem. 14, 9012–9020 (2016). PubMed

Schweiger M., Lass A., Zimmermann R., Eichmann T. O., Zechner R., Neutral lipid storage disease: Genetic disorders caused by mutations in adipose triglyceride lipase/PNPLA2 or CGI-58/ABHD5. Am. J. Physiol. Endocrinol. Metab. 297, E289–E296 (2009). PubMed

Tsujita T., Ninomiya H., Okuda H., p-nitrophenyl butyrate hydrolyzing activity of hormone-sensitive lipase from bovine adipose tissue. J. Lipid Res. 30, 997–1004 (1989). PubMed

Rogalska E., Cudrey C., Ferrato F., Verger R., Stereoselective hydrolysis of triglycerides by animal and microbial lipases. Chirality 5, 24–30 (1993). PubMed

Soni K. G., et al. , Carboxylesterase 3 (EC 3.1.1.1) is a major adipocyte lipase. J. Biol. Chem. 279, 40683–40689 (2004). PubMed

Yang A., Mottillo E. P., Mladenovic-Lucas L., Zhou L., Granneman J. G., Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat. Metab. 1, 560–569 (2019). PubMed PMC

Araki M., et al. , Enzymatic characterization of recombinant rat DDHD2: A soluble diacylglycerol lipase. J. Biochem. 160, 269–279 (2016). PubMed

Kienesberger P. C., Oberer M., Lass A., Zechner R., Mammalian patatin domain containing proteins: A family with diverse lipolytic activities involved in multiple biological functions. J. Lipid Res. 50 (suppl.), S63–S68 (2009). PubMed PMC

Kien B., et al. , ABHD5 stimulates PNPLA1-mediated ω-O-acylceramide biosynthesis essential for a functional skin permeability barrier. J. Lipid Res. 59, 2360–2367 (2018). PubMed PMC

Ohno Y., Nara A., Nakamichi S., Kihara A., Molecular mechanism of the ichthyosis pathology of Chanarin-Dorfman syndrome: Stimulation of PNPLA1-catalyzed ω-O-acylceramide production by ABHD5. J. Dermatol. Sci. 92, 245–253 (2018). PubMed

Kumari M., et al. , Adiponutrin functions as a nutritionally regulated lysophosphatidic acid acyltransferase. Cell Metab. 15, 691–702 (2012). PubMed PMC

Wang Y., Kory N., BasuRay S., Cohen J. C., Hobbs H. H., PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 69, 2427–2441 (2019). PubMed PMC

Kershaw E. E., et al. , Adipose triglyceride lipase: Function, regulation by insulin, and comparison with adiponutrin. Diabetes 55, 148–157 (2006). PubMed PMC

Kolar M. J., et al. , Branched fatty acid esters of hydroxy fatty acids are preferred substrates of the MODY8 protein carboxyl ester lipase. Biochemistry 55, 4636–4641 (2016). PubMed PMC

Parsons W. H., et al. , AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat. Chem. Biol. 12, 367–372 (2016). PubMed PMC

Erikci Ertunc M., et al. , AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice. J. Biol. Chem. 295, 5891–5905 (2020). PubMed PMC

Ma Y., et al. , An in silico MS/MS library for automatic annotation of novel FAHFA lipids. J. Cheminform. 7, 53 (2015). PubMed PMC

Moreau R. A., et al. , The identification of mono-, di-, tri-, and tetragalactosyl-diacylglycerols and their natural estolides in oat kernels. Lipids 43, 533–548 (2008). PubMed PMC

Haemmerle G., et al. , Defective lipolysis and altered energy metabolism in mice lacking adipose triglyceride lipase. Science 312, 734–737 (2006). PubMed

Haemmerle G., et al. , Hormone-sensitive lipase deficiency in mice causes diglyceride accumulation in adipose tissue, muscle, and testis. J. Biol. Chem. 277, 4806–4815 (2002). PubMed

Tsugawa H., et al. , MS-DIAL: Data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat. Methods 12, 523–526 (2015). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...