Tissue-specific sex difference in the metabolism of fatty acid esters of hydroxy fatty acids
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic
Typ dokumentu preprinty, časopisecké články
PubMed
38014093
PubMed Central
PMC10680750
DOI
10.1101/2023.11.15.567158
PII: 2023.11.15.567158
Knihovny.cz E-zdroje
- Klíčová slova
- Adtrp, FAHFA, adipose tissue, female, lipokines, male,
- Publikační typ
- časopisecké články MeSH
- preprinty MeSH
Fatty acid esters of hydroxy fatty acids (FAHFAs) are endogenous bioactive lipids known for their anti-inflammatory and anti-diabetic properties. Despite their therapeutic potential, little is known about the sex-specific variations in FAHFA metabolism. This study investigated the role of Androgen Dependent TFPI Regulating Protein (ADTRP), a FAHFA hydrolase. Additionally, tissue-specific differences in FAHFA levels, focusing on the perigonadal white adipose tissue (pgWAT), subcutaneous white adipose tissue (scWAT), brown adipose tissue (BAT), plasma, and liver, were evaluated using metabolomics and lipidomics. We found that female mice exhibited higher FAHFA levels in pgWAT, scWAT, and BAT compared to males. FAHFA levels were inversely related to Adtrp mRNA, which showed significantly lower expression in females compared with males in pgWAT and scWAT. However, no significant differences between the sexes were observed in plasma and liver FAHFA levels. Adtrp deletion had minimal impact on both sexes' metabolome and lipidome of pgWAT. However, we discovered higher endogenous levels of triacylglycerol estolides containing FAHFAs, a FAHFA metabolic reservoir, in the pgWAT of female mice. These findings suggest that sex-dependent differences in FAHFA levels occur primarily in specific WAT depots and may modulate local insulin sensitivity in adipocytes. However, further investigations are warranted to fully comprehend the underlying mechanisms and implications of sex effects on FAHFA metabolism in humans.
Zobrazit více v PubMed
Yore M. M., Syed I., Moraes-Vieira P. M., Zhang T., Herman M. A., Homan E. A., Patel R. T., Lee J., Chen S., Peroni O. D., Dhaneshwar A. S., Hammarstedt A., Smith U., McGraw T. E., Saghatelian A., and Kahn B. B.. 2014. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159: 318–332. PubMed PMC
Brejchova K., Balas L., Paluchova V., Brezinova M., Durand T., and Kuda O.. 2020. Understanding FAHFAs: From structure to metabolic regulation. Prog. Lipid Res. 79: 101053. PubMed
Aryal P., Syed I., Lee J., Patel R., Nelson A. T., Siegel D., Saghatelian A., and Kahn B. B.. 2021. Distinct Biological Activities of Isomers from Different Families of Branched Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs). J. Lipid Res.: 100108. PubMed PMC
Kolar M. J., Konduri S., Chang T., Wang H., McNerlin C., Ohlsson L., Harrod M., Siegel D., and Saghatelian A.. 2019. Linoleic acid esters of hydroxy linoleic acids are anti-inflammatory lipids found in plants and mammals. J. Biol. Chem. 294: 10698–10707. PubMed PMC
Kuda O., Brezinova M., Rombaldova M., Slavikova B., Posta M., Beier P., Janovska P., Veleba J., Kopecky J. Jr., Kudova E., Pelikanova T., and Kopecky J.. 2016. Docosahexaenoic Acid-Derived Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) With Anti-inflammatory Properties. Diabetes 65: 2580–2590. PubMed
Gowda S. G. B., Liang C., Gowda D., Hou F., Kawakami K., Fukiya S., Yokota A., Chiba H., and Hui S. P.. 2020. Identification of short chain fatty acid esters of hydroxy fatty acids (SFAHFAs) in murine model by nontargeted analysis using ultra-high-performance liquid chromatography/linear trap quadrupole-Orbitrap mass spectrometry. Rapid Commun. Mass Spectrom. 34: e8831. PubMed
Kolar M. J., Kamat S. S., Parsons W. H., Homan E. A., Maher T., Peroni O. D., Syed I., Fjeld K., Molven A., Kahn B. B., Cravatt B. F., and Saghatelian A.. 2016. Branched Fatty Acid Esters of Hydroxy Fatty Acids Are Preferred Substrates of the MODY8 Protein Carboxyl Ester Lipase. Biochemistry 55: 4636–4641. PubMed PMC
Parsons W. H., Kolar M. J., Kamat S. S., Cognetta A. B. 3rd, Hulce J. J., Saez E., Kahn B. B., Saghatelian A., and Cravatt B. F.. 2016. AIG1 and ADTRP are atypical integral membrane hydrolases that degrade bioactive FAHFAs. Nat. Chem. Biol. 12: 367–372. PubMed PMC
Erikci Ertunc M., Kok B. P., Parsons W. H., Wang J. G., Tan D., Donaldson C. J., Pinto A. F. M., Vaughan J. M., Ngo N., Lum K. M., Henry C. L., Coppola A. R., Niphakis M. J., Cravatt B. F., Saez E., and Saghatelian A.. 2020. AIG1 and ADTRP are endogenous hydrolases of fatty acid esters of hydroxy fatty acids (FAHFAs) in mice. J. Biol. Chem. 295: 5891–5905. PubMed PMC
Brejchova K., Radner F. P. W., Balas L., Paluchova V., Cajka T., Chodounska H., Kudova E., Schratter M., Schreiber R., Durand T., Zechner R., and Kuda O.. 2021. Distinct roles of adipose triglyceride lipase and hormone-sensitive lipase in the catabolism of triacylglycerol estolides. Proc. Natl. Acad. Sci. U. S. A. 118. PubMed PMC
Brejchova K., Paluchova V., Brezinova M., Cajka T., Balas L., Durand T., Krizova M., Stranak Z., and Kuda O.. 2022. Triacylglycerols containing branched palmitic acid ester of hydroxystearic acid (PAHSA) are present in the breast milk and hydrolyzed by carboxyl ester lipase. Food Chem. 388: 132983. PubMed
Tan D., Ertunc M. E., Konduri S., Zhang J., Pinto A. M., Chu Q., Kahn B. B., Siegel D., and Saghatelian A.. 2019. Discovery of FAHFA-Containing Triacylglycerols and Their Metabolic Regulation. J. Am. Chem. Soc. 141: 8798–8806. PubMed PMC
Patel R., Santoro A., Hofer P., Tan D., Oberer M., Nelson A. T., Konduri S., Siegel D., Zechner R., Saghatelian A., and Kahn B. B.. 2022. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 606: 968–975. PubMed PMC
Paluchova V., Cajka T., Durand T., Vigor C., Dodia C., Chatterjee S., Fisher A. B., and Kuda O.. 2022. The role of peroxiredoxin 6 in biosynthesis of FAHFAs. Free Radic. Biol. Med. 193: 787–794. PubMed
Mukherjee R., Kim S. W., Choi M. S., and Yun J. W.. 2014. Sex-dependent expression of caveolin 1 in response to sex steroid hormones is closely associated with development of obesity in rats. PLoS One 9: e90918. PubMed PMC
Gonzalez-Granillo M., Helguero L. A., Alves E., Archer A., Savva C., Pedrelli M., Ahmed O., Li X., Domingues M. R., Parini P., Gustafsson J. A., and Korach-Andre M.. 2019. Sex-specific lipid molecular signatures in obesity-associated metabolic dysfunctions revealed by lipidomic characterization in ob/ob mouse. Biol. Sex Differ. 10: 11. PubMed PMC
Lee M. J., and Fried S. K.. 2017. Sex-dependent Depot Differences in Adipose Tissue Development and Function; Role of Sex Steroids. J Obes Metab Syndr 26: 172–180. PubMed PMC
Karbowska J., and Kochan Z.. 2012. Fat-reducing effects of dehydroepiandrosterone involve upregulation of ATGL and HSL expression, and stimulation of lipolysis in adipose tissue. Steroids 77: 1359–1365. PubMed
Lupu C., Zhu H., Popescu N. I., Wren J. D., and Lupu F.. 2011. Novel protein ADTRP regulates TFPI expression and function in human endothelial cells in normal conditions and in response to androgen. Blood 118: 4463–4471. PubMed PMC
Lupu C., Patel M. M., and Lupu F.. 2021. Insights into the Functional Role of ADTRP (Androgen-Dependent TFPI-Regulating Protein) in Health and Disease. Int. J. Mol. Sci. 22. PubMed PMC
Luo C., Pook E., Tang B., Zhang W., Li S., Leineweber K., Cheung S. H., Chen Q., Bechem M., Hu J. S., Laux V., and Wang Q. K.. 2017. Androgen inhibits key atherosclerotic processes by directly activating ADTRP transcription. Biochim Biophys Acta Mol Basis Dis 1863: 2319–2332. PubMed PMC
Patel M. M., Behar A. R., Silasi R., Regmi G., Sansam C. L., Keshari R. S., Lupu F., and Lupu C.. 2018. Role of ADTRP (Androgen-Dependent Tissue Factor Pathway Inhibitor Regulating Protein) in Vascular Development and Function. J Am Heart Assoc 7: e010690. PubMed PMC
Paluchova V., Vik A., Cajka T., Brezinova M., Brejchova K., Bugajev V., Draberova L., Draber P., Buresova J., Kroupova P., Bardova K., Rossmeisl M., Kopecky J., Hansen T. V., and Kuda O.. 2020. Triacylglycerol-Rich Oils of Marine Origin are Optimal Nutrients for Induction of Polyunsaturated Docosahexaenoic Acid Ester of Hydroxy Linoleic Acid (13-DHAHLA) with Anti-Inflammatory Properties in Mice. Mol. Nutr. Food Res. 64: e1901238. PubMed
Brezinova M., Kuda O., Hansikova J., Rombaldova M., Balas L., Bardova K., Durand T., Rossmeisl M., Cerna M., Stranak Z., and Kopecky J.. 2018. Levels of palmitic acid ester of hydroxystearic acid (PAHSA) are reduced in the breast milk of obese mothers. Biochim Biophys Acta Mol Cell Biol Lipids 1863: 126–131. PubMed
Cajka T., Smilowitz J. T., and Fiehn O.. 2017. Validating Quantitative Untargeted Lipidomics Across Nine Liquid Chromatography-High-Resolution Mass Spectrometry Platforms. Anal. Chem. 89: 12360–12368. PubMed
Tsugawa H., Cajka T., Kind T., Ma Y., Higgins B., Ikeda K., Kanazawa M., VanderGheynst J., Fiehn O., and Arita M.. 2015. MS-DIAL: data-independent MS/MS deconvolution for comprehensive metabolome analysis. Nat Methods 12: 523–526. PubMed PMC
Syed I., Lee J., Peroni O. D., Yore M. M., Moraes-Vieira P. M., Santoro A., Wellenstein K., Smith U., McGraw T. E., Saghatelian A., and Kahn B. B.. 2018. Methodological Issues in Studying PAHSA Biology: Masking PAHSA Effects. Cell Metab. 28: 543–546. PubMed PMC
Kuda O. 2018. On the Complexity of PAHSA Research. Cell Metab. 28: 541–542. PubMed
Kuda O., Brezinova M., Silhavy J., Landa V., Zidek V., Dodia C., Kreuchwig F., Vrbacky M., Balas L., Durand T., Hubner N., Fisher A. B., Kopecky J., and Pravenec M.. 2018. Nrf2-Mediated Antioxidant Defense and Peroxiredoxin 6 Are Linked to Biosynthesis of Palmitic Acid Ester of 9-Hydroxystearic Acid. Diabetes 67: 1190–1199. PubMed PMC
Brezinova M., Cajka T., Oseeva M., Stepan M., Dadova K., Rossmeislova L., Matous M., Siklova M., Rossmeisl M., and Kuda O.. 2020. Exercise training induces insulin-sensitizing PAHSAs in adipose tissue of elderly women. BBA MCBL 1865: 158576. PubMed
Pang Z., Chong J., Zhou G., de Lima Morais D. A., Chang L., Barrette M., Gauthier C., Jacques P. E., Li S., and Xia J.. 2021. MetaboAnalyst 5.0: narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 49: W388–W396. PubMed PMC
Sievert C. 2020. Interactive Web-Based Data Visualization with R, plotly, and shiny Chapman and Hall/CRC, Florida.
Lex A., Gehlenborg N., Strobelt H., Vuillemot R., and Pfister H.. 2014. UpSet: Visualization of Intersecting Sets. IEEE Trans Vis Comput Graph 20: 1983–1992. PubMed PMC
Vondrackova M., Kopczynski D., Hoffmann N., and Kuda O.. 2023. LORA, Lipid Over-Representation Analysis Based on Structural Information. Anal. Chem. 95: 12600–12604. PubMed PMC
Emont M. P., Jacobs C., Essene A. L., Pant D., Tenen D., Colleluori G., Di Vincenzo A., Jorgensen A. M., Dashti H., Stefek A., McGonagle E., Strobel S., Laber S., Agrawal S., Westcott G. P., Kar A., Veregge M. L., Gulko A., Srinivasan H., Kramer Z., De Filippis E., Merkel E., Ducie J., Boyd C. G., Gourash W., Courcoulas A., Lin S. J., Lee B. T., Morris D., Tobias A., Khera A. V., Claussnitzer M., Pers T. H., Giordano A., Ashenberg O., Regev A., Tsai L. T., and Rosen E. D.. 2022. A single-cell atlas of human and mouse white adipose tissue. Nature 603: 926–933. PubMed PMC
Tarhan L., Bistline J., Chang J., Galloway B., Hanna E., and Weitz E.. 2023. Single Cell Portal: an interactive home for single-cell genomics data. bioRxiv: 2023.2007.2013.548886.
Zhu Q. F., Yan J. W., Ni J., and Feng Y. Q.. 2020. FAHFA footprint in the visceral fat of mice across their lifespan. Biochim Biophys Acta Mol Cell Biol Lipids 1865: 158639. PubMed
Kellerer T., Kleigrewe K., Brandl B., Hofmann T., Hauner H., and Skurk T.. 2021. Fatty Acid Esters of Hydroxy Fatty Acids (FAHFAs) Are Associated With Diet, BMI, and Age. Front Nutr 8: 691401. PubMed PMC
Hammarstedt A., Syed I., Vijayakumar A., Eliasson B., Gogg S., Kahn B. B., and Smith U.. 2018. Adipose tissue dysfunction is associated with low levels of the novel Palmitic Acid Hydroxystearic Acids. Sci. Rep. 8: 15757. PubMed PMC
Li J., Papadopoulos V., and Vihma V.. 2015. Steroid biosynthesis in adipose tissue. Steroids 103: 89–104. PubMed
Blouin K., Nadeau M., Mailloux J., Daris M., Lebel S., Luu-The V., and Tchernof A.. 2009. Pathways of adipose tissue androgen metabolism in women: depot differences and modulation by adipogenesis. Am. J. Physiol. Endocrinol. Metab. 296: E244–255. PubMed
Nelson A. B., Chow L. S., Dengel D. R., Pan M., Hughey C. C., Han X., Puchalska P., and Crawford P. A.. 2023. Gender-based heterogeneity of FAHFAs in trained runners. bioRxiv. PubMed PMC
Yan S., Santoro A., Niphakis M. J., Pinto A. M., Jacobs C. L., Ahmad R., Suciu R. M., Fonslow B. R., Herbst-Graham R. B., Ngo N., Henry C. L., Herbst D. M., Saghatelian A., Kahn B. B., and Rosen E. D.. 2023. Inflammation causes insulin resistance via interferon regulatory factor 3 (IRF3)-mediated reduction in FAHFA levels. bioRxiv: 2023.2008.2008.552481. PubMed PMC