Novel class of peptides disintegrating biological membranes to aid in the characterization of membrane proteins

. 2024 Apr ; 300 (4) : 107154. [epub] 20240311

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid38479603
Odkazy

PubMed 38479603
PubMed Central PMC11002605
DOI 10.1016/j.jbc.2024.107154
PII: S0021-9258(24)01649-1
Knihovny.cz E-zdroje

Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives. In the present paper, we demonstrate that some amphiphilic peptides structurally mimicking SMA also similarly disintegrate cell membranes. In contrast to the previously used copolymers, the simple peptides are structurally homogeneous. We found that their membrane-disintegrating activity increases with their length (reaching optimum at 24 amino acids) and requires a basic primary structure, that is, (XXD)n, where X represents a hydrophobic amino acid (optimally phenylalanine), D aspartic acid, and n is the number of repeats of these triplets. These peptides may provide opportunities for various well-defined potentially useful modifications in the study of membrane protein biochemistry. Our present results confirm a specific character of membrane raft microdomains.

Zobrazit více v PubMed

Sezgin E., Levental I., Mayor S., Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017;18:361–374. PubMed PMC

Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 2002;83:2693–2701. PubMed PMC

Knowles T.J., Finka R., Smith C., Lin Y.P., Dafforn T., Overduin M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 2009;131:7484–7485. PubMed

Dorr J.M., Scheidelaar S., Koorengevel M.C., Dominguez J.J., Schafer M., van Walree C.A., et al. The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 2016;45:3–21. PubMed PMC

Jamshad M., Charlton J., Lin Y.P., Routledge S.J., Bawa Z., Knowles T.J., et al. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci. Rep. 2015;35 PubMed PMC

Jamshad M., Lin Y.P., Knowles T.J., Parslow R.A., Harris C., Wheatley M., et al. Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem. Soc. Trans. 2011;39:813–818. PubMed

Angelisova P., Ballek O., Sykora J., Benada O., Cajka T., Pokorna J., et al. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. Biochim. Biophys. Acta Biomembr. 2019;1861:130–141. PubMed

Janata M., Cadova E., Angelisova P., Charnavets T., Horejsi V., Raus V. Tailoring butyl methacrylate/methacrylic acid copolymers for the solubilization of membrane proteins: the influence of composition and molecular weight. Macromol. Biosci. 2022;22 PubMed

Logez C., Damian M., Legros C., Dupre C., Guery M., Mary S., et al. Detergent-free isolation of functional G protein-coupled receptors into nanometric lipid particles. Biochemistry. 2016;55:38–48. PubMed

Gulati S., Jamshad M., Knowles T.J., Morrison K.A., Downing R., Cant N., et al. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 2014;461:269–278. PubMed

Swainsbury D.J., Scheidelaar S., van Grondelle R., Killian J.A., Jones M.R. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew. Chem. Int. Ed. Engl. 2014;53:11803–11807. PubMed PMC

Bell A.J., Frankel L.K., Bricker T.M. High yield non-detergent isolation of photosystem I-Light-harvesting chlorophyll II membranes from spinach thylakoids: implications for the organization of the PS I antennae in higher plants. J. Biol. Chem. 2015;290:18429–18437. PubMed PMC

Smirnova I.A., Sjostrand D., Li F., Bjorck M., Schafer J., Ostbye H., et al. Isolation of yeast complex IV in native lipid nanodiscs. Biochim. Biophys. Acta. 2016;1858:2984–2992. PubMed PMC

Brown C.J., Trieber C., Overduin M. Structural biology of endogenous membrane protein assemblies in native nanodiscs. Curr. Opin. Struct. Biol. 2021;69:70–77. PubMed

Harant K., Cajka T., Angelisova P., Pokorna J., Horejsi V. Composition of raft-like cell membrane microdomains resistant to styrene-maleic acid copolymer (SMA) solubilization. Biophys. Chem. 2023;296 PubMed

Janata M., Gupta S., Cadova E., Angelisova P., Krishnarjuna B., Ramamoorthy A., et al. Sulfonated polystyrenes: pH and Mg(2+)-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur. Polym. J. 2023;198 PubMed PMC

Kamilar E., Bariwal J., Zheng W., Ma H., Liang H. SMALPs are not simply nanodiscs: the polymer-to-lipid ratios of fractionated SMALPs underline their heterogeneous nature. Biomacromolecules. 2023;24:1819–1838. PubMed

Krishnarjuna B., Sharma G., Im S.C., Auchus R., Anantharamaiah G.M., Ramamoorthy A. Characterization of nanodisc-forming peptides for membrane protein studies. J. Colloid. Interface. Sci. 2024;653:1402–1414. PubMed PMC

Jin Y.J., Albers M.W., Lane W.S., Bierer B.E., Schreiber S.L., Burakoff S.J. Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc. Natl. Acad. Sci. U. S. A. 1991;88:6677–6681. PubMed PMC

Voisinne G., Gonzalez de Peredo A., Roncagalli R. CD5, an undercover regulator of TCR signaling. Front. Immunol. 2018;9:2900. PubMed PMC

Blythe E.N., Weaver L.C., Brown A., Dekaban G.A. beta2 integrin CD11d/CD18: from expression to an emerging role in staged leukocyte migration. Front. Immunol. 2021;12 PubMed PMC

Muramatsu T. Basigin: a multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin. Ther. Targets. 2012;16:999–1011. PubMed

Zaman S.N., Resek M.E., Robbins S.M. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line. J. Leukoc. Biol. 2008;84:1082–1091. PubMed

Kimberley F.C., Sivasankar B., Paul Morgan B. Alternative roles for CD59. Mol. Immunol. 2007;44:73–81. PubMed

Horejsi V., Zhang W., Schraven B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat. Rev. Immunol. 2004;4:603–616. PubMed

Brown D.A., Rose J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992;68:533–544. PubMed

Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Fiehn O., et al. Exploring the impact of organic solvent quality and unusual adduct formation during LC-MS-based lipidomic profiling. Metabolites. 2023;13:966. PubMed PMC

Sistilli G., Kalendova V., Cajka T., Irodenko I., Bardova K., Oseeva M., et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13:437. PubMed PMC

Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...