Novel class of peptides disintegrating biological membranes to aid in the characterization of membrane proteins
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
38479603
PubMed Central
PMC11002605
DOI
10.1016/j.jbc.2024.107154
PII: S0021-9258(24)01649-1
Knihovny.cz E-zdroje
- Klíčová slova
- leukocyte, lipid raft, lymphocyte, membrane, membrane proteins, peptides,
- MeSH
- buněčná membrána metabolismus chemie MeSH
- buněčné linie MeSH
- lidé MeSH
- maleáty chemie MeSH
- membránové mikrodomény metabolismus chemie MeSH
- membránové proteiny * chemie metabolismus MeSH
- peptidy * chemie MeSH
- polystyreny chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Styrene-maleic acid (SMA) and similar amphiphilic copolymers are known to cut biological membranes into lipid nanoparticles/nanodiscs containing membrane proteins apparently in their relatively native membrane lipid environment. Our previous work demonstrated that membrane raft microdomains resist such disintegration by SMA. The use of SMA in studying membrane proteins is limited by its heterogeneity and the inability to prepare defined derivatives. In the present paper, we demonstrate that some amphiphilic peptides structurally mimicking SMA also similarly disintegrate cell membranes. In contrast to the previously used copolymers, the simple peptides are structurally homogeneous. We found that their membrane-disintegrating activity increases with their length (reaching optimum at 24 amino acids) and requires a basic primary structure, that is, (XXD)n, where X represents a hydrophobic amino acid (optimally phenylalanine), D aspartic acid, and n is the number of repeats of these triplets. These peptides may provide opportunities for various well-defined potentially useful modifications in the study of membrane protein biochemistry. Our present results confirm a specific character of membrane raft microdomains.
Institute of Biotechnology of the Czech Academy of Sciences BIOCEV Vestec Czech Republic
Institute of Microbiology of the Czech Academy of Sciences Prague Czech Republic
Institute of Molecular Genetics of the Czech Academy of Sciences Prague Czech Republic
Institute of Physiology of the Czech Academy of Sciences Prague Czech Republic
Zobrazit více v PubMed
Sezgin E., Levental I., Mayor S., Eggeling C. The mystery of membrane organization: composition, regulation and roles of lipid rafts. Nat. Rev. Mol. Cell Biol. 2017;18:361–374. PubMed PMC
Heerklotz H. Triton promotes domain formation in lipid raft mixtures. Biophys. J. 2002;83:2693–2701. PubMed PMC
Knowles T.J., Finka R., Smith C., Lin Y.P., Dafforn T., Overduin M. Membrane proteins solubilized intact in lipid containing nanoparticles bounded by styrene maleic acid copolymer. J. Am. Chem. Soc. 2009;131:7484–7485. PubMed
Dorr J.M., Scheidelaar S., Koorengevel M.C., Dominguez J.J., Schafer M., van Walree C.A., et al. The styrene-maleic acid copolymer: a versatile tool in membrane research. Eur. Biophys. J. 2016;45:3–21. PubMed PMC
Jamshad M., Charlton J., Lin Y.P., Routledge S.J., Bawa Z., Knowles T.J., et al. G-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent. Biosci. Rep. 2015;35 PubMed PMC
Jamshad M., Lin Y.P., Knowles T.J., Parslow R.A., Harris C., Wheatley M., et al. Surfactant-free purification of membrane proteins with intact native membrane environment. Biochem. Soc. Trans. 2011;39:813–818. PubMed
Angelisova P., Ballek O., Sykora J., Benada O., Cajka T., Pokorna J., et al. The use of styrene-maleic acid copolymer (SMA) for studies on T cell membrane rafts. Biochim. Biophys. Acta Biomembr. 2019;1861:130–141. PubMed
Janata M., Cadova E., Angelisova P., Charnavets T., Horejsi V., Raus V. Tailoring butyl methacrylate/methacrylic acid copolymers for the solubilization of membrane proteins: the influence of composition and molecular weight. Macromol. Biosci. 2022;22 PubMed
Logez C., Damian M., Legros C., Dupre C., Guery M., Mary S., et al. Detergent-free isolation of functional G protein-coupled receptors into nanometric lipid particles. Biochemistry. 2016;55:38–48. PubMed
Gulati S., Jamshad M., Knowles T.J., Morrison K.A., Downing R., Cant N., et al. Detergent-free purification of ABC (ATP-binding-cassette) transporters. Biochem. J. 2014;461:269–278. PubMed
Swainsbury D.J., Scheidelaar S., van Grondelle R., Killian J.A., Jones M.R. Bacterial reaction centers purified with styrene maleic acid copolymer retain native membrane functional properties and display enhanced stability. Angew. Chem. Int. Ed. Engl. 2014;53:11803–11807. PubMed PMC
Bell A.J., Frankel L.K., Bricker T.M. High yield non-detergent isolation of photosystem I-Light-harvesting chlorophyll II membranes from spinach thylakoids: implications for the organization of the PS I antennae in higher plants. J. Biol. Chem. 2015;290:18429–18437. PubMed PMC
Smirnova I.A., Sjostrand D., Li F., Bjorck M., Schafer J., Ostbye H., et al. Isolation of yeast complex IV in native lipid nanodiscs. Biochim. Biophys. Acta. 2016;1858:2984–2992. PubMed PMC
Brown C.J., Trieber C., Overduin M. Structural biology of endogenous membrane protein assemblies in native nanodiscs. Curr. Opin. Struct. Biol. 2021;69:70–77. PubMed
Harant K., Cajka T., Angelisova P., Pokorna J., Horejsi V. Composition of raft-like cell membrane microdomains resistant to styrene-maleic acid copolymer (SMA) solubilization. Biophys. Chem. 2023;296 PubMed
Janata M., Gupta S., Cadova E., Angelisova P., Krishnarjuna B., Ramamoorthy A., et al. Sulfonated polystyrenes: pH and Mg(2+)-insensitive amphiphilic copolymers for detergent-free membrane protein isolation. Eur. Polym. J. 2023;198 PubMed PMC
Kamilar E., Bariwal J., Zheng W., Ma H., Liang H. SMALPs are not simply nanodiscs: the polymer-to-lipid ratios of fractionated SMALPs underline their heterogeneous nature. Biomacromolecules. 2023;24:1819–1838. PubMed
Krishnarjuna B., Sharma G., Im S.C., Auchus R., Anantharamaiah G.M., Ramamoorthy A. Characterization of nanodisc-forming peptides for membrane protein studies. J. Colloid. Interface. Sci. 2024;653:1402–1414. PubMed PMC
Jin Y.J., Albers M.W., Lane W.S., Bierer B.E., Schreiber S.L., Burakoff S.J. Molecular cloning of a membrane-associated human FK506- and rapamycin-binding protein, FKBP-13. Proc. Natl. Acad. Sci. U. S. A. 1991;88:6677–6681. PubMed PMC
Voisinne G., Gonzalez de Peredo A., Roncagalli R. CD5, an undercover regulator of TCR signaling. Front. Immunol. 2018;9:2900. PubMed PMC
Blythe E.N., Weaver L.C., Brown A., Dekaban G.A. beta2 integrin CD11d/CD18: from expression to an emerging role in staged leukocyte migration. Front. Immunol. 2021;12 PubMed PMC
Muramatsu T. Basigin: a multifunctional membrane protein with an emerging role in infections by malaria parasites. Expert Opin. Ther. Targets. 2012;16:999–1011. PubMed
Zaman S.N., Resek M.E., Robbins S.M. Dual acylation and lipid raft association of Src-family protein tyrosine kinases are required for SDF-1/CXCL12-mediated chemotaxis in the Jurkat human T cell lymphoma cell line. J. Leukoc. Biol. 2008;84:1082–1091. PubMed
Kimberley F.C., Sivasankar B., Paul Morgan B. Alternative roles for CD59. Mol. Immunol. 2007;44:73–81. PubMed
Horejsi V., Zhang W., Schraven B. Transmembrane adaptor proteins: organizers of immunoreceptor signalling. Nat. Rev. Immunol. 2004;4:603–616. PubMed
Brown D.A., Rose J.K. Sorting of GPI-anchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell. 1992;68:533–544. PubMed
Cajka T., Hricko J., Rudl Kulhava L., Paucova M., Novakova M., Fiehn O., et al. Exploring the impact of organic solvent quality and unusual adduct formation during LC-MS-based lipidomic profiling. Metabolites. 2023;13:966. PubMed PMC
Sistilli G., Kalendova V., Cajka T., Irodenko I., Bardova K., Oseeva M., et al. Krill oil supplementation reduces exacerbated hepatic steatosis induced by thermoneutral housing in mice with diet-induced obesity. Nutrients. 2021;13:437. PubMed PMC
Tsugawa H., Ikeda K., Takahashi M., Satoh A., Mori Y., Uchino H., et al. A lipidome atlas in MS-DIAL 4. Nat. Biotechnol. 2020;38:1159–1163. PubMed