A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37508495
PubMed Central
PMC10378481
DOI
10.3390/cells12141830
PII: cells12141830
Knihovny.cz E-zdroje
- Klíčová slova
- Akt kinase, early embryo, mRNA translation, mTORC1, meiosis, mitosis, oocyte, spindle,
- MeSH
- 1-fosfatidylinositol-3-kinasa metabolismus MeSH
- embryonální vývoj MeSH
- fosfatidylinositol-3-kinasy * metabolismus MeSH
- fosfoproteiny metabolismus MeSH
- fosforylace genetika MeSH
- oocyty metabolismus MeSH
- oogeneze MeSH
- protein-serin-threoninkinasy metabolismus MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- savci metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- 1-fosfatidylinositol-3-kinasa MeSH
- fosfatidylinositol-3-kinasy * MeSH
- fosfoproteiny MeSH
- protein-serin-threoninkinasy MeSH
- protoonkogenní proteiny c-akt * MeSH
A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.
Zobrazit více v PubMed
Tanaka M., Kihara M., Hennebold J.D., Eppig J.J., Viveiros M.M., Emery B.R., Carrell D.T., Kirkman N.J., Meczekalski B., Zhou J., et al. H1FOO Is Coupled to the Initiation of Oocytic Growth. Biol. Reprod. 2005;72:135–142. doi: 10.1095/biolreprod.104.032474. PubMed DOI
Alizadeh Z., Kageyama S.-I., Aoki F. Degradation of maternal mRNA in mouse embryos: Selective degradation of specific mRNAs after fertilization. Mol. Reprod. Dev. 2005;72:281–290. doi: 10.1002/mrd.20340. PubMed DOI
Richter J.D., Lasko P. Translational Control in Oocyte Development. Cold Spring Harb. Perspect. Biol. 2011;3:a002758. doi: 10.1101/cshperspect.a002758. PubMed DOI PMC
Bianchi E., Sette C. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg. Genes. 2011;2:345–359. doi: 10.3390/genes2020345. PubMed DOI PMC
Manning B.D., Cantley L.C. AKT/PKB Signaling: Navigating Downstream. Cell. 2007;129:1261–1274. doi: 10.1016/j.cell.2007.06.009. PubMed DOI PMC
Topisirovic I., Sonenberg N. mRNA translation and energy metabolism in cancer: The role of the MAPK and mTORC1 pathways. Cold Spring Harb. Symp. Quant. Biol. 2011;76:355–367. doi: 10.1101/sqb.2011.76.010785. PubMed DOI
Kandel E.S., Skeen J., Majewski N., Di Cristofano A., Pandolfi P.P., Feliciano C.S., Gartel A., Hay N. Activation of Akt/Protein Kinase B Overcomes a G2/M Cell Cycle Checkpoint Induced by DNA Damage. Mol. Cell. Biol. 2002;22:7831–7841. doi: 10.1128/MCB.22.22.7831-7841.2002. PubMed DOI PMC
Nogueira V., Hay N. Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013;19:4309–4314. doi: 10.1158/1078-0432.CCR-12-1424. PubMed DOI PMC
Hanada M., Feng J., Hemmings B.A. Structure, regulation and function of PKB/AKT—A major therapeutic target. Biochim. Biophys. Acta-Proteins Proteom. 2004;1697:3–16. doi: 10.1016/j.bbapap.2003.11.009. PubMed DOI
Hollander M.C., Maier C.R., Hobbs E.A., Ashmore A.R., Linnoila R.I., Dennis P.A. Akt1 deletion prevents lung tumorigenesis by mutant K-ras. Oncogene. 2011;30:1812–1821. doi: 10.1038/onc.2010.556. PubMed DOI PMC
Manning B.D., Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169:381–405. doi: 10.1016/j.cell.2017.04.001. PubMed DOI PMC
Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 1998;10:262–267. doi: 10.1016/S0955-0674(98)80149-X. PubMed DOI
Woodgett J.R. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 2005;17:150–157. doi: 10.1016/j.ceb.2005.02.010. PubMed DOI
Ebner M., Lučić I., Leonard T.A., Yudushkin I. PI(3,4,5)P3 Engagement Restricts Akt Activity to Cellular Membranes. Mol. Cell. 2017;65:416–431.e6. doi: 10.1016/j.molcel.2016.12.028. PubMed DOI
Calleja V., Alcor D., Laguerre M., Park J., Vojnovic B., Hemmings B.A., Downward J., Parker P.J., Larijani B. Intramolecular and Intermolecular Interactions of Protein Kinase B Define Its Activation In Vivo. PLoS Biol. 2007;5:e95. doi: 10.1371/journal.pbio.0050095. PubMed DOI PMC
Hers I., Vincent E.E., Tavaré J.M. Akt signalling in health and disease. Cell. Signal. 2011;23:1515–1527. doi: 10.1016/j.cellsig.2011.05.004. PubMed DOI
Lietzke S.E., Bose S., Cronin T., Klarlund J., Chawla A., Czech M.P., Lambright D.G. Structural Basis of 3-Phosphoinositide Recognition by Pleckstrin Homology Domains. Mol. Cell. 2000;6:385–394. doi: 10.1016/S1097-2765(00)00038-1. PubMed DOI
Bu L., Wang H., Pan J., Chen L., Xing F., Wu J., Li S., Guo D. PTEN suppresses tumorigenesis by directly dephosphorylating Akt. Signal Transduct. Target. Ther. 2021;6:262. doi: 10.1038/s41392-021-00571-x. PubMed DOI PMC
Maehama T., Dixon J.E. The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidylinositol 3,4,5-Trisphosphate. J. Biol. Chem. 1998;273:13375–13378. doi: 10.1074/jbc.273.22.13375. PubMed DOI
Gao T., Furnari F., Newton A.C. PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth. Mol. Cell. 2005;18:13–24. doi: 10.1016/j.molcel.2005.03.008. PubMed DOI
Brognard J., Sierecki E., Gao T., Newton A.C. PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Mol. Cell. 2007;25:917–931. doi: 10.1016/j.molcel.2007.02.017. PubMed DOI
Martelli A.M., Tabellini G., Bressanin D., Ognibene A., Goto K., Cocco L., Evangelisti C. The emerging multiple roles of nuclear Akt. Biochim. Biophys. Acta-Mol. Cell Res. 2012;1823:2168–2178. doi: 10.1016/j.bbamcr.2012.08.017. PubMed DOI
Cheung M., Testa J.R. Diverse Mechanisms of AKT Pathway Activation in Human Malignancy. Curr. Cancer Drug Targets. 2013;13:234–244. doi: 10.2174/1568009611313030002. PubMed DOI PMC
Baldin V., Theis-Febvre N., Benne C., Froment C., Cazales M., Burlet-Schiltz O., Ducommun B. PKB/Akt phosphorylates the CDC25B phosphatase and regulates its intracellular localisation. Biol. Cell. 2003;95:547–554. doi: 10.1016/j.biolcel.2003.08.001. PubMed DOI
Ornelas I.M., Silva T.M., Fragel-Madeira L., Ventura A.L.M. Inhibition of PI3K/Akt Pathway Impairs G2/M Transition of Cell Cycle in Late Developing Progenitors of the Avian Embryo Retina. PLoS ONE. 2013;8:e53517. doi: 10.1371/journal.pone.0053517. PubMed DOI PMC
Gao N., Flynn D.C., Zhang Z., Zhong X.-S., Walker V., Liu K.J., Shi X., Jiang B.-H. G1 cell cycle progression and the expression of G 1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 2004;287:C281–C291. doi: 10.1152/ajpcell.00422.2003. PubMed DOI
Liang J., Slingerland J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2:339–345. doi: 10.4161/cc.2.4.433. PubMed DOI
Maddika S., Ande S.R., Wiechec E., Hansen L.L., Wesselborg S., Los M. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J. Cell Sci. 2008;121:979–988. doi: 10.1242/jcs.009530. PubMed DOI PMC
Stern A.D., Smith G.R., Santos L.C., Sarmah D., Zhang X., Lu X., Iuricich F., Pandey G., Iyengar R., Birtwistle M.R. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci. Rep. 2022;12:18077. doi: 10.1038/s41598-022-23071-6. PubMed DOI PMC
Rashid M.S., Mazur T., Ji W., Liu S.T., Taylor W.R. Analysis of the role of GSK3 in the mitotic checkpoint. Sci. Rep. 2018;8:14259. doi: 10.1038/s41598-018-32435-w. PubMed DOI PMC
Leonard M., Hill N., Bubulya P., Kadakia M. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle. 2013;12:1406–1415. doi: 10.4161/cc.24516. PubMed DOI PMC
Takegahara N., Kim H., Mizuno H., Sakaue-Sawano A., Miyawaki A., Tomura M., Kanagawa O., Ishii M., Choi Y. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts. J. Biol. Chem. 2016;291:3439–3454. doi: 10.1074/jbc.M115.677427. PubMed DOI PMC
Maryu G., Matsuda M., Aoki K. Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression. Cell Struct. Funct. 2016;41:81–92. doi: 10.1247/csf.16007. PubMed DOI
Adhikari D., Zheng W., Shen Y., Gorre N., Ning Y., Halet G., Kaldis P., Liu K. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 2012;21:2476–2484. doi: 10.1093/hmg/dds061. PubMed DOI
Diril M.K., Ratnacaram C.K., Padmakumar V.C., Du T., Wasser M., Coppola V., Tessarollo L., Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:3826–3831. doi: 10.1073/pnas.1115201109. PubMed DOI PMC
Katayama K., Fujita N., Tsuruo T. Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell Cycle Progression at G2/M Transition. Mol. Cell. Biol. 2005;25:5725–5737. doi: 10.1128/MCB.25.13.5725-5737.2005. PubMed DOI PMC
Wakefield J.G., Stephens D.J., Tavaré J.M. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J. Cell Sci. 2003;116:637–646. doi: 10.1242/jcs.00273. PubMed DOI
Kimura T., Tomooka M., Yamano N., Murayama K., Matoba S., Umehara H., Kanai Y., Nakano T. AKT signaling promotes derivation of embryonic germ cells from primordial germ cells. Development. 2008;135:869–879. doi: 10.1242/dev.013474. PubMed DOI
Tomek W., Smiljakovic T. Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine oocytes. Reproduction. 2005;130:423–430. doi: 10.1530/rep.1.00754. PubMed DOI
Kalous J., Kubelka M., Šolc P., Šušor A., Motlík J. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes. Reproduction. 2009;138:645–654. doi: 10.1530/REP-08-0461. PubMed DOI
Reddy P., Adhikari D., Zheng W., Liang S., Hämäläinen T., Tohonen V., Ogawa W., Noda T., Volarevic S., Huhtaniemi I., et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum. Mol. Genet. 2009;18:2813–2824. doi: 10.1093/hmg/ddp217. PubMed DOI
Han S.J., Vaccari S., Nedachi T., Andersen C.B., Kovacina K.S., Roth R.A., Conti M. Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO J. 2006;25:5716–5725. doi: 10.1038/sj.emboj.7601431. PubMed DOI PMC
Kalous J., Solc P., Baran V., Kubelka M., Schultz R.M., Motlik J. PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol. Cell. 2006;98:111–123. doi: 10.1042/BC20050020. PubMed DOI
Newhall K.J., Criniti A.R., Cheah C.S., Smith K.C., Kafer K.E., Burkart A.D., McKnight G.S. Dynamic Anchoring of PKA Is Essential during Oocyte Maturation. Curr. Biol. 2006;16:321–327. doi: 10.1016/j.cub.2005.12.031. PubMed DOI PMC
Hiraoka D., Aono R., Hanada S., Okumura E., Kishimoto T. Two novel competing pathways establish the threshold for cyclin B-Cdk1 activation at the meiotic G2/M transition. J. Cell Sci. 2016;129:3153–3166. doi: 10.1242/jcs.182170. PubMed DOI PMC
Okumura E., Fukuhara T., Yoshida H., Hanada S., Kozutsumi R., Mori M., Tachibana K., Kishimoto T. Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition. Nat. Cell Biol. 2002;4:111–116. doi: 10.1038/ncb741. PubMed DOI
Alcaráz L.P., Prellwitz L., Alves G., Souza-Fabjan J.M.G., Dias A.J.B. Role of phosphoinositide 3-kinase/ protein kinase B/ phosphatase and tensin homologue (PI3K/AKT/PTEN) pathway inhibitors during in vitro maturation of mammalian oocytes on in vitro embryo production: A systematic review. Theriogenology. 2022;189:42–52. doi: 10.1016/j.theriogenology.2022.06.009. PubMed DOI
Hoshino Y., Sato E. Protein kinase B (PKB/Akt) is required for the completion of meiosis in mouse oocytes. Dev. Biol. 2008;314:215–223. doi: 10.1016/j.ydbio.2007.12.005. PubMed DOI
Andersen C.B., Roth R.A., Conti M. Protein Kinase B/Akt Induces Resumption of Meiosis in Xenopus Oocytes. J. Biol. Chem. 1998;273:18705–18708. doi: 10.1074/jbc.273.30.18705. PubMed DOI
Cecconi S., Rossi G., Santilli A., Di Stefano L., Hoshino Y., Sato E., Palmerini M.G., Macchiarelli G. Akt expression in mouse oocytes matured in vivo and in vitro. Reprod. Biomed. Online. 2010;20:35–41. doi: 10.1016/j.rbmo.2009.10.011. PubMed DOI
Procházka R., Bartková A., Němcová L., Murín M., Gad A., Marcollová K., Kinterová V., Lucas-Hahn A., Laurinčík J. The Role of MAPK3/1 and AKT in the Acquisition of High Meiotic and Developmental Competence of Porcine Oocytes Cultured In Vitro in FLI Medium. Int. J. Mol. Sci. 2021;22:11148. doi: 10.3390/ijms222011148. PubMed DOI PMC
Das D., Khan P.P., Maitra S. Participation of PI3-kinase/Akt signalling in insulin stimulation of p34cdc2 activation in zebrafish oocyte: Phosphodiesterase 3 as a potential downstream target. Mol. Cell. Endocrinol. 2013;374:46–55. doi: 10.1016/j.mce.2013.04.007. PubMed DOI
Schuh M., Ellenberg J. Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes. Cell. 2007;130:484–498. doi: 10.1016/j.cell.2007.06.025. PubMed DOI
Wu T., Dong J., Fu J., Kuang Y., Chen B., Gu H., Luo Y., Gu R., Zhang M., Li W., et al. The mechanism of acentrosomal spindle assembly in human oocytes. Science. 2022;378:eabq7361. doi: 10.1126/science.abq7361. PubMed DOI
Clift D., Schuh M. Restarting life: Fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 2013;14:549–562. doi: 10.1038/nrm3643. PubMed DOI PMC
Gruss O. Animal Female Meiosis: The Challenges of Eliminating Centrosomes. Cells. 2018;7:73. doi: 10.3390/cells7070073. PubMed DOI PMC
Tsuruta F., Masuyama N., Gotoh Y. The Phosphatidylinositol 3-Kinase (PI3K)-Akt Pathway Suppresses Bax Translocation to Mitochondria. J. Biol. Chem. 2002;277:14040–14047. doi: 10.1074/jbc.M108975200. PubMed DOI
Jiao Y., Li J., Zhu S., Ahmed J.Z., Li M., Shi D., Huang B. PI3K inhibitor reduces in vitro maturation and developmental competence of porcine oocytes. Theriogenology. 2020;157:432–439. doi: 10.1016/j.theriogenology.2020.08.019. PubMed DOI
De Felici M., Klinger F.G. PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int. J. Mol. Sci. 2021;22:9838. doi: 10.3390/ijms22189838. PubMed DOI PMC
Li X., Chen H., Zhang Z., Xu D., Duan J., Li X., Yang L., Hua R., Cheng J., Li Q. Isorhamnetin Promotes Estrogen Biosynthesis and Proliferation in Porcine Granulosa Cells via the PI3K/Akt Signaling Pathway. J. Agric. Food Chem. 2021;69:6535–6542. doi: 10.1021/acs.jafc.1c01543. PubMed DOI
Makker A., Goel M.M., Mahdi A.A. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: An update. J. Mol. Endocrinol. 2014;53:R103–R118. doi: 10.1530/JME-14-0220. PubMed DOI
Alberico H.C., Woods D.C. Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Front. Physiol. 2022;12:2566. doi: 10.3389/fphys.2021.800739. PubMed DOI PMC
Huang Z., Wells D. The human oocyte and cumulus cells relationship: New insights from the cumulus cell transcriptome. MHR Basic Sci. Reprod. Med. 2010;16:715–725. doi: 10.1093/molehr/gaq031. PubMed DOI
Goto M., Iwase A., Ando H., Kurotsuchi S., Harata T., Kikkawa F. PTEN and Akt expression during growth of human ovarian follicles. J. Assist. Reprod. Genet. 2007;24:541–546. doi: 10.1007/s10815-007-9156-3. PubMed DOI PMC
Brown C., LaRocca J., Pietruska J., Ota M., Anderson L., Duncan Smith S., Weston P., Rasoulpour T., Hixon M.L. Subfertility Caused by Altered Follicular Development and Oocyte Growth in Female Mice Lacking PKBalpha/Akt11. Biol. Reprod. 2010;82:246–256. doi: 10.1095/biolreprod.109.077925. PubMed DOI PMC
Bezerra M.É.S., Barberino R.S., Menezes V.G., Gouveia B.B., Macedo T.J.S., Santos J.M.S., Monte A.P.O., Barros V.R.P., Matos M.H.T. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod. Fertil. Dev. 2018;30:1503. doi: 10.1071/RD17332. PubMed DOI
Alam M.H., Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod. Med. Biol. 2020;19:13–23. doi: 10.1002/rmb2.12292. PubMed DOI PMC
Alam H., Maizels E.T., Park Y., Ghaey S., Feiger Z.J., Chandel N.S., Hunzicker-Dunn M. Follicle-stimulating Hormone Activation of Hypoxia-inducible Factor-1 by the Phosphatidylinositol 3-Kinase/AKT/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (mTOR) Pathway Is Necessary for Induction of Select Protein Markers of Follic. J. Biol. Chem. 2004;279:19431–19440. doi: 10.1074/jbc.M401235200. PubMed DOI PMC
Zeleznik A.J., Saxena D., Little-Ihrig L. Protein Kinase B Is Obligatory for Follicle-Stimulating Hormone-Induced Granulosa Cell Differentiation. Endocrinology. 2003;144:3985–3994. doi: 10.1210/en.2003-0293. PubMed DOI
Bencomo E., Pérez R., Arteaga M.-F., Acosta E., Peña O., Lopez L., Avila J., Palumbo A. Apoptosis of cultured granulosa-lutein cells is reduced by insulin-like growth factor I and may correlate with embryo fragmentation and pregnancy rate. Fertil. Steril. 2006;85:474–480. doi: 10.1016/j.fertnstert.2005.08.014. PubMed DOI
Quirk S.M., Cowan R.G., Harman R.M., Hu C.-L., Porter D.A. Ovarian follicular growth and atresia: The relationship between cell proliferation and survival. J. Anim. Sci. 2004;82((Suppl. 13)):E40–E52. doi: 10.2527/2004.8213_supplE40x. PubMed DOI
Hu C.-L., Cowan R.G., Harman R.M., Quirk S.M. Cell Cycle Progression and Activation of Akt Kinase Are Required for Insulin-Like Growth Factor I-Mediated Suppression of Apoptosis in Granulosa Cells. Mol. Endocrinol. 2004;18:326–338. doi: 10.1210/me.2003-0178. PubMed DOI
Johnson A.L., Bridgham J.T., Swenson J.A. Activation of the Akt/Protein Kinase B Signaling Pathway Is Associated with Granulosa Cell Survival1. Biol. Reprod. 2001;64:1566–1574. doi: 10.1095/biolreprod64.5.1566. PubMed DOI
Demiray S.B., Goker E.N.T., Tavmergen E., Yilmaz O., Calimlioglu N., Soykam H.O., Oktem G., Sezerman U. Differential gene expression analysis of human cumulus cells. Clin. Exp. Reprod. Med. 2019;46:76–86. doi: 10.5653/cerm.2019.46.2.76. PubMed DOI PMC
Turathum B., Gao E.-M., Chian R.-C. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells. 2021;10:2292. doi: 10.3390/cells10092292. PubMed DOI PMC
Shimada M., Ito J., Yamashita Y., Okazaki T., Isobe N. Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J. Endocrinol. 2003;179:25–34. doi: 10.1677/joe.0.1790025. PubMed DOI
Coticchio G., Sereni E., Serrao L., Mazzone S., Iadarola I., Borini A. What criteria for the definition of oocyte quality? Ann. N. Y. Acad. Sci. 2004;1034:132–144. doi: 10.1196/annals.1335.016. PubMed DOI
Artini P.G., Tatone C., Sperduti S., D’Aurora M., Franchi S., Di Emidio G., Ciriminna R., Vento M., Di Pietro C., Stuppia L., et al. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1,3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum. Reprod. 2017;32:2474–2484. doi: 10.1093/humrep/dex320. PubMed DOI PMC
Haghighat N., Van Winkle L.J. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system gly. J. Exp. Zool. 1990;253:71–82. doi: 10.1002/jez.1402530110. PubMed DOI
El-Hayek S., Yang Q., Abbassi L., FitzHarris G., Clarke H.J. Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication. Curr. Biol. 2018;28:1124–1131.e3. doi: 10.1016/j.cub.2018.02.039. PubMed DOI PMC
Baena V., Terasaki M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 2019;9:1262. doi: 10.1038/s41598-018-37766-2. PubMed DOI PMC
Perkins G., Goodenough D., Sosinsky G. Three-Dimensional Structure of the Gap Junction Connexon. Biophys. J. 1997;72:533–544. doi: 10.1016/S0006-3495(97)78693-4. PubMed DOI PMC
Fang Y., Shang W., Wei D.-L., Zeng S.-M. Cited2 protein level in cumulus cells is a biomarker for human embryo quality and pregnancy outcome in one in vitro fertilization cycle. Fertil. Steril. 2016;105:1351–1359.e4. doi: 10.1016/j.fertnstert.2015.12.137. PubMed DOI
Gatta V., Tatone C., Ciriminna R., Vento M., Franchi S., D’Aurora M., Sperduti S., Cela V., Borzì P., Palermo R., et al. Gene expression profiles of cumulus cells obtained from women treated with recombinant human luteinizing hormone + recombinant human follicle-stimulating hormone or highly purified human menopausal gonadotropin versus recombinant human follicle-stimulatin. Fertil. Steril. 2013;99:2000–2008.e1. doi: 10.1016/j.fertnstert.2013.01.150. PubMed DOI
Winterhager E., Kidder G.M. Gap junction connexins in female reproductive organs: Implications for women’s reproductive health. Hum. Reprod. Updat. 2015;21:340–352. doi: 10.1093/humupd/dmv007. PubMed DOI
Dunn C.A., Lampe P.D. Injury-triggered Akt phosphorylation of Cx43: A ZO-1-driven molecular switch that regulates gap junction size. J. Cell Sci. 2013;127:455–464. doi: 10.1242/jcs.142497. PubMed DOI PMC
Shimada M., Terada T. Phosphorylation of Connexin-43, Gap Junctional Protein, in Cumulus Cells is Regulated by Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase during In Vitro Meiotic Resumption in Porcine Follicular Oocytes. J. Mamm. Ova Res. 1999;16:37–42. doi: 10.1274/jmor.16.37. DOI
Shimada M., Terada T. Phosphatidylinositol 3-kinase in cumulus cells and oocytes is responsible for activation of oocyte mitogen-activated protein kinase during meiotic progression beyond the meiosis I stage in pigs. Biol. Reprod. 2001;64:1106–1114. doi: 10.1095/biolreprod64.4.1106. PubMed DOI
Camaioni A., Salustri A., Yanagishita M., Hascall V.C. Proteoglycans and Proteins in the Extracellular Matrix of Mouse Cumulus Cell–Oocyte Complexes. Arch. Biochem. Biophys. 1996;325:190–198. doi: 10.1006/abbi.1996.0024. PubMed DOI
Nagyova E., Scsukova S., Kalous J., Mlynarcikova A. Effects of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes. Domest. Anim. Endocrinol. 2014;48:7–14. doi: 10.1016/j.domaniend.2014.01.003. PubMed DOI
Nagyova E., Kalous J., Nemcova L. Increased expression of pentraxin 3 after in vivo and in vitro stimulation with gonadotropins in porcine oocyte-cumulus complexes and granulosa cells. Domest. Anim. Endocrinol. 2016;56:29–35. doi: 10.1016/j.domaniend.2016.01.004. PubMed DOI
Němcová L., Nagyová E., Petlach M., Tománek M., Procházka R. Molecular Mechanisms of Insulin-Like Growth Factor 1 Promoted Synthesis and Retention of Hyaluronic Acid in Porcine Oocyte-Cumulus Complexes1. Biol. Reprod. 2007;76:1016–1024. doi: 10.1095/biolreprod.106.057927. PubMed DOI
Procházka R., Petlach M., Nagyová E., Němcová L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: Comparison with gonadotropins. Reproduction. 2011;141:425–435. doi: 10.1530/REP-10-0418. PubMed DOI
Blaha M., Prochazka R., Adamkova K., Nevoral J., Nemcova L. Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: The role of protein kinase B. Prostaglandins Other Lipid Mediat. 2017;130:38–46. doi: 10.1016/j.prostaglandins.2017.04.001. PubMed DOI
Guo J., Shi L., Gong X., Jiang M., Yin Y., Zhang X., Yin H., Li H., Emori C., Sugiura K., et al. Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J. Cell Sci. 2016;129:3091–3103. doi: 10.1242/jcs.182642. PubMed DOI PMC
Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science. 2005;307:1098–1101. doi: 10.1126/science.1106148. PubMed DOI
Jacinto E., Loewith R., Schmidt A., Lin S., Rüegg M.A., Hall A., Hall M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004;6:1122–1128. doi: 10.1038/ncb1183. PubMed DOI
Starkman B.G., Cravero J.D., Delcarlo M., Loeser R.F. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem. J. 2005;389:723–729. doi: 10.1042/BJ20041636. PubMed DOI PMC
Varma S., Shrivastav A., Changela S., Khandelwal R.L. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity. Exp. Cell Res. 2008;314:1281–1291. doi: 10.1016/j.yexcr.2007.12.019. PubMed DOI
Kapp L.D., Lorsch J.R. The Molecular Mechanics of Eukaryotic Translation. Annu. Rev. Biochem. 2004;73:657–704. doi: 10.1146/annurev.biochem.73.030403.080419. PubMed DOI
Dowling R.J.O., Topisirovic I., Fonseca B.D., Sonenberg N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim. Biophys. Acta-Proteins Proteom. 2010;1804:433–439. doi: 10.1016/j.bbapap.2009.12.001. PubMed DOI
Nitta N., Nakasu S., Shima A., Nozaki K. mTORC1 signaling in primary central nervous system lymphoma. Surg. Neurol. Int. 2016;7:475. doi: 10.4103/2152-7806.185781. PubMed DOI PMC
Schmelzle T., Hall M.N. TOR, a Central Controller of Cell Growth. Cell. 2000;103:253–262. doi: 10.1016/S0092-8674(00)00117-3. PubMed DOI
Gingras A.-C., Kennedy S.G., O’Leary M.A., Sonenberg N., Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12:502–513. doi: 10.1101/gad.12.4.502. PubMed DOI PMC
Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009;10:307–318. doi: 10.1038/nrm2672. PubMed DOI
Hsieh A.C., Ruggero D. Targeting Eukaryotic Translation Initiation Factor 4E (eIF4E) in Cancer. Clin. Cancer Res. 2010;16:4914–4920. doi: 10.1158/1078-0432.CCR-10-0433. PubMed DOI PMC
Kovacina K.S., Park G.Y., Bae S.S., Guzzetta A.W., Schaefer E., Birnbaum M.J., Roth R.A. Identification of a Proline-rich Akt Substrate as a 14-3-3 Binding Partner. J. Biol. Chem. 2003;278:10189–10194. doi: 10.1074/jbc.M210837200. PubMed DOI
Wang L., Harris T.E., Roth R.A., Lawrence J.C. PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding. J. Biol. Chem. 2007;282:20036–20044. doi: 10.1074/jbc.M702376200. PubMed DOI
Manning B.D., Cantley L.C. United at last: The tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem. Soc. Trans. 2003;31:573–578. doi: 10.1042/bst0310573. PubMed DOI
Inoki K., Li Y., Zhu T., Wu J., Guan K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002;4:648–657. doi: 10.1038/ncb839. PubMed DOI
Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Curr. Biol. 2003;13:1259–1268. doi: 10.1016/S0960-9822(03)00506-2. PubMed DOI
Cohen P., Frame S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2001;2:769–776. doi: 10.1038/35096075. PubMed DOI
Wang X. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 2001;20:4370–4379. doi: 10.1093/emboj/20.16.4370. PubMed DOI PMC
Guo J., Zhang T., Guo Y., Sun T., Li H., Zhang X., Yin H., Cao G., Yin Y., Wang H., et al. Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc. Natl. Acad. Sci. USA. 2018;115:E5326–E5333. doi: 10.1073/pnas.1800352115. PubMed DOI PMC
Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR–eIF4F pathway. Nat. Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC
Šušor A., Jelínková L., Karabínová P., Torner H., Tomek W., Kovářová H., Kubelka M. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 2008;75:1716–1725. doi: 10.1002/mrd.20913. PubMed DOI
Kogasaka Y., Hoshino Y., Hiradate Y., Tanemura K., Sato E. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol. Reprod. Dev. 2013;80:334–348. doi: 10.1002/mrd.22166. PubMed DOI
Jansova D., Koncicka M., Tetkova A., Cerna R., Malik R., del Llano E., Kubelka M., Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–939. doi: 10.1080/15384101.2017.1295178. PubMed DOI PMC
El Sheikh M., Mesalam A., Mesalam A.A., Idrees M., Lee K.-L., Kong I.-K. Melatonin Abrogates the Anti-Developmental Effect of the AKT Inhibitor SH6 in Bovine Oocytes and Embryos. Int. J. Mol. Sci. 2019;20:2956. doi: 10.3390/ijms20122956. PubMed DOI PMC
Li Y., Chandrakanthan V., Day M.L., O’Neill C. Direct Evidence for the Action of Phosphatidylinositol (3,4,5)-Trisphosphate-Mediated Signal Transduction in the 2-Cell Mouse Embryo1. Biol. Reprod. 2007;77:813–821. doi: 10.1095/biolreprod.107.060129. PubMed DOI
Jin X.L., Chandrakanthan V., Morgan H.D., O’Neill C. Preimplantation Embryo Development in the Mouse Requires the Latency of TRP53 Expression, Which Is Induced by a Ligand-Activated PI3 Kinase/AKT/MDM2-Mediated Signaling Pathway1. Biol. Reprod. 2009;80:286–294. doi: 10.1095/biolreprod.108.070102. PubMed DOI PMC
Li Y., Tang J., Ji X., Hua M.-M., Liu M., Chang L., Gu Y., Shi C., Ni W., Liu J., et al. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development. 2021;148:dev190793. doi: 10.1242/dev.190793. PubMed DOI PMC
Bahrami M., Morris M.B., Day M.L. Amino acid supplementation of a simple inorganic salt solution supports efficient in vitro maturation (IVM) of bovine oocytes. Sci. Rep. 2019;9:11739. doi: 10.1038/s41598-019-48038-y. PubMed DOI PMC
Summers M.C., Biggers J.D. Chemically defined media and the culture of mammalian preimplantation embryos: Historical perspective and current issues. Hum. Reprod. Updat. 2003;9:557–582. doi: 10.1093/humupd/dmg039. PubMed DOI
Zamfirescu R.C., Day M.L., Morris M.B. mTORC1/2 signaling is downregulated by amino acid-free culture of mouse preimplantation embryos and is only partially restored by amino acid readdition. Am. J. Physiol. Cell Physiol. 2021;320:C30–C44. doi: 10.1152/ajpcell.00385.2020. PubMed DOI
Song B.-S., Jeong P.-S., Lee J.-H., Lee M.-H., Yang H.-J., Choi S.-A., Lee H.-Y., Yoon S.-B., Park Y.-H., Jeong K.-J., et al. The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies. PLoS ONE. 2018;13:e0205495. doi: 10.1371/journal.pone.0205495. PubMed DOI PMC
Baran V., Fabian D., Rehak P. Akt/PKB plays role of apoptosis relay on entry into first mitosis of mouse embryo. Zygote. 2013;21:406–416. doi: 10.1017/S0967199413000178. PubMed DOI
Fiorenza M.T., Torcia S., Canterini S., Bevilacqua A., Narducci M.G., Ragone G., Croce C.M., Russo G., Mangia F. TCL1 promotes blastomere proliferation through nuclear transfer, but not direct phosphorylation, of AKT/PKB in early mouse embryos. Cell Death Differ. 2008;15:420–422. doi: 10.1038/sj.cdd.4402228. PubMed DOI
Fiorenza M.T., Russo G., Narducci M.G., Bresin A., Mangia F., Bevilacqua A. Protein kinase Akt2/PKBβ is involved in blastomere proliferation of preimplantation mouse embryos. J. Cell. Physiol. 2020;235:3393–3401. doi: 10.1002/jcp.29229. PubMed DOI
Chen J., Lian X., Du J., Xu S., Wei J., Pang L., Song C., He L., Wang S. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis. Dev. Growth Differ. 2016;58:280–292. doi: 10.1111/dgd.12273. PubMed DOI
Ashry M., Rajput S.K., Folger J.K., Knott J.G., Hemeida N.A., Kandil O.M., Ragab R.S., Smith G.W. Functional role of AKT signaling in bovine early embryonic development: Potential link to embryotrophic actions of follistatin. Reprod. Biol. Endocrinol. 2018;16:1. doi: 10.1186/s12958-017-0318-6. PubMed DOI PMC
Riley J.K., Carayannopoulos M.O., Wyman A.H., Chi M., Ratajczak C.K., Moley K.H. The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev. Biol. 2005;284:377–386. doi: 10.1016/j.ydbio.2005.05.033. PubMed DOI
Buttrick G.J., Beaumont L.M.A., Leitch J., Yau C., Hughes J.R., Wakefield J.G. Akt regulates centrosome migration and spindle orientation in the early Drosophila melanogaster embryo. J. Cell Biol. 2008;180:537–548. doi: 10.1083/jcb.200705085. PubMed DOI PMC
Xu S., Pang L., Liu Y., Lian X., Mo K., Lv R., Zhu H., Lv C., Lin J., Sun J., et al. Akt plays indispensable roles during the first cell lineage differentiation of mouse. J. Mol. Histol. 2019;50:369–374. doi: 10.1007/s10735-019-09833-z. PubMed DOI