A Role of PI3K/Akt Signaling in Oocyte Maturation and Early Embryo Development

. 2023 Jul 12 ; 12 (14) : . [epub] 20230712

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid37508495

A serine/threonine-specific protein kinase B (PKB), also known as Akt, is a key factor in the phosphoinositide 3-kinase (PI3K)/Akt signaling pathway that regulates cell survival, metabolism and proliferation. Akt phosphorylates many downstream specific substrates, which subsequently control the nuclear envelope breakdown (NEBD), centrosome maturation, spindle assembly, chromosome segregation, and cytokinesis. In vertebrates, Akt is also an important player during oogenesis and preimplantation development. In the signaling pathways regulating mRNA translation, Akt is involved in the control of mammalian target of rapamycin complex 1 (mTORC1) and thereby regulates the activity of a translational repressor, the eukaryotic initiation factor 4E (eIF4E) binding protein 1 (4E-BP1). In this review, we summarize the functions of Akt in mitosis, meiosis and early embryonic development. Additionally, the role of Akt in the regulation of mRNA translation is addressed with respect to the significance of this process during early development.

Zobrazit více v PubMed

Tanaka M., Kihara M., Hennebold J.D., Eppig J.J., Viveiros M.M., Emery B.R., Carrell D.T., Kirkman N.J., Meczekalski B., Zhou J., et al. H1FOO Is Coupled to the Initiation of Oocytic Growth. Biol. Reprod. 2005;72:135–142. doi: 10.1095/biolreprod.104.032474. PubMed DOI

Alizadeh Z., Kageyama S.-I., Aoki F. Degradation of maternal mRNA in mouse embryos: Selective degradation of specific mRNAs after fertilization. Mol. Reprod. Dev. 2005;72:281–290. doi: 10.1002/mrd.20340. PubMed DOI

Richter J.D., Lasko P. Translational Control in Oocyte Development. Cold Spring Harb. Perspect. Biol. 2011;3:a002758. doi: 10.1101/cshperspect.a002758. PubMed DOI PMC

Bianchi E., Sette C. Post-Transcriptional Control of Gene Expression in Mouse Early Embryo Development: A View from the Tip of the Iceberg. Genes. 2011;2:345–359. doi: 10.3390/genes2020345. PubMed DOI PMC

Manning B.D., Cantley L.C. AKT/PKB Signaling: Navigating Downstream. Cell. 2007;129:1261–1274. doi: 10.1016/j.cell.2007.06.009. PubMed DOI PMC

Topisirovic I., Sonenberg N. mRNA translation and energy metabolism in cancer: The role of the MAPK and mTORC1 pathways. Cold Spring Harb. Symp. Quant. Biol. 2011;76:355–367. doi: 10.1101/sqb.2011.76.010785. PubMed DOI

Kandel E.S., Skeen J., Majewski N., Di Cristofano A., Pandolfi P.P., Feliciano C.S., Gartel A., Hay N. Activation of Akt/Protein Kinase B Overcomes a G2/M Cell Cycle Checkpoint Induced by DNA Damage. Mol. Cell. Biol. 2002;22:7831–7841. doi: 10.1128/MCB.22.22.7831-7841.2002. PubMed DOI PMC

Nogueira V., Hay N. Molecular pathways: Reactive oxygen species homeostasis in cancer cells and implications for cancer therapy. Clin. Cancer Res. 2013;19:4309–4314. doi: 10.1158/1078-0432.CCR-12-1424. PubMed DOI PMC

Hanada M., Feng J., Hemmings B.A. Structure, regulation and function of PKB/AKT—A major therapeutic target. Biochim. Biophys. Acta-Proteins Proteom. 2004;1697:3–16. doi: 10.1016/j.bbapap.2003.11.009. PubMed DOI

Hollander M.C., Maier C.R., Hobbs E.A., Ashmore A.R., Linnoila R.I., Dennis P.A. Akt1 deletion prevents lung tumorigenesis by mutant K-ras. Oncogene. 2011;30:1812–1821. doi: 10.1038/onc.2010.556. PubMed DOI PMC

Manning B.D., Toker A. AKT/PKB Signaling: Navigating the Network. Cell. 2017;169:381–405. doi: 10.1016/j.cell.2017.04.001. PubMed DOI PMC

Downward J. Mechanisms and consequences of activation of protein kinase B/Akt. Curr. Opin. Cell Biol. 1998;10:262–267. doi: 10.1016/S0955-0674(98)80149-X. PubMed DOI

Woodgett J.R. Recent advances in the protein kinase B signaling pathway. Curr. Opin. Cell Biol. 2005;17:150–157. doi: 10.1016/j.ceb.2005.02.010. PubMed DOI

Ebner M., Lučić I., Leonard T.A., Yudushkin I. PI(3,4,5)P3 Engagement Restricts Akt Activity to Cellular Membranes. Mol. Cell. 2017;65:416–431.e6. doi: 10.1016/j.molcel.2016.12.028. PubMed DOI

Calleja V., Alcor D., Laguerre M., Park J., Vojnovic B., Hemmings B.A., Downward J., Parker P.J., Larijani B. Intramolecular and Intermolecular Interactions of Protein Kinase B Define Its Activation In Vivo. PLoS Biol. 2007;5:e95. doi: 10.1371/journal.pbio.0050095. PubMed DOI PMC

Hers I., Vincent E.E., Tavaré J.M. Akt signalling in health and disease. Cell. Signal. 2011;23:1515–1527. doi: 10.1016/j.cellsig.2011.05.004. PubMed DOI

Lietzke S.E., Bose S., Cronin T., Klarlund J., Chawla A., Czech M.P., Lambright D.G. Structural Basis of 3-Phosphoinositide Recognition by Pleckstrin Homology Domains. Mol. Cell. 2000;6:385–394. doi: 10.1016/S1097-2765(00)00038-1. PubMed DOI

Bu L., Wang H., Pan J., Chen L., Xing F., Wu J., Li S., Guo D. PTEN suppresses tumorigenesis by directly dephosphorylating Akt. Signal Transduct. Target. Ther. 2021;6:262. doi: 10.1038/s41392-021-00571-x. PubMed DOI PMC

Maehama T., Dixon J.E. The Tumor Suppressor, PTEN/MMAC1, Dephosphorylates the Lipid Second Messenger, Phosphatidylinositol 3,4,5-Trisphosphate. J. Biol. Chem. 1998;273:13375–13378. doi: 10.1074/jbc.273.22.13375. PubMed DOI

Gao T., Furnari F., Newton A.C. PHLPP: A Phosphatase that Directly Dephosphorylates Akt, Promotes Apoptosis, and Suppresses Tumor Growth. Mol. Cell. 2005;18:13–24. doi: 10.1016/j.molcel.2005.03.008. PubMed DOI

Brognard J., Sierecki E., Gao T., Newton A.C. PHLPP and a Second Isoform, PHLPP2, Differentially Attenuate the Amplitude of Akt Signaling by Regulating Distinct Akt Isoforms. Mol. Cell. 2007;25:917–931. doi: 10.1016/j.molcel.2007.02.017. PubMed DOI

Martelli A.M., Tabellini G., Bressanin D., Ognibene A., Goto K., Cocco L., Evangelisti C. The emerging multiple roles of nuclear Akt. Biochim. Biophys. Acta-Mol. Cell Res. 2012;1823:2168–2178. doi: 10.1016/j.bbamcr.2012.08.017. PubMed DOI

Cheung M., Testa J.R. Diverse Mechanisms of AKT Pathway Activation in Human Malignancy. Curr. Cancer Drug Targets. 2013;13:234–244. doi: 10.2174/1568009611313030002. PubMed DOI PMC

Baldin V., Theis-Febvre N., Benne C., Froment C., Cazales M., Burlet-Schiltz O., Ducommun B. PKB/Akt phosphorylates the CDC25B phosphatase and regulates its intracellular localisation. Biol. Cell. 2003;95:547–554. doi: 10.1016/j.biolcel.2003.08.001. PubMed DOI

Ornelas I.M., Silva T.M., Fragel-Madeira L., Ventura A.L.M. Inhibition of PI3K/Akt Pathway Impairs G2/M Transition of Cell Cycle in Late Developing Progenitors of the Avian Embryo Retina. PLoS ONE. 2013;8:e53517. doi: 10.1371/journal.pone.0053517. PubMed DOI PMC

Gao N., Flynn D.C., Zhang Z., Zhong X.-S., Walker V., Liu K.J., Shi X., Jiang B.-H. G1 cell cycle progression and the expression of G 1 cyclins are regulated by PI3K/AKT/mTOR/p70S6K1 signaling in human ovarian cancer cells. Am. J. Physiol. Cell Physiol. 2004;287:C281–C291. doi: 10.1152/ajpcell.00422.2003. PubMed DOI

Liang J., Slingerland J.M. Multiple roles of the PI3K/PKB (Akt) pathway in cell cycle progression. Cell Cycle. 2003;2:339–345. doi: 10.4161/cc.2.4.433. PubMed DOI

Maddika S., Ande S.R., Wiechec E., Hansen L.L., Wesselborg S., Los M. Akt-mediated phosphorylation of CDK2 regulates its dual role in cell cycle progression and apoptosis. J. Cell Sci. 2008;121:979–988. doi: 10.1242/jcs.009530. PubMed DOI PMC

Stern A.D., Smith G.R., Santos L.C., Sarmah D., Zhang X., Lu X., Iuricich F., Pandey G., Iyengar R., Birtwistle M.R. Relating individual cell division events to single-cell ERK and Akt activity time courses. Sci. Rep. 2022;12:18077. doi: 10.1038/s41598-022-23071-6. PubMed DOI PMC

Rashid M.S., Mazur T., Ji W., Liu S.T., Taylor W.R. Analysis of the role of GSK3 in the mitotic checkpoint. Sci. Rep. 2018;8:14259. doi: 10.1038/s41598-018-32435-w. PubMed DOI PMC

Leonard M., Hill N., Bubulya P., Kadakia M. The PTEN-Akt pathway impacts the integrity and composition of mitotic centrosomes. Cell Cycle. 2013;12:1406–1415. doi: 10.4161/cc.24516. PubMed DOI PMC

Takegahara N., Kim H., Mizuno H., Sakaue-Sawano A., Miyawaki A., Tomura M., Kanagawa O., Ishii M., Choi Y. Involvement of Receptor Activator of Nuclear Factor-κB Ligand (RANKL)-induced Incomplete Cytokinesis in the Polyploidization of Osteoclasts. J. Biol. Chem. 2016;291:3439–3454. doi: 10.1074/jbc.M115.677427. PubMed DOI PMC

Maryu G., Matsuda M., Aoki K. Multiplexed Fluorescence Imaging of ERK and Akt Activities and Cell-cycle Progression. Cell Struct. Funct. 2016;41:81–92. doi: 10.1247/csf.16007. PubMed DOI

Adhikari D., Zheng W., Shen Y., Gorre N., Ning Y., Halet G., Kaldis P., Liu K. Cdk1, but not Cdk2, is the sole Cdk that is essential and sufficient to drive resumption of meiosis in mouse oocytes. Hum. Mol. Genet. 2012;21:2476–2484. doi: 10.1093/hmg/dds061. PubMed DOI

Diril M.K., Ratnacaram C.K., Padmakumar V.C., Du T., Wasser M., Coppola V., Tessarollo L., Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:3826–3831. doi: 10.1073/pnas.1115201109. PubMed DOI PMC

Katayama K., Fujita N., Tsuruo T. Akt/Protein Kinase B-Dependent Phosphorylation and Inactivation of WEE1Hu Promote Cell Cycle Progression at G2/M Transition. Mol. Cell. Biol. 2005;25:5725–5737. doi: 10.1128/MCB.25.13.5725-5737.2005. PubMed DOI PMC

Wakefield J.G., Stephens D.J., Tavaré J.M. A role for glycogen synthase kinase-3 in mitotic spindle dynamics and chromosome alignment. J. Cell Sci. 2003;116:637–646. doi: 10.1242/jcs.00273. PubMed DOI

Kimura T., Tomooka M., Yamano N., Murayama K., Matoba S., Umehara H., Kanai Y., Nakano T. AKT signaling promotes derivation of embryonic germ cells from primordial germ cells. Development. 2008;135:869–879. doi: 10.1242/dev.013474. PubMed DOI

Tomek W., Smiljakovic T. Activation of Akt (protein kinase B) stimulates metaphase I to metaphase II transition in bovine oocytes. Reproduction. 2005;130:423–430. doi: 10.1530/rep.1.00754. PubMed DOI

Kalous J., Kubelka M., Šolc P., Šušor A., Motlík J. AKT (protein kinase B) is implicated in meiotic maturation of porcine oocytes. Reproduction. 2009;138:645–654. doi: 10.1530/REP-08-0461. PubMed DOI

Reddy P., Adhikari D., Zheng W., Liang S., Hämäläinen T., Tohonen V., Ogawa W., Noda T., Volarevic S., Huhtaniemi I., et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles. Hum. Mol. Genet. 2009;18:2813–2824. doi: 10.1093/hmg/ddp217. PubMed DOI

Han S.J., Vaccari S., Nedachi T., Andersen C.B., Kovacina K.S., Roth R.A., Conti M. Protein kinase B/Akt phosphorylation of PDE3A and its role in mammalian oocyte maturation. EMBO J. 2006;25:5716–5725. doi: 10.1038/sj.emboj.7601431. PubMed DOI PMC

Kalous J., Solc P., Baran V., Kubelka M., Schultz R.M., Motlik J. PKB/AKT is involved in resumption of meiosis in mouse oocytes. Biol. Cell. 2006;98:111–123. doi: 10.1042/BC20050020. PubMed DOI

Newhall K.J., Criniti A.R., Cheah C.S., Smith K.C., Kafer K.E., Burkart A.D., McKnight G.S. Dynamic Anchoring of PKA Is Essential during Oocyte Maturation. Curr. Biol. 2006;16:321–327. doi: 10.1016/j.cub.2005.12.031. PubMed DOI PMC

Hiraoka D., Aono R., Hanada S., Okumura E., Kishimoto T. Two novel competing pathways establish the threshold for cyclin B-Cdk1 activation at the meiotic G2/M transition. J. Cell Sci. 2016;129:3153–3166. doi: 10.1242/jcs.182170. PubMed DOI PMC

Okumura E., Fukuhara T., Yoshida H., Hanada S., Kozutsumi R., Mori M., Tachibana K., Kishimoto T. Akt inhibits Myt1 in the signalling pathway that leads to meiotic G2/M-phase transition. Nat. Cell Biol. 2002;4:111–116. doi: 10.1038/ncb741. PubMed DOI

Alcaráz L.P., Prellwitz L., Alves G., Souza-Fabjan J.M.G., Dias A.J.B. Role of phosphoinositide 3-kinase/ protein kinase B/ phosphatase and tensin homologue (PI3K/AKT/PTEN) pathway inhibitors during in vitro maturation of mammalian oocytes on in vitro embryo production: A systematic review. Theriogenology. 2022;189:42–52. doi: 10.1016/j.theriogenology.2022.06.009. PubMed DOI

Hoshino Y., Sato E. Protein kinase B (PKB/Akt) is required for the completion of meiosis in mouse oocytes. Dev. Biol. 2008;314:215–223. doi: 10.1016/j.ydbio.2007.12.005. PubMed DOI

Andersen C.B., Roth R.A., Conti M. Protein Kinase B/Akt Induces Resumption of Meiosis in Xenopus Oocytes. J. Biol. Chem. 1998;273:18705–18708. doi: 10.1074/jbc.273.30.18705. PubMed DOI

Cecconi S., Rossi G., Santilli A., Di Stefano L., Hoshino Y., Sato E., Palmerini M.G., Macchiarelli G. Akt expression in mouse oocytes matured in vivo and in vitro. Reprod. Biomed. Online. 2010;20:35–41. doi: 10.1016/j.rbmo.2009.10.011. PubMed DOI

Procházka R., Bartková A., Němcová L., Murín M., Gad A., Marcollová K., Kinterová V., Lucas-Hahn A., Laurinčík J. The Role of MAPK3/1 and AKT in the Acquisition of High Meiotic and Developmental Competence of Porcine Oocytes Cultured In Vitro in FLI Medium. Int. J. Mol. Sci. 2021;22:11148. doi: 10.3390/ijms222011148. PubMed DOI PMC

Das D., Khan P.P., Maitra S. Participation of PI3-kinase/Akt signalling in insulin stimulation of p34cdc2 activation in zebrafish oocyte: Phosphodiesterase 3 as a potential downstream target. Mol. Cell. Endocrinol. 2013;374:46–55. doi: 10.1016/j.mce.2013.04.007. PubMed DOI

Schuh M., Ellenberg J. Self-Organization of MTOCs Replaces Centrosome Function during Acentrosomal Spindle Assembly in Live Mouse Oocytes. Cell. 2007;130:484–498. doi: 10.1016/j.cell.2007.06.025. PubMed DOI

Wu T., Dong J., Fu J., Kuang Y., Chen B., Gu H., Luo Y., Gu R., Zhang M., Li W., et al. The mechanism of acentrosomal spindle assembly in human oocytes. Science. 2022;378:eabq7361. doi: 10.1126/science.abq7361. PubMed DOI

Clift D., Schuh M. Restarting life: Fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 2013;14:549–562. doi: 10.1038/nrm3643. PubMed DOI PMC

Gruss O. Animal Female Meiosis: The Challenges of Eliminating Centrosomes. Cells. 2018;7:73. doi: 10.3390/cells7070073. PubMed DOI PMC

Tsuruta F., Masuyama N., Gotoh Y. The Phosphatidylinositol 3-Kinase (PI3K)-Akt Pathway Suppresses Bax Translocation to Mitochondria. J. Biol. Chem. 2002;277:14040–14047. doi: 10.1074/jbc.M108975200. PubMed DOI

Jiao Y., Li J., Zhu S., Ahmed J.Z., Li M., Shi D., Huang B. PI3K inhibitor reduces in vitro maturation and developmental competence of porcine oocytes. Theriogenology. 2020;157:432–439. doi: 10.1016/j.theriogenology.2020.08.019. PubMed DOI

De Felici M., Klinger F.G. PI3K/PTEN/AKT Signaling Pathways in Germ Cell Development and Their Involvement in Germ Cell Tumors and Ovarian Dysfunctions. Int. J. Mol. Sci. 2021;22:9838. doi: 10.3390/ijms22189838. PubMed DOI PMC

Li X., Chen H., Zhang Z., Xu D., Duan J., Li X., Yang L., Hua R., Cheng J., Li Q. Isorhamnetin Promotes Estrogen Biosynthesis and Proliferation in Porcine Granulosa Cells via the PI3K/Akt Signaling Pathway. J. Agric. Food Chem. 2021;69:6535–6542. doi: 10.1021/acs.jafc.1c01543. PubMed DOI

Makker A., Goel M.M., Mahdi A.A. PI3K/PTEN/Akt and TSC/mTOR signaling pathways, ovarian dysfunction, and infertility: An update. J. Mol. Endocrinol. 2014;53:R103–R118. doi: 10.1530/JME-14-0220. PubMed DOI

Alberico H.C., Woods D.C. Role of Granulosa Cells in the Aging Ovarian Landscape: A Focus on Mitochondrial and Metabolic Function. Front. Physiol. 2022;12:2566. doi: 10.3389/fphys.2021.800739. PubMed DOI PMC

Huang Z., Wells D. The human oocyte and cumulus cells relationship: New insights from the cumulus cell transcriptome. MHR Basic Sci. Reprod. Med. 2010;16:715–725. doi: 10.1093/molehr/gaq031. PubMed DOI

Goto M., Iwase A., Ando H., Kurotsuchi S., Harata T., Kikkawa F. PTEN and Akt expression during growth of human ovarian follicles. J. Assist. Reprod. Genet. 2007;24:541–546. doi: 10.1007/s10815-007-9156-3. PubMed DOI PMC

Brown C., LaRocca J., Pietruska J., Ota M., Anderson L., Duncan Smith S., Weston P., Rasoulpour T., Hixon M.L. Subfertility Caused by Altered Follicular Development and Oocyte Growth in Female Mice Lacking PKBalpha/Akt11. Biol. Reprod. 2010;82:246–256. doi: 10.1095/biolreprod.109.077925. PubMed DOI PMC

Bezerra M.É.S., Barberino R.S., Menezes V.G., Gouveia B.B., Macedo T.J.S., Santos J.M.S., Monte A.P.O., Barros V.R.P., Matos M.H.T. Insulin-like growth factor-1 (IGF-1) promotes primordial follicle growth and reduces DNA fragmentation through the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signalling pathway. Reprod. Fertil. Dev. 2018;30:1503. doi: 10.1071/RD17332. PubMed DOI

Alam M.H., Miyano T. Interaction between growing oocytes and granulosa cells in vitro. Reprod. Med. Biol. 2020;19:13–23. doi: 10.1002/rmb2.12292. PubMed DOI PMC

Alam H., Maizels E.T., Park Y., Ghaey S., Feiger Z.J., Chandel N.S., Hunzicker-Dunn M. Follicle-stimulating Hormone Activation of Hypoxia-inducible Factor-1 by the Phosphatidylinositol 3-Kinase/AKT/Ras Homolog Enriched in Brain (Rheb)/Mammalian Target of Rapamycin (mTOR) Pathway Is Necessary for Induction of Select Protein Markers of Follic. J. Biol. Chem. 2004;279:19431–19440. doi: 10.1074/jbc.M401235200. PubMed DOI PMC

Zeleznik A.J., Saxena D., Little-Ihrig L. Protein Kinase B Is Obligatory for Follicle-Stimulating Hormone-Induced Granulosa Cell Differentiation. Endocrinology. 2003;144:3985–3994. doi: 10.1210/en.2003-0293. PubMed DOI

Bencomo E., Pérez R., Arteaga M.-F., Acosta E., Peña O., Lopez L., Avila J., Palumbo A. Apoptosis of cultured granulosa-lutein cells is reduced by insulin-like growth factor I and may correlate with embryo fragmentation and pregnancy rate. Fertil. Steril. 2006;85:474–480. doi: 10.1016/j.fertnstert.2005.08.014. PubMed DOI

Quirk S.M., Cowan R.G., Harman R.M., Hu C.-L., Porter D.A. Ovarian follicular growth and atresia: The relationship between cell proliferation and survival. J. Anim. Sci. 2004;82((Suppl. 13)):E40–E52. doi: 10.2527/2004.8213_supplE40x. PubMed DOI

Hu C.-L., Cowan R.G., Harman R.M., Quirk S.M. Cell Cycle Progression and Activation of Akt Kinase Are Required for Insulin-Like Growth Factor I-Mediated Suppression of Apoptosis in Granulosa Cells. Mol. Endocrinol. 2004;18:326–338. doi: 10.1210/me.2003-0178. PubMed DOI

Johnson A.L., Bridgham J.T., Swenson J.A. Activation of the Akt/Protein Kinase B Signaling Pathway Is Associated with Granulosa Cell Survival1. Biol. Reprod. 2001;64:1566–1574. doi: 10.1095/biolreprod64.5.1566. PubMed DOI

Demiray S.B., Goker E.N.T., Tavmergen E., Yilmaz O., Calimlioglu N., Soykam H.O., Oktem G., Sezerman U. Differential gene expression analysis of human cumulus cells. Clin. Exp. Reprod. Med. 2019;46:76–86. doi: 10.5653/cerm.2019.46.2.76. PubMed DOI PMC

Turathum B., Gao E.-M., Chian R.-C. The Function of Cumulus Cells in Oocyte Growth and Maturation and in Subsequent Ovulation and Fertilization. Cells. 2021;10:2292. doi: 10.3390/cells10092292. PubMed DOI PMC

Shimada M., Ito J., Yamashita Y., Okazaki T., Isobe N. Phosphatidylinositol 3-kinase in cumulus cells is responsible for both suppression of spontaneous maturation and induction of gonadotropin-stimulated maturation of porcine oocytes. J. Endocrinol. 2003;179:25–34. doi: 10.1677/joe.0.1790025. PubMed DOI

Coticchio G., Sereni E., Serrao L., Mazzone S., Iadarola I., Borini A. What criteria for the definition of oocyte quality? Ann. N. Y. Acad. Sci. 2004;1034:132–144. doi: 10.1196/annals.1335.016. PubMed DOI

Artini P.G., Tatone C., Sperduti S., D’Aurora M., Franchi S., Di Emidio G., Ciriminna R., Vento M., Di Pietro C., Stuppia L., et al. Cumulus cells surrounding oocytes with high developmental competence exhibit down-regulation of phosphoinositol 1,3 kinase/protein kinase B (PI3K/AKT) signalling genes involved in proliferation and survival. Hum. Reprod. 2017;32:2474–2484. doi: 10.1093/humrep/dex320. PubMed DOI PMC

Haghighat N., Van Winkle L.J. Developmental change in follicular cell-enhanced amino acid uptake into mouse oocytes that depends on intact gap junctions and transport system gly. J. Exp. Zool. 1990;253:71–82. doi: 10.1002/jez.1402530110. PubMed DOI

El-Hayek S., Yang Q., Abbassi L., FitzHarris G., Clarke H.J. Mammalian Oocytes Locally Remodel Follicular Architecture to Provide the Foundation for Germline-Soma Communication. Curr. Biol. 2018;28:1124–1131.e3. doi: 10.1016/j.cub.2018.02.039. PubMed DOI PMC

Baena V., Terasaki M. Three-dimensional organization of transzonal projections and other cytoplasmic extensions in the mouse ovarian follicle. Sci. Rep. 2019;9:1262. doi: 10.1038/s41598-018-37766-2. PubMed DOI PMC

Perkins G., Goodenough D., Sosinsky G. Three-Dimensional Structure of the Gap Junction Connexon. Biophys. J. 1997;72:533–544. doi: 10.1016/S0006-3495(97)78693-4. PubMed DOI PMC

Fang Y., Shang W., Wei D.-L., Zeng S.-M. Cited2 protein level in cumulus cells is a biomarker for human embryo quality and pregnancy outcome in one in vitro fertilization cycle. Fertil. Steril. 2016;105:1351–1359.e4. doi: 10.1016/j.fertnstert.2015.12.137. PubMed DOI

Gatta V., Tatone C., Ciriminna R., Vento M., Franchi S., D’Aurora M., Sperduti S., Cela V., Borzì P., Palermo R., et al. Gene expression profiles of cumulus cells obtained from women treated with recombinant human luteinizing hormone + recombinant human follicle-stimulating hormone or highly purified human menopausal gonadotropin versus recombinant human follicle-stimulatin. Fertil. Steril. 2013;99:2000–2008.e1. doi: 10.1016/j.fertnstert.2013.01.150. PubMed DOI

Winterhager E., Kidder G.M. Gap junction connexins in female reproductive organs: Implications for women’s reproductive health. Hum. Reprod. Updat. 2015;21:340–352. doi: 10.1093/humupd/dmv007. PubMed DOI

Dunn C.A., Lampe P.D. Injury-triggered Akt phosphorylation of Cx43: A ZO-1-driven molecular switch that regulates gap junction size. J. Cell Sci. 2013;127:455–464. doi: 10.1242/jcs.142497. PubMed DOI PMC

Shimada M., Terada T. Phosphorylation of Connexin-43, Gap Junctional Protein, in Cumulus Cells is Regulated by Mitogen-Activated Protein Kinase and Phosphatidylinositol 3-Kinase during In Vitro Meiotic Resumption in Porcine Follicular Oocytes. J. Mamm. Ova Res. 1999;16:37–42. doi: 10.1274/jmor.16.37. DOI

Shimada M., Terada T. Phosphatidylinositol 3-kinase in cumulus cells and oocytes is responsible for activation of oocyte mitogen-activated protein kinase during meiotic progression beyond the meiosis I stage in pigs. Biol. Reprod. 2001;64:1106–1114. doi: 10.1095/biolreprod64.4.1106. PubMed DOI

Camaioni A., Salustri A., Yanagishita M., Hascall V.C. Proteoglycans and Proteins in the Extracellular Matrix of Mouse Cumulus Cell–Oocyte Complexes. Arch. Biochem. Biophys. 1996;325:190–198. doi: 10.1006/abbi.1996.0024. PubMed DOI

Nagyova E., Scsukova S., Kalous J., Mlynarcikova A. Effects of RU486 and indomethacin on meiotic maturation, formation of extracellular matrix, and progesterone production by porcine oocyte-cumulus complexes. Domest. Anim. Endocrinol. 2014;48:7–14. doi: 10.1016/j.domaniend.2014.01.003. PubMed DOI

Nagyova E., Kalous J., Nemcova L. Increased expression of pentraxin 3 after in vivo and in vitro stimulation with gonadotropins in porcine oocyte-cumulus complexes and granulosa cells. Domest. Anim. Endocrinol. 2016;56:29–35. doi: 10.1016/j.domaniend.2016.01.004. PubMed DOI

Němcová L., Nagyová E., Petlach M., Tománek M., Procházka R. Molecular Mechanisms of Insulin-Like Growth Factor 1 Promoted Synthesis and Retention of Hyaluronic Acid in Porcine Oocyte-Cumulus Complexes1. Biol. Reprod. 2007;76:1016–1024. doi: 10.1095/biolreprod.106.057927. PubMed DOI

Procházka R., Petlach M., Nagyová E., Němcová L. Effect of epidermal growth factor-like peptides on pig cumulus cell expansion, oocyte maturation, and acquisition of developmental competence in vitro: Comparison with gonadotropins. Reproduction. 2011;141:425–435. doi: 10.1530/REP-10-0418. PubMed DOI

Blaha M., Prochazka R., Adamkova K., Nevoral J., Nemcova L. Prostaglandin E2 stimulates the expression of cumulus expansion-related genes in pigs: The role of protein kinase B. Prostaglandins Other Lipid Mediat. 2017;130:38–46. doi: 10.1016/j.prostaglandins.2017.04.001. PubMed DOI

Guo J., Shi L., Gong X., Jiang M., Yin Y., Zhang X., Yin H., Li H., Emori C., Sugiura K., et al. Oocyte-dependent activation of MTOR in cumulus cells controls the development and survival of cumulus-oocyte complexes. J. Cell Sci. 2016;129:3091–3103. doi: 10.1242/jcs.182642. PubMed DOI PMC

Sarbassov D.D., Guertin D.A., Ali S.M., Sabatini D.M. Phosphorylation and Regulation of Akt/PKB by the Rictor-mTOR Complex. Science. 2005;307:1098–1101. doi: 10.1126/science.1106148. PubMed DOI

Jacinto E., Loewith R., Schmidt A., Lin S., Rüegg M.A., Hall A., Hall M.N. Mammalian TOR complex 2 controls the actin cytoskeleton and is rapamycin insensitive. Nat. Cell Biol. 2004;6:1122–1128. doi: 10.1038/ncb1183. PubMed DOI

Starkman B.G., Cravero J.D., Delcarlo M., Loeser R.F. IGF-I stimulation of proteoglycan synthesis by chondrocytes requires activation of the PI 3-kinase pathway but not ERK MAPK. Biochem. J. 2005;389:723–729. doi: 10.1042/BJ20041636. PubMed DOI PMC

Varma S., Shrivastav A., Changela S., Khandelwal R.L. Long-term effects of rapamycin treatment on insulin mediated phosphorylation of Akt/PKB and glycogen synthase activity. Exp. Cell Res. 2008;314:1281–1291. doi: 10.1016/j.yexcr.2007.12.019. PubMed DOI

Kapp L.D., Lorsch J.R. The Molecular Mechanics of Eukaryotic Translation. Annu. Rev. Biochem. 2004;73:657–704. doi: 10.1146/annurev.biochem.73.030403.080419. PubMed DOI

Dowling R.J.O., Topisirovic I., Fonseca B.D., Sonenberg N. Dissecting the role of mTOR: Lessons from mTOR inhibitors. Biochim. Biophys. Acta-Proteins Proteom. 2010;1804:433–439. doi: 10.1016/j.bbapap.2009.12.001. PubMed DOI

Nitta N., Nakasu S., Shima A., Nozaki K. mTORC1 signaling in primary central nervous system lymphoma. Surg. Neurol. Int. 2016;7:475. doi: 10.4103/2152-7806.185781. PubMed DOI PMC

Schmelzle T., Hall M.N. TOR, a Central Controller of Cell Growth. Cell. 2000;103:253–262. doi: 10.1016/S0092-8674(00)00117-3. PubMed DOI

Gingras A.-C., Kennedy S.G., O’Leary M.A., Sonenberg N., Hay N. 4E-BP1, a repressor of mRNA translation, is phosphorylated and inactivated by the Akt(PKB) signaling pathway. Genes Dev. 1998;12:502–513. doi: 10.1101/gad.12.4.502. PubMed DOI PMC

Ma X.M., Blenis J. Molecular mechanisms of mTOR-mediated translational control. Nat. Rev. Mol. Cell Biol. 2009;10:307–318. doi: 10.1038/nrm2672. PubMed DOI

Hsieh A.C., Ruggero D. Targeting Eukaryotic Translation Initiation Factor 4E (eIF4E) in Cancer. Clin. Cancer Res. 2010;16:4914–4920. doi: 10.1158/1078-0432.CCR-10-0433. PubMed DOI PMC

Kovacina K.S., Park G.Y., Bae S.S., Guzzetta A.W., Schaefer E., Birnbaum M.J., Roth R.A. Identification of a Proline-rich Akt Substrate as a 14-3-3 Binding Partner. J. Biol. Chem. 2003;278:10189–10194. doi: 10.1074/jbc.M210837200. PubMed DOI

Wang L., Harris T.E., Roth R.A., Lawrence J.C. PRAS40 Regulates mTORC1 Kinase Activity by Functioning as a Direct Inhibitor of Substrate Binding. J. Biol. Chem. 2007;282:20036–20044. doi: 10.1074/jbc.M702376200. PubMed DOI

Manning B.D., Cantley L.C. United at last: The tuberous sclerosis complex gene products connect the phosphoinositide 3-kinase/Akt pathway to mammalian target of rapamycin (mTOR) signalling. Biochem. Soc. Trans. 2003;31:573–578. doi: 10.1042/bst0310573. PubMed DOI

Inoki K., Li Y., Zhu T., Wu J., Guan K.-L. TSC2 is phosphorylated and inhibited by Akt and suppresses mTOR signalling. Nat. Cell Biol. 2002;4:648–657. doi: 10.1038/ncb839. PubMed DOI

Tee A.R., Manning B.D., Roux P.P., Cantley L.C., Blenis J. Tuberous Sclerosis Complex Gene Products, Tuberin and Hamartin, Control mTOR Signaling by Acting as a GTPase-Activating Protein Complex toward Rheb. Curr. Biol. 2003;13:1259–1268. doi: 10.1016/S0960-9822(03)00506-2. PubMed DOI

Cohen P., Frame S. The renaissance of GSK3. Nat. Rev. Mol. Cell Biol. 2001;2:769–776. doi: 10.1038/35096075. PubMed DOI

Wang X. Regulation of elongation factor 2 kinase by p90RSK1 and p70 S6 kinase. EMBO J. 2001;20:4370–4379. doi: 10.1093/emboj/20.16.4370. PubMed DOI PMC

Guo J., Zhang T., Guo Y., Sun T., Li H., Zhang X., Yin H., Cao G., Yin Y., Wang H., et al. Oocyte stage-specific effects of MTOR determine granulosa cell fate and oocyte quality in mice. Proc. Natl. Acad. Sci. USA. 2018;115:E5326–E5333. doi: 10.1073/pnas.1800352115. PubMed DOI PMC

Susor A., Jansova D., Cerna R., Danylevska A., Anger M., Toralova T., Malik R., Supolikova J., Cook M.S., Oh J.S., et al. Temporal and spatial regulation of translation in the mammalian oocyte via the mTOR–eIF4F pathway. Nat. Commun. 2015;6:6078. doi: 10.1038/ncomms7078. PubMed DOI PMC

Šušor A., Jelínková L., Karabínová P., Torner H., Tomek W., Kovářová H., Kubelka M. Regulation of cap-dependent translation initiation in the early stage porcine parthenotes. Mol. Reprod. Dev. 2008;75:1716–1725. doi: 10.1002/mrd.20913. PubMed DOI

Kogasaka Y., Hoshino Y., Hiradate Y., Tanemura K., Sato E. Distribution and association of mTOR with its cofactors, raptor and rictor, in cumulus cells and oocytes during meiotic maturation in mice. Mol. Reprod. Dev. 2013;80:334–348. doi: 10.1002/mrd.22166. PubMed DOI

Jansova D., Koncicka M., Tetkova A., Cerna R., Malik R., del Llano E., Kubelka M., Susor A. Regulation of 4E-BP1 activity in the mammalian oocyte. Cell Cycle. 2017;16:927–939. doi: 10.1080/15384101.2017.1295178. PubMed DOI PMC

El Sheikh M., Mesalam A., Mesalam A.A., Idrees M., Lee K.-L., Kong I.-K. Melatonin Abrogates the Anti-Developmental Effect of the AKT Inhibitor SH6 in Bovine Oocytes and Embryos. Int. J. Mol. Sci. 2019;20:2956. doi: 10.3390/ijms20122956. PubMed DOI PMC

Li Y., Chandrakanthan V., Day M.L., O’Neill C. Direct Evidence for the Action of Phosphatidylinositol (3,4,5)-Trisphosphate-Mediated Signal Transduction in the 2-Cell Mouse Embryo1. Biol. Reprod. 2007;77:813–821. doi: 10.1095/biolreprod.107.060129. PubMed DOI

Jin X.L., Chandrakanthan V., Morgan H.D., O’Neill C. Preimplantation Embryo Development in the Mouse Requires the Latency of TRP53 Expression, Which Is Induced by a Ligand-Activated PI3 Kinase/AKT/MDM2-Mediated Signaling Pathway1. Biol. Reprod. 2009;80:286–294. doi: 10.1095/biolreprod.108.070102. PubMed DOI PMC

Li Y., Tang J., Ji X., Hua M.-M., Liu M., Chang L., Gu Y., Shi C., Ni W., Liu J., et al. Regulation of the mammalian maternal-to-embryonic transition by eukaryotic translation initiation factor 4E. Development. 2021;148:dev190793. doi: 10.1242/dev.190793. PubMed DOI PMC

Bahrami M., Morris M.B., Day M.L. Amino acid supplementation of a simple inorganic salt solution supports efficient in vitro maturation (IVM) of bovine oocytes. Sci. Rep. 2019;9:11739. doi: 10.1038/s41598-019-48038-y. PubMed DOI PMC

Summers M.C., Biggers J.D. Chemically defined media and the culture of mammalian preimplantation embryos: Historical perspective and current issues. Hum. Reprod. Updat. 2003;9:557–582. doi: 10.1093/humupd/dmg039. PubMed DOI

Zamfirescu R.C., Day M.L., Morris M.B. mTORC1/2 signaling is downregulated by amino acid-free culture of mouse preimplantation embryos and is only partially restored by amino acid readdition. Am. J. Physiol. Cell Physiol. 2021;320:C30–C44. doi: 10.1152/ajpcell.00385.2020. PubMed DOI

Song B.-S., Jeong P.-S., Lee J.-H., Lee M.-H., Yang H.-J., Choi S.-A., Lee H.-Y., Yoon S.-B., Park Y.-H., Jeong K.-J., et al. The effects of kinase modulation on in vitro maturation according to different cumulus-oocyte complex morphologies. PLoS ONE. 2018;13:e0205495. doi: 10.1371/journal.pone.0205495. PubMed DOI PMC

Baran V., Fabian D., Rehak P. Akt/PKB plays role of apoptosis relay on entry into first mitosis of mouse embryo. Zygote. 2013;21:406–416. doi: 10.1017/S0967199413000178. PubMed DOI

Fiorenza M.T., Torcia S., Canterini S., Bevilacqua A., Narducci M.G., Ragone G., Croce C.M., Russo G., Mangia F. TCL1 promotes blastomere proliferation through nuclear transfer, but not direct phosphorylation, of AKT/PKB in early mouse embryos. Cell Death Differ. 2008;15:420–422. doi: 10.1038/sj.cdd.4402228. PubMed DOI

Fiorenza M.T., Russo G., Narducci M.G., Bresin A., Mangia F., Bevilacqua A. Protein kinase Akt2/PKBβ is involved in blastomere proliferation of preimplantation mouse embryos. J. Cell. Physiol. 2020;235:3393–3401. doi: 10.1002/jcp.29229. PubMed DOI

Chen J., Lian X., Du J., Xu S., Wei J., Pang L., Song C., He L., Wang S. Inhibition of phosphorylated Ser473-Akt from translocating into the nucleus contributes to 2-cell arrest and defective zygotic genome activation in mouse preimplantation embryogenesis. Dev. Growth Differ. 2016;58:280–292. doi: 10.1111/dgd.12273. PubMed DOI

Ashry M., Rajput S.K., Folger J.K., Knott J.G., Hemeida N.A., Kandil O.M., Ragab R.S., Smith G.W. Functional role of AKT signaling in bovine early embryonic development: Potential link to embryotrophic actions of follistatin. Reprod. Biol. Endocrinol. 2018;16:1. doi: 10.1186/s12958-017-0318-6. PubMed DOI PMC

Riley J.K., Carayannopoulos M.O., Wyman A.H., Chi M., Ratajczak C.K., Moley K.H. The PI3K/Akt pathway is present and functional in the preimplantation mouse embryo. Dev. Biol. 2005;284:377–386. doi: 10.1016/j.ydbio.2005.05.033. PubMed DOI

Buttrick G.J., Beaumont L.M.A., Leitch J., Yau C., Hughes J.R., Wakefield J.G. Akt regulates centrosome migration and spindle orientation in the early Drosophila melanogaster embryo. J. Cell Biol. 2008;180:537–548. doi: 10.1083/jcb.200705085. PubMed DOI PMC

Xu S., Pang L., Liu Y., Lian X., Mo K., Lv R., Zhu H., Lv C., Lin J., Sun J., et al. Akt plays indispensable roles during the first cell lineage differentiation of mouse. J. Mol. Histol. 2019;50:369–374. doi: 10.1007/s10735-019-09833-z. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...