31P NMR Study of P-Chirogenic Phosphaphenanthrenes with Molecular Flexibility tuned by Amino Acid Substituents

. 2025 Apr 15 ; 31 (22) : e202500330. [epub] 20250311

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40019280

Grantová podpora
21-23014S Grantová Agentura České Republiky

Model phosphonamidates derived from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) with molecular flexibility tuned by amino acid substituents were prepared as pairs of diastereoisomers (DSIs) differing in configuration on phosphorus atom. X-ray diffraction (XRD) determined absolute configuration on phosphorus and revealed conformational flexibility of six-membered oxa-phospha-cycle. Quantum-chemical calculations combined with machine learning provided 2-4 representative conformers from each DSI present in solution. 31P chemical shift of RS DSIs was higher compared to the SS ones. Calculated 31P-1H as well as 31P-13C J-couplings followed Karplus dependence of J-coupling values on dihedral angles between interacting nuclei, showing reasonable match with the literature data. The effect of molecular flexibility quantified by parameter nConf20 on NMR parameters was significant, especially for residual dipolar couplings (RDCs), where Pearson correlation factor R decreased with increasing nConf20 parameter.

Zobrazit více v PubMed

K. R. Gustafson in Handbook of Marine Natural Products, 2012, pp. 547–570;

R. Riccio, G. Bifulco, P. Cimino, C. Bassarello, L. Gomez-Paloma, Pure Appl. Chem. 2003, 75, 295–308;

C. Aroulanda, P. Lesot, Chirality 2022, 34, 182–244.

N. Matsumori, D. Kaneno, M. Murata, H. Nakamura, K. Tachibana, J. Org. Chem. 1999, 64, 866–876.

M. Karplus, J. Am. Chem. Soc. 2002, 85, 2870–2871.

C. A. G. Haasnoot, F. A. A. M. de Leeuw, C. Altona, Tetrahedron 1980, 36, 2783–2792.

D. Neuhaus, eMagRes 2011.

C. M. Thiele, S. Berger, Org. Lett. 2003, 5, 705–708;

Y. Liu, A. Navarro-Vazquez, R. R. Gil, C. Griesinger, G. E. Martin, R. T. Williamson, Nat. Protoc. 2019, 14, 217–247.

P. Lesot, C. Aroulanda, P. Berdague, A. Meddour, D. Merlet, J. Farjon, N. Giraud, O. Lafon, Prog. Nucl. Magn. Reson. Spectrosc. 2020, 116, 85–154.

P. H. Willoughby, M. J. Jansma, T. R. Hoye, Nat. Protoc. 2014, 9, 643–660;

J. Vaara, Phys. Chem. Chem. Phys. 2007, 9, 5399–5418.

G. J. Sharman, Magn. Reson. Chem. 2007, 45, 317–324.

L. Kozerski, R. Kawecki, P. Krajewski, P. Gluzinski, K. Pupek, P. E. Hansen, M. P. Williamson, J. Org. Chem. 2002, 60, 3533–3538;

C. F. Tormena, Prog. Nucl. Magn. Reson. Spectrosc. 2016, 96, 73–88.

D. J. Detlefsen, S. E. Hill, S. H. Day, M. S. Lee, Curr. Med. Chem. 1999, 6, 353–358;

A. T. Namanja, X. J. Wang, B. Xu, A. Y. Mercedes-Camacho, B. D. Wilson, K. A. Wilson, F. A. Etzkorn, J. W. Peng, J. Am. Chem. Soc. 2010, 132, 5607–5609.

U. Sternberg, C. Fares, Phys. Chem. Chem. Phys. 2022, 24, 9608–9618.

I. A. Khodov, S. V. Efimov, V. V. Klochkov, L. A. E. Batista de Carvalho, M. G. Kiselev, J. Mol. Struct. 2016, 1106, 373–381.

J. Braun, P. Katzberger, G. A. Landrum, S. Riniker, J. Chem. Inf. Model. 2024, 64, 7917–7924.

J. G. Wicker, R. I. Cooper, J. Chem. Inf. Model. 2016, 56, 2347–2352.

K. Saito in Chemical Physics of Molecular Condensed Matter, 2020, pp. 177–198.

L. Yu, S. M. Reutzel-Edens, C. A. Mitchell, Org. Process Res. Dev. 2000, 4, 396–402;

S. K. Tang, R. J. Davey, P. Sacchi, A. J. Cruz-Cabeza, Chem. Sci. 2020, 12, 993–1000.

R. B. Best, K. A. Merchant, I. V. Gopich, B. Schuler, A. Bax, W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18964–18969.

T. Imamoto, Chem. Rev. 2024, 124, 8657–8739;

L. Yin, J. Li, C. Wu, H. Zhang, W. Zhao, Z. Fan, M. Liu, S. Zhang, M. Guo, X. Dou, D. Guo, Nat. Commun. 2024, 15, 2548.

J. H. Wu, S. Fang, X. Zheng, J. He, Y. Ma, Z. Su, T. Wang, Angew. Chem. Int. Ed. 2023, 62, e202309515.

S. V. Bobrov, A. A. Karasik, O. G. Sinyashin, Phosphorus. Sulfur. Silicon. Relat. Elem. 2008, 144, 289–292;

J. F. Nixon, Chem. Rev. 2002, 88, 1327–1362.

Y. Mehellou, H. S. Rattan, J. Balzarini, J. Med. Chem. 2018, 61, 2211–2226;

P. Finkbeiner, J. P. Hehn, C. Gnamm, J. Med. Chem. 2020, 63, 7081–7107;

J. B. Rodriguez, C. Gallo-Rodriguez, ChemMedChem 2019, 14, 190–216.

P. Šimon, M. Tichotová, M. Garcia Gallardo, E. Procházková, O. Baszczyňski, Chem. Eur. J. 2021, 27, 12763–12775.

E. Procházková, P. Šimon, M. Straka, J. Filo, M. Májek, M. Cigáň, O. Baszczyňski, Chem. Commun. 2021, 57, 211–214.

J. Fukal, O. Páv, M. Buděšínský, J. Šebera, V. Sychrovský, Phys. Chem. Chem. Phys. 2017, 19, 31830–31841.

M. Tichotová, A. Ešnerová, L. Tučková, L. Bednárová, I. Císařová, O. Baszczyňski, E. Prochazková, J. Magn. Reson. 2022, 336, 107149;

J. Szyszkowiak, P. Majewska, Tetrahedron: Asymmetry 2014, 25, 103–112.

M. Christou Tichotová, L. Tučková, H. Kocek, A. Růžička, M. Straka, E. Procházková, Phys. Chem. Chem. Phys. 2024, 26, 2016–2024;

U. Sternberg, M. Christou Tichotová, L. Tučková, A. Ešnerová, J. Hanus, O. Baszczyňski, E. Procházková, Phys. Chem. Chem. Phys. 2024, 26, 20814–20819.

K. A. Salmeia, S. Gaan, Polym. Degrad. Stab. 2015, 113, 119–134.

S. S. Le Corre, M. Berchel, H. Couthon-Gourves, J. P. Haelters, P. A. Jaffres, Beilstein J. Org. Chem. 2014, 10, 1166–1196.

G. Keglevich, H. Szelke, A. Kerényi, V. Kudar, M. Hanusz, K. Simon, T. Imre, K. Ludányi, Tetrahedron: Asymmetry 2005, 16, 4015–4021;

S. Wagner, M. Rakotomalala, Y. Bykov, O. Walter, M. Döring, Heteroat. Chem. 2012, 23, 216–222;

M. Weinert, O. Fuhr, M. Döring, Arkivoc 2018, 2018, 278–293;

K. R. Winters, J. L. Montchamp, J. Org. Chem. 2020, 85, 14545–14558.

S. C. Harvey, M. Prabhakaran, J. Am. Chem. Soc. 2002, 108, 6128–6136.

H. S. Park, Y. K. Kang, New J. Chem. 2021, 45, 9780–9793;

J. P. McCullough, D. R. Douslin, W. N. Hubbard, S. S. Todd, J. F. Messerly, I. A. Hossenlopp, F. R. Frow, J. P. Dawson, G. Waddington, J. Am. Chem. Soc. 2002, 81, 5884–5890.

M. Tsuboi, S. Takahashi, Y. Kyogoku, H. Hayatsu, T. Ukita, M. Kainosho, Science 1969, 166, 1504–1505;

X. Tang, Y. Zhou, Y. Wang, Y. Lin, S. Pan, Q. Che, J. Sang, Z. Gao, W. Zhang, Y. Wang, G. Li, L. Gao, Z. Wang, X. Yang, A. Liu, S. Wang, B. Yu, P. Xu, Z. Wang, Z. Zhang, P. Yang, W. Xie, H. Sun, W. Li, J. Am. Chem. Soc. 2024, 146, 8768–8779.

S. V. Fedorov, L. B. Krivdin, Y. Y. Rusakov, N. A. Chernysheva, V. L. Mikhailenko, Magn. Reson. Chem. 2010, 48 Suppl 1, S48–55.

P. P. Lankhorst, C. A. Haasnoot, C. Erkelens, C. Altona, J. Biomol. Struct. Dyn. 1984, 1, 1387–1405;

S. Yokoyama, F. Inagaki, T. Miyazawa, Biochem. 1981, 20, 2981–2988.

A. Ibanez de Opakua, M. Zweckstetter, Magn. Reson. 2021, 2, 105–116;

A. Ibanez de Opakua, F. Klama, I. E. Ndukwe, G. E. Martin, R. T. Williamson, M. Zweckstetter, Angew. Chem. Int. Ed. Engl. 2020, 59, 6172–6176.

G. Sheldrick, Acta Crystallographica Section A 2015, 71, 3–8.

Schrödinger Release 2022–1 ed., Schrödinger, LLC, New York, NY, 2022.

C. Lu, C. Wu, D. Ghoreishi, W. Chen, L. Wang, W. Damm, G. A. Ross, M. K. Dahlgren, E. Russell, C. D. Von Bargen, R. Abel, R. A. Friesner, E. D. Harder, J. Chem. Theory. Comput. 2021, 17, 4291–4300.

Gaussian 16 Rev. C.01, Wallingford, CT, 2016.

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;

A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;

S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211;

C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens Matter. 1988, 37, 785–789;

S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211.

V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.

S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.

M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669–681.

J. Fukal, O. Páv, M. Buděšínský, I. Rosenberg, J. Šebera, V. Sychrovský, Phys. Chem. Chem. Phys. 2019, 21, 9924–9934;

L. Benda, Z. Sochorová Vokáčová, M. Straka, V. Sychrovský, J. Phys. Chem. B 2012, 116, 3823–3833.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...