31P NMR Study of P-Chirogenic Phosphaphenanthrenes with Molecular Flexibility tuned by Amino Acid Substituents
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-23014S
Grantová Agentura České Republiky
PubMed
40019280
DOI
10.1002/chem.202500330
Knihovny.cz E-zdroje
- Klíčová slova
- 31P NMR spectroscopy, DOPO derivatives, Karplus-like dependence, conformational equilibria, stereochemical analysis,
- Publikační typ
- časopisecké články MeSH
Model phosphonamidates derived from 9,10-dihydro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) with molecular flexibility tuned by amino acid substituents were prepared as pairs of diastereoisomers (DSIs) differing in configuration on phosphorus atom. X-ray diffraction (XRD) determined absolute configuration on phosphorus and revealed conformational flexibility of six-membered oxa-phospha-cycle. Quantum-chemical calculations combined with machine learning provided 2-4 representative conformers from each DSI present in solution. 31P chemical shift of RS DSIs was higher compared to the SS ones. Calculated 31P-1H as well as 31P-13C J-couplings followed Karplus dependence of J-coupling values on dihedral angles between interacting nuclei, showing reasonable match with the literature data. The effect of molecular flexibility quantified by parameter nConf20 on NMR parameters was significant, especially for residual dipolar couplings (RDCs), where Pearson correlation factor R decreased with increasing nConf20 parameter.
Department of Inorganic Chemistry Faculty of Science Charles University Prague 128 43 Czech Republic
Department of Organic Chemistry Faculty of Science Charles University Prague 128 43 Czech Republic
Zobrazit více v PubMed
K. R. Gustafson in Handbook of Marine Natural Products, 2012, pp. 547–570;
R. Riccio, G. Bifulco, P. Cimino, C. Bassarello, L. Gomez-Paloma, Pure Appl. Chem. 2003, 75, 295–308;
C. Aroulanda, P. Lesot, Chirality 2022, 34, 182–244.
N. Matsumori, D. Kaneno, M. Murata, H. Nakamura, K. Tachibana, J. Org. Chem. 1999, 64, 866–876.
M. Karplus, J. Am. Chem. Soc. 2002, 85, 2870–2871.
C. A. G. Haasnoot, F. A. A. M. de Leeuw, C. Altona, Tetrahedron 1980, 36, 2783–2792.
D. Neuhaus, eMagRes 2011.
C. M. Thiele, S. Berger, Org. Lett. 2003, 5, 705–708;
Y. Liu, A. Navarro-Vazquez, R. R. Gil, C. Griesinger, G. E. Martin, R. T. Williamson, Nat. Protoc. 2019, 14, 217–247.
P. Lesot, C. Aroulanda, P. Berdague, A. Meddour, D. Merlet, J. Farjon, N. Giraud, O. Lafon, Prog. Nucl. Magn. Reson. Spectrosc. 2020, 116, 85–154.
P. H. Willoughby, M. J. Jansma, T. R. Hoye, Nat. Protoc. 2014, 9, 643–660;
J. Vaara, Phys. Chem. Chem. Phys. 2007, 9, 5399–5418.
G. J. Sharman, Magn. Reson. Chem. 2007, 45, 317–324.
L. Kozerski, R. Kawecki, P. Krajewski, P. Gluzinski, K. Pupek, P. E. Hansen, M. P. Williamson, J. Org. Chem. 2002, 60, 3533–3538;
C. F. Tormena, Prog. Nucl. Magn. Reson. Spectrosc. 2016, 96, 73–88.
D. J. Detlefsen, S. E. Hill, S. H. Day, M. S. Lee, Curr. Med. Chem. 1999, 6, 353–358;
A. T. Namanja, X. J. Wang, B. Xu, A. Y. Mercedes-Camacho, B. D. Wilson, K. A. Wilson, F. A. Etzkorn, J. W. Peng, J. Am. Chem. Soc. 2010, 132, 5607–5609.
U. Sternberg, C. Fares, Phys. Chem. Chem. Phys. 2022, 24, 9608–9618.
I. A. Khodov, S. V. Efimov, V. V. Klochkov, L. A. E. Batista de Carvalho, M. G. Kiselev, J. Mol. Struct. 2016, 1106, 373–381.
J. Braun, P. Katzberger, G. A. Landrum, S. Riniker, J. Chem. Inf. Model. 2024, 64, 7917–7924.
J. G. Wicker, R. I. Cooper, J. Chem. Inf. Model. 2016, 56, 2347–2352.
K. Saito in Chemical Physics of Molecular Condensed Matter, 2020, pp. 177–198.
L. Yu, S. M. Reutzel-Edens, C. A. Mitchell, Org. Process Res. Dev. 2000, 4, 396–402;
S. K. Tang, R. J. Davey, P. Sacchi, A. J. Cruz-Cabeza, Chem. Sci. 2020, 12, 993–1000.
R. B. Best, K. A. Merchant, I. V. Gopich, B. Schuler, A. Bax, W. A. Eaton, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18964–18969.
T. Imamoto, Chem. Rev. 2024, 124, 8657–8739;
L. Yin, J. Li, C. Wu, H. Zhang, W. Zhao, Z. Fan, M. Liu, S. Zhang, M. Guo, X. Dou, D. Guo, Nat. Commun. 2024, 15, 2548.
J. H. Wu, S. Fang, X. Zheng, J. He, Y. Ma, Z. Su, T. Wang, Angew. Chem. Int. Ed. 2023, 62, e202309515.
S. V. Bobrov, A. A. Karasik, O. G. Sinyashin, Phosphorus. Sulfur. Silicon. Relat. Elem. 2008, 144, 289–292;
J. F. Nixon, Chem. Rev. 2002, 88, 1327–1362.
Y. Mehellou, H. S. Rattan, J. Balzarini, J. Med. Chem. 2018, 61, 2211–2226;
P. Finkbeiner, J. P. Hehn, C. Gnamm, J. Med. Chem. 2020, 63, 7081–7107;
J. B. Rodriguez, C. Gallo-Rodriguez, ChemMedChem 2019, 14, 190–216.
P. Šimon, M. Tichotová, M. Garcia Gallardo, E. Procházková, O. Baszczyňski, Chem. Eur. J. 2021, 27, 12763–12775.
E. Procházková, P. Šimon, M. Straka, J. Filo, M. Májek, M. Cigáň, O. Baszczyňski, Chem. Commun. 2021, 57, 211–214.
J. Fukal, O. Páv, M. Buděšínský, J. Šebera, V. Sychrovský, Phys. Chem. Chem. Phys. 2017, 19, 31830–31841.
M. Tichotová, A. Ešnerová, L. Tučková, L. Bednárová, I. Císařová, O. Baszczyňski, E. Prochazková, J. Magn. Reson. 2022, 336, 107149;
J. Szyszkowiak, P. Majewska, Tetrahedron: Asymmetry 2014, 25, 103–112.
M. Christou Tichotová, L. Tučková, H. Kocek, A. Růžička, M. Straka, E. Procházková, Phys. Chem. Chem. Phys. 2024, 26, 2016–2024;
U. Sternberg, M. Christou Tichotová, L. Tučková, A. Ešnerová, J. Hanus, O. Baszczyňski, E. Procházková, Phys. Chem. Chem. Phys. 2024, 26, 20814–20819.
K. A. Salmeia, S. Gaan, Polym. Degrad. Stab. 2015, 113, 119–134.
S. S. Le Corre, M. Berchel, H. Couthon-Gourves, J. P. Haelters, P. A. Jaffres, Beilstein J. Org. Chem. 2014, 10, 1166–1196.
G. Keglevich, H. Szelke, A. Kerényi, V. Kudar, M. Hanusz, K. Simon, T. Imre, K. Ludányi, Tetrahedron: Asymmetry 2005, 16, 4015–4021;
S. Wagner, M. Rakotomalala, Y. Bykov, O. Walter, M. Döring, Heteroat. Chem. 2012, 23, 216–222;
M. Weinert, O. Fuhr, M. Döring, Arkivoc 2018, 2018, 278–293;
K. R. Winters, J. L. Montchamp, J. Org. Chem. 2020, 85, 14545–14558.
S. C. Harvey, M. Prabhakaran, J. Am. Chem. Soc. 2002, 108, 6128–6136.
H. S. Park, Y. K. Kang, New J. Chem. 2021, 45, 9780–9793;
J. P. McCullough, D. R. Douslin, W. N. Hubbard, S. S. Todd, J. F. Messerly, I. A. Hossenlopp, F. R. Frow, J. P. Dawson, G. Waddington, J. Am. Chem. Soc. 2002, 81, 5884–5890.
M. Tsuboi, S. Takahashi, Y. Kyogoku, H. Hayatsu, T. Ukita, M. Kainosho, Science 1969, 166, 1504–1505;
X. Tang, Y. Zhou, Y. Wang, Y. Lin, S. Pan, Q. Che, J. Sang, Z. Gao, W. Zhang, Y. Wang, G. Li, L. Gao, Z. Wang, X. Yang, A. Liu, S. Wang, B. Yu, P. Xu, Z. Wang, Z. Zhang, P. Yang, W. Xie, H. Sun, W. Li, J. Am. Chem. Soc. 2024, 146, 8768–8779.
S. V. Fedorov, L. B. Krivdin, Y. Y. Rusakov, N. A. Chernysheva, V. L. Mikhailenko, Magn. Reson. Chem. 2010, 48 Suppl 1, S48–55.
P. P. Lankhorst, C. A. Haasnoot, C. Erkelens, C. Altona, J. Biomol. Struct. Dyn. 1984, 1, 1387–1405;
S. Yokoyama, F. Inagaki, T. Miyazawa, Biochem. 1981, 20, 2981–2988.
A. Ibanez de Opakua, M. Zweckstetter, Magn. Reson. 2021, 2, 105–116;
A. Ibanez de Opakua, F. Klama, I. E. Ndukwe, G. E. Martin, R. T. Williamson, M. Zweckstetter, Angew. Chem. Int. Ed. Engl. 2020, 59, 6172–6176.
G. Sheldrick, Acta Crystallographica Section A 2015, 71, 3–8.
Schrödinger Release 2022–1 ed., Schrödinger, LLC, New York, NY, 2022.
C. Lu, C. Wu, D. Ghoreishi, W. Chen, L. Wang, W. Damm, G. A. Ross, M. K. Dahlgren, E. Russell, C. D. Von Bargen, R. Abel, R. A. Friesner, E. D. Harder, J. Chem. Theory. Comput. 2021, 17, 4291–4300.
Gaussian 16 Rev. C.01, Wallingford, CT, 2016.
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B 1988, 37, 785–789;
A. D. Becke, J. Chem. Phys. 1993, 98, 5648–5652;
S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211;
C. Lee, W. Yang, R. G. Parr, Phys. Rev. B Condens Matter. 1988, 37, 785–789;
S. H. Vosko, L. Wilk, M. Nusair, Can. J. Phys. 1980, 58, 1200–1211.
V. Barone, M. Cossi, J. Phys. Chem. A 1998, 102, 1995–2001.
S. Grimme, J. Antony, S. Ehrlich, H. Krieg, J. Chem. Phys. 2010, 132, 154104.
M. Cossi, N. Rega, G. Scalmani, V. Barone, J. Comput. Chem. 2003, 24, 669–681.
J. Fukal, O. Páv, M. Buděšínský, I. Rosenberg, J. Šebera, V. Sychrovský, Phys. Chem. Chem. Phys. 2019, 21, 9924–9934;
L. Benda, Z. Sochorová Vokáčová, M. Straka, V. Sychrovský, J. Phys. Chem. B 2012, 116, 3823–3833.