Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
POWR.03.05.00-00-Z098/17
Silesian University of Technology
GA 2219812S
Czech Science Foundation
PubMed
36676371
PubMed Central
PMC9862715
DOI
10.3390/ma16020637
PII: ma16020637
Knihovny.cz E-zdroje
- Klíčová slova
- Fick’s second law, chloride ions, chloride migration, diffusion coefficient, diffusion model, standard methods,
- Publikační typ
- časopisecké články MeSH
This research paper is the result of observations made during tests according to various standards carried out on behalf of industry. The article presents diffusion coefficient values calculated according to the thermodynamic migration model for twenty different concrete mixes and some selected mixes of the codified approaches known as ASTM 1202, NT BUILD 443, NT BUILD 492, ASTM 1556. The method used here, according to the thermodynamic model of migration, allows determination of the value of the diffusion coefficient after short studies of the migration of chloride ions into concrete and was described in earlier works by one of the authors. Unfortunately, when using standard methods, the values of diffusion coefficients differ significantly from each other. In each concrete, diffusion tests were carried out in the conditions of long-term natural diffusion to verify the values determined by standard methods and according to the thermodynamic model of migration. The analysis conducted for this research paper reveals that the chloride permeability test method according to the standard ASTM C1202-97 has an almost 2.8-fold greater dispersion of the obtained results compared to the thermodynamic model of migration. It was observed that the standard NT BUILD 492 has a 3.8-fold dispersion of results compared to the method with the thermodynamic model of migration. The most time-consuming method is the standard method NT BUILD 443. The largest 3.5-fold dispersion of values concerning the reference value are observed in that method. Moreover, a method based on a thermodynamic migration model seems to be the best option of all analyzed methods. It is a quite quick, but laborious, method that should be tested for a larger number of concrete mixes. A great advantage of this method is that it is promising for a wide range of concrete mixtures, both plain concrete and concrete with various additives and admixtures, as well as high-performance concrete.
Zobrazit více v PubMed
Guimarães A.T.C., Climent M.A., De Vera G., Vicente F.J., Rodrigues F.T., Andrade C. Determination of chloride diffusivity through partially saturated Portland cement concrete by a simplified procedure. Constr. Build. Mater. 2011;25:785–790. doi: 10.1016/j.conbuildmat.2010.07.005. DOI
Yang J., Zhang P., Feng J. Advances in Chloride Ion Diffusion Coefficient. Test Research for Concrete; Proceedings of the First International Conference on Innovation in Low-Carbon Cement and Concrete Technology (ILCCC2019); University College, London, UK. 24–26 June 2019; pp. 1–6.
Shi X., Xie N., Fortune K., Gong J. Durability of steel reinforced concrete in chloride environments: An overview. Constr. Build. Mater. 2012;30:125–138. doi: 10.1016/j.conbuildmat.2011.12.038. DOI
Test C.C., Drilled T., Statements B. Determining the Apparent Chloride Diffusion Coefficient of Cementitious Mixtures by Bulk Diffusion. Designation 1556-11a. 2003;4:1–7.
Concrete Hardened: Accelerated Chloride Penetration. Nordtest; Espoo, Finland: 1995. pp. 1–5.
Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration. ASTM International; West Conshohocken, PA, USA: 2012.
Whiting D. Report No. FHWA/RD-81/119 Rapid Determination of the Chloride Permeability of Concrete Final. Federal Highway Administration; Washington, DC, USA: 1981. p. 174.
Ghosh P., Hammond A., Tikalsky P.J. Publication Prediction of Equivalent Steady-State Chloride Diffusion Coefficients. Mater. J. 2011;108:88–94.
Lu X. Application of the Nernst-Einstein equation to concrete. Cem. Concr. Res. 1997;27:293–302. doi: 10.1016/S0008-8846(96)00200-1. DOI
Standard Method of Test for Resistance of Concrete to Chloride Ion Penetration. American Association of State and Highway Transportation Officials; Washington, DC, USA: 2002.
Tang L., Nilsson L.O. Chloride Diffusivity in High Strength Concrete. Nord. Concr. Res. 1992;11:162–170.
Luping T., Nilsson L. Accelerated Tests for Chloride Diffusivity and their Application in Prediction of Chloride Penetration. Mech. Chem. Degrad. Cem. Based Syst. 2020;45:399–408. doi: 10.1201/9781482294958-57. DOI
Luping T., Nilsson L. Rapid determination of the Chloride Diffusivity in concrete by Applying an Electrical Field. ACI Mater. J. 1992;89:49–53.
Concrete, Mortar and Cement-Based Repair Materials: Chloride Migration Coefficient from Non-Steady-State Migration Experiments. Nordtest; Espoo, Finland: 1999. pp. 1–8.
He F., Shi C., Yuan Q., An X., Tong B. Calculation of chloride concentration at color change boundary of AgNO3 colorimetric measurement. Cem. Concr. Res. 2011;41:1095–1103. doi: 10.1016/j.cemconres.2011.06.008. DOI
Castellote M., Andrade C., Kropp J., Antonsen R., Baroghel-Bouny V., Basheer M.P.A., Bertolini L., Carcasses M., Cavlek C., Chaussadent T., et al. Round-Robin test on methods for determining chloride transport parameters in concrete. Mater. Struct. 2006;39:955–990. doi: 10.1617/s11527-006-9193-x. DOI
Andrade C., D’Andrea R., Rebolledo N. Chloride ion penetration in concrete: The reaction factor in the electrical resistivity model. Cem. Concr. Compos. 2014;47:41–46. doi: 10.1016/j.cemconcomp.2013.09.022. DOI
Funahashi M. Predicting corrosion-free service life of a concrete structure in a chloride environment. ACI Mater. J. 1990;87:581–587. doi: 10.14359/2533. DOI
Boddy A., Bentz E., Thomas M.D.A., Hooton R.D. Overview and sensitivity study of a multimechanistic chloride transport model. Cem. Concr. Res. 1999;29:827–837. doi: 10.1016/S0008-8846(99)00045-9. DOI
Kumar S., Rai B., Biswas R., Samui P., Kim D. Prediction of rapid chloride permeability of self-compacting concrete using Multivariate Adaptive Regression Spline and Minimax Probability Machine Regression. J. Build. Eng. 2020;32:101490. doi: 10.1016/j.jobe.2020.101490. DOI
Luping T., Gulikers J. On the mathematics of time-dependent apparent chloride diffusion coefficient in concrete. Cem. Concr. Res. 2007;37:589–595. doi: 10.1016/j.cemconres.2007.01.006. DOI
Tang L. Ph.D. Thesis. Chalmers University of Technology; Gothenburg, Sweden: 1996. Chloride Transport in Concrete—Measurement and Prediction.
Nilsson L. On the uncertainty of service-life models for reinforced marine concrete structures; Proceedings of the International RILEM Workshop on Life Prediction and Aging Management of Concrete Structures; Cannes, France. 16–17 October 2000; pp. 1–13.
Nokken M., Boddy A., Hooton R.D., Thomas M.D.A. Time dependent diffusion in concrete-three laboratory studies. Cem. Concr. Res. 2006;36:200–207. doi: 10.1016/j.cemconres.2004.03.030. DOI
Stanish K., Thomas M. The use of bulk diffusion tests to establish time-dependent concrete chloride diffusion coefficients. Cem. Concr. Res. 2003;33:55–62. doi: 10.1016/S0008-8846(02)00925-0. DOI
Lehner P., Konečný P., Ponikiewski T. Experimental and numerical evaluation of SCC concrete durability related to ingress of chlorides. AIP Conf. Proc. 2018;1978:1–4. doi: 10.1063/1.5043803. DOI
Dehkordi E.R., Moodi F., GivKashi M.R., Ramezanianpour A.A., Khani M. Software simulation of chloride ions penetration into composite of pre-fabricated geopolymer permanent formworks (PGPFs) and substrate concrete. J. Build. Eng. 2022;51:104344. doi: 10.1016/j.jobe.2022.104344. DOI
Han S.H. Influence of diffusion coefficient on chloride ion penetration of concrete structure. Constr. Build. Mater. 2007;21:370–378. doi: 10.1016/j.conbuildmat.2005.08.011. DOI
Andrade C., Prieto M., Tanner P., Tavares F., D’Andrea R. Testing and modelling chloride penetration into concrete. Constr. Build. Mater. 2013;39:9–18. doi: 10.1016/j.conbuildmat.2012.08.012. DOI
Spiesz P., Brouwers H.J.H. The apparent and effective chloride migration coefficients obtained in migration tests. Cem. Concr. Res. 2013;48:116–127. doi: 10.1016/j.cemconres.2013.02.005. DOI
Tang L., Sørensen H.E. Precision of the Nordic test methods for measuring the chloride diffusion/migration coefficients of concrete. Mater. Struct. 2001;34:479–485. doi: 10.1007/BF02486496. DOI
Konečný P., Lehner P., Ponikiewski T., Miera P. Comparison of Chloride Diffusion Coefficient Evaluation Based on Electrochemical Methods. Procedia Eng. 2017;190:193–198. doi: 10.1016/j.proeng.2017.05.326. DOI
Standard Method of Test for Surface Resistivity Indication of Concrete’s Ability to Resist Chloride Ion Penetration. American Association of State and Highway Transportation Officials; Washington, DC, USA: 2011.
Guignone G.C., Vieira G.L., Zulcão R., Mion G., Baptista G. Analysis of the chloride diffusion coefficients by different test methods in concrete mixtures containing metakaolin and high-slag blast-furnace cement. Rev. Mater. 2019:1–18. doi: 10.1590/s1517-707620190004.0837. DOI
Tang L., Gjørv O.E. Chloride diffusivity based on migration testing. Cem. Concr. Res. 2001;31:973–982. doi: 10.1016/S0008-8846(01)00525-7. DOI
Tang L. Concentration dependence of diffusion and migration of chloride ions Part 1. Theoretical considerations. Cem. Concr. Res. 1999;29:1463–1468. doi: 10.1016/S0008-8846(99)00121-0. DOI
Tang L. Concentration dependence of diffusion and migration of chloride ions Part 2. Experimental evaluations. Cem. Concr. Res. 1999;29:1469–1474. doi: 10.1016/S0008-8846(99)00120-9. DOI
Andrade C., Castellote M., Alonso C., González C. Relation between colourimetric chloride penetration depth and charge passed in migration tests of the type of standard ASTM C1202-91. Cem. Concr. Res. 1999;29:417–421. doi: 10.1016/S0008-8846(98)00226-9. DOI
Otsuki N., Nagataki S., Nakashita K. Evaluation of the AgNO3 solution spray method for measurement of chloride penetration into hardened cementitious matrix materials. Constr. Build. Mater. 1993;7:195–201. doi: 10.1016/0950-0618(93)90002-T. DOI
Al-Alaily H.S., Hassan A.A.A. Time-dependence of chloride diffusion for concrete containing metakaolin. J. Build. Eng. 2016;7:159–169. doi: 10.1016/j.jobe.2016.06.003. DOI
Shafikhani M., Chidiac S.E. Quantification of concrete chloride diffusion coefficient—A critical review. Cem. Concr. Compos. 2019;99:225–250. doi: 10.1016/j.cemconcomp.2019.03.011. DOI
Liu J., Ou G., Qiu Q., Xing F., Tang K., Zeng J. Atmospheric chloride deposition in field concrete at coastal region. Constr. Build. Mater. 2018;190:1015–1022. doi: 10.1016/j.conbuildmat.2018.09.094. DOI
Liu J., Zhang W., Li Z., Jin H., Tang L. Influence of deicing salt on the surface properties of concrete specimens after 20 years. Constr. Build. Mater. 2021;295:123–643. doi: 10.1016/j.conbuildmat.2021.123643. DOI
Lehner P., Koubová L., Rosmanit M. Study of Effect of Reference Time of Chloride Diffusion Coefficient in Numerical Modelling of Durability of Concrete. Buildings. 2022;12:1443. doi: 10.3390/buildings12091443. DOI
Test Method for Determining the Penetration of Chloride Ion into Concrete by Ponding. ASTM; West Conshohocken, PA, USA: 1996.
Zhang F., Wei F., Wu X., Hu Z., Li X., Gao L. Study on Concrete Deterioration and Chloride Ion Diffusion Mechanism by Different Aqueous NaCl-MgSO4 Concentrations. Buildings. 2022;12:1843. doi: 10.3390/buildings12111843. DOI
Sanjuán M.Á., Rivera R.A., Martín D.A., Estévez E. Chloride Diffusion in Concrete Made with Coal Fly Ash Ternary and Ground Granulated Blast-Furnace Slag Portland Cements. Materials. 2023;15:8914. doi: 10.3390/ma15248914. PubMed DOI PMC
Szweda Z., Zybura A. Theoretical model and experimental tests on chloride diffusion and migration processes in concrete. Procedia Eng. 2013;57:1121–1130. doi: 10.1016/j.proeng.2013.04.141. DOI
Szweda Z. Analysis of protective features of concrete in precast prestressed floor slabs (HC type) against chloride penetration. MATEC Web Conf. 2018;163:05006. doi: 10.1051/matecconf/201816305006. DOI
Szweda Z. Chloride diffusion and migration coefficients in concretes with CEM I 42.5 R; CEMII/B-V 32.5 R; CEM I 42.5N/SR3/NA cement determined by standard methods and thermodynamic migration model. Ochr. Przed Koroz. 2019;62:162–169. doi: 10.15199/40.2019.5.1. DOI
Szweda Z. Comparison of Protective Properties of Concretes with Low Alkali Cement. IOP Conf. Ser. Mater. Sci. Eng. 2019;603:042059. doi: 10.1088/1757-899X/603/4/042059. DOI
Szweda Z., Ponikiewski T., Katzer J. A study on replacement of sand by granulated ISP slag in SCC as a factor formatting its durability against chloride ions. J. Clean. Prod. 2017;156:569–576. doi: 10.1016/j.jclepro.2017.04.072. DOI
Concrete, Specification, Performance, Production and Conformity. British Standards Institution; London, UK: 2013.
Andrade C., Sanjuán M., Recuero A., Río O. Calculation of chloride diffusivity in concrete from migration experiments, in non steady-state conditions. Cem. Concr. Res. 1994;24:1214–1228. doi: 10.1016/0008-8846(94)90106-6. DOI
Szweda Z., Gołaszewski J., Konečny P. Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration—Data [Data set] Zenodo. 2022 doi: 10.5281/zenodo.7249067. PubMed DOI PMC
Caijun S. Effect of mixing proportions of concrete on its electrical conductiv-ity and the rapid chloride permeability test (ASTM C 1202 or AASHTO T 277-83) results. Cem. Concr. Res. 2004;34:537–545.
Khanzadeh Moradllo M., Sudbrink B., Hu Q., Aboustait M., Tabb B., Ley M.T., Davis J.M. Using micro X-ray fluorescence to image chloride profiles in concrete. Cem. Concete Res. 2017;92:128–141. doi: 10.1016/j.cemconres.2016.11.014. DOI
Gottlieb C., Millar S., Günther T., Wilsch G. Revealing hidden spectral information of chlorine and sulfur in data of a mobile Laser-induced Breakdown Spectroscopy system using chemometrics. Spectrochim. Acta Part B At. Spectrosc. 2017;132:43–49. doi: 10.1016/j.sab.2017.04.001. DOI
Perkowski Z., Szweda Z. The “Skin Effect” Assessment of Chloride Ingress into Concrete Based on the Identification of Effective and Apparent Diffusivity. Appl. Sci. 2022;12:1730. doi: 10.3390/app12031730. DOI
The Influence of Corrosion Processes on the Degradation of Concrete Cover