Testing the Corrosion Rate of Prestressed Concrete Beams Under Variable Temperature and Humidity Conditions

. 2025 Mar 29 ; 18 (7) : . [epub] 20250329

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40271789

To date, many studies can be found in the literature attempting to explain the effects of temperature and humidity on the rate of corrosion processes. However, it is difficult to analyze the results of these studies and draw unambiguous conclusions due to the different test conditions as well as different electrochemical test methods for corrosion rates. Most of these studies concern concrete reinforced with ordinary steel. However, there is a lack of research and analysis conducted on prestressed elements. The purpose of this study was to evaluate the effect of temperature and humidity changes on the development of corrosion processes in prestressed concrete beams. Tests were performed both under conditions of increasing temperature and humidity, which were reproduced in a climatic chamber, as well as in an environment exposed to chloride ions. The process of migration of chloride ions into the concrete was accelerated by the application of an electric field. In addition, selected beams were subjected to prolonged loading to sustain the induced scratching. Corrosion rate tests were carried out using the non-destructive linear polarization method (LPR). Strength tests of the beams were also carried out, as well as displacement and deformation measurements using the Aramis system's digital image correlation technique. The beams without chloride addition had a fairly stable low level of corrosion current density throughout the test period, indicating the passive state of the reinforcement, regardless of the environment in which they were placed and the additional loading. In an environment with a humidity of 30% and a temperature of 20 °C, the corrosion current density increment was much faster than for beams with chloride additives in an environment with a humidity of 90% and a temperature of 30 °C. A smaller increase in corrosion current density could be observed in beams that were scratched, compared to non-scratched beams. The results of the strength tests indicated that in beams subjected to accelerated migration of chloride ions, the deflection at scratching was significantly lower than in beams without chloride addition. Also in these beams, milder strains were registered on the surface of the elements at the time of scratching.

Zobrazit více v PubMed

Ajdukiewicz Andrzej i Mames J. Konstrukcje z Betonu Sprężonego. Stowarzyszenie Producentów Cementu; Kraków, Poland: 2003.

Niu D., Miao Y. Experimental study on fatigue performance of corroded highway bridges based on vehicle loading. Tumu Gongcheng Xuebao/China Civ. Eng. J. 2018;51:1–10.

Lu Z.H., Wu S.Y., Tang Z., Zhao Y.G., Li W. Effect of chloride-induced corrosion on the bond behaviors between steel strands and concrete. Mater. Struct. Constr. 2021;54:129. doi: 10.1617/s11527-021-01724-8. DOI

Yu Q.-Q., Gu X.-L., Zeng Y.-H., Zhang W.-P. Flexural behavior of Corrosion-Damaged prestressed concrete beams. Eng. Struct. 2022;272:114985. doi: 10.1016/j.engstruct.2022.114985. DOI

Madaj A., Mossor K. Korozja stali sprężającej w konstrukcjach kablobetonowych. Przyczyny, skutki, zapobieganie. Arch. Inst. Inżynierii Lądowej. 2018;26:93–108. doi: 10.21008/j.1897-4007.2018.26.08. DOI

Sigvaldsen M., Ersdal G., Markeset G., Samarakoon S., Langeteig M. Capacity of concrete structures with corroded reinforcement and prestressing tendons. IOP Conf. Ser. Mater. Sci. Eng. 2021;1201:012052. doi: 10.1088/1757-899x/1201/1/012052. DOI

Valiente A. Stress corrosion failure of large diameter pressure pipelines of prestressed concrete. Eng. Fail. Anal. 2001;8:245–261. doi: 10.1016/S1350-6307(00)00010-8. DOI

Cherry B.W., Price S.M. Pitting, crevice and stress corrosion cracking studies of cold drawn eutectoid steels. Corros. Sci. 1980;20:1163–1183. doi: 10.1016/0010-938X(80)90089-X. DOI

Li F.M., Yuan Y.S., Jiang J.H., Wang B. Stress corrosion cracking susceptibility of steel strands in concrete contaminated with salt; Proceedings of the 1st International Conference of Microstructure Related Durability of Cementitious Composites; Nanjing, China. 13–15 October 2008; pp. 463–472.

Xu F., Chen Y., Zheng X., Ma R., Tian H. Experimental study on corrosion and mechanical behavior of Main Cable Wires Considering the effect of strain. Materials. 2019;12:753. doi: 10.3390/ma12050753. PubMed DOI PMC

Hansson C.M., Poursaee A., Laurent A. Macrocell and microcell corrosion of steel in ordinary Portland cement and high performance concretes. Cem. Concr. Res. 2006;36:2098–2102. doi: 10.1016/j.cemconres.2006.07.005. DOI

Ahmad S. Reinforcement corrosion in concrete structures, its monitoring and service life prediction—A review. Cem. Concr. Compos. 2003;25:459–471. doi: 10.1016/S0958-9465(02)00086-0. DOI

Li F., Yuan Y., Li C.Q. Corrosion propagation of prestressing steel strands in concrete subject to chloride attack. Constr. Build. Mater. 2011;25:3878–3885. doi: 10.1016/j.conbuildmat.2011.04.011. DOI

Zhao Y., Dou Y. Study on fatigue damage law of bonding between steel strand and concrete under corrosive environment of chloride. Chem. Eng. Trans. 2017;62:1033–1038. doi: 10.3303/CET1762173. DOI

Szweda Z., Jasinski R. Static Analysis of Prestressed Floor Slabs HC500 with Changes in Tendon Adhesion to Concrete Induced by Penetration of Chloride Ions. IOP Conf. Ser. Mater. Sci. Eng. 2019;471:052035. doi: 10.1088/1757-899X/471/5/052035. DOI

Kioumarsi M., Benenato A., Ferracuti B., Imperatore S. Residual flexural capacity of corroded prestressed reinforced concrete beams. Metals. 2021;11:442. doi: 10.3390/met11030442. DOI

Belletti B., Ravasini S., Sirico A., Montero J.S., Torres J., Rebolledo N., Saura P. Bridge Maintenance, Safety, Management, Digitalization and Sustainability, Proceedings of the 12th International Conference on Bridge Maintenance, Safety and Management (IABMAS 2024), Copenhagen, Denmark, 24–28 June 2024. Taylor & Francis; Abingdon, UK: 2024. Experimental investigation on shear behaviour of corroded and repaired prestressed concrete beams; pp. 525–532. DOI

Rinaldi Z., Imperatore S., Valente C. Experimental evaluation of the flexural behavior of corroded P/C beams. Constr. Build. Mater. 2010;24:2267–2278. doi: 10.1016/j.conbuildmat.2010.04.029. DOI

El Menoufy A., Soudki K. Flexural behavior of corroded pretensioned girders repaired with CFRP sheets. PCI J. 2014;59:129–143. doi: 10.15554/pcij.03012014.129.143. DOI

ElBatanouny M.K., Nanni A., Ziehl P.H., Matta F. Condition assessment of prestressed concrete beams using cyclic and monotonic load tests. ACI Struct. J. 2015;112:81–90. doi: 10.14359/51687181. DOI

Enevoldsen J.N., Hansson C.M., Hope B.B. The influence of internal relative humidity on the rate of corrosion of steel embedded in concrete and mortar. Cem. Concr. Res. 1994;24:1373–1382. doi: 10.1016/0008-8846(94)90122-8. DOI

Pour-Ghaz M., Isgor O.B., Ghods P. The effect of temperature on the corrosion of steel in concrete. Part 1: Simulated polarization resistance tests and model development. Corros. Sci. 2009;51:415–425. doi: 10.1016/j.corsci.2008.10.034. DOI

Jaśniok T., Jaśniok M. Influence of rapid changes of moisture content in concrete and temperature on corrosion rate of reinforcing steel. Procedia Eng. 2015;108:316–323. doi: 10.1016/j.proeng.2015.06.153. DOI

López W., González J.A., Andrade C. Influence of temperature on the service life of rebars. Cem. Concr. Res. 1993;23:1130–1140. doi: 10.1016/0008-8846(93)90173-7. DOI

Andrade C., Alonso C., Sarría J. Influence of relative humidity and temperature on-site corrosion rates. Mater. Constr. 1998;1998:5–17. doi: 10.3989/mc.1998.v48.i251.468. DOI

Andrade C., Alonso C., Sarría J. Corrosion rate evolution in concrete structures exposed to the atmosphere. Cem. Concr. Compos. 2002;24:55–64. doi: 10.1016/S0958-9465(01)00026-9. DOI

Bouteiller V., Cherrier J.F., L’Hostis V., Rebolledo N., Andrade C., Marie-Victoire E. Influence of humidity and temperature on the corrosion of reinforced concrete prisms. Eur. J. Environ. Civ. Eng. 2012;16:471–480. doi: 10.1080/19648189.2012.668004. DOI

Yang R., Yang Y., Zhang X., Wang X. Experimental Study on Secondary Anchorage Bond Performance of Residual Stress after Corrosion Fracture at Ends of Prestressed Steel Strands. Materials. 2023;16:7441. doi: 10.3390/ma16237441. PubMed DOI PMC

Szweda Z., Gołaszewski J., Ghosh P., Lehner P., Konečný P. Comparison of Standardized Methods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration. Materials. 2023;16:637. doi: 10.3390/ma16020637. PubMed DOI PMC

Castellote M., Andrade C., Alonso C. Chloride transference numbers in steady-state migration tests. Mag. Concr. Res. 2000;52:93–100. doi: 10.1680/macr.2000.52.2.93. DOI

Szweda Z., Mazurkiewicz J., Konečný P., Ponikiewski T. Effect of Imperial Smelting Process Slag Addition in Self Compacting Concrete Concrete on the Efficiency of Electrochemical Chloride Extraction. Materials. 2023;16:5159. doi: 10.3390/ma16145159. PubMed DOI PMC

Moshtaghi M., Eškinja M., Mori G., Griesser T., Safyari M., Cole I. The effect of HPAM polymer for enhanced oil recovery on corrosion behaviour of a carbon steel and interaction with the inhibitor under simulated brine conditions. Corros. Sci. 2023;217:111118. doi: 10.1016/j.corsci.2023.111118. DOI

Ajdukiewicz C., Gajewski M., Mossakowski P. Zastosowanie systemu optycznej korelacji obrazu Aramis do identyfikacji rys w elementach betonowych; Proceedings of the TRANSCOMP—XIV International Conference Computer Systems Aided Science, Industry and Transport; Zakopane, Polska. 6–9 December 2011; pp. 1–8.

Szweda Z., Kuziak J., Sozańska-Jędrasik L., Czachura D. Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions. Materials. 2023;16:3889. doi: 10.3390/ma16103889. PubMed DOI PMC

Scully J.R. Polarization Resistance Method for Determination of Instantaneous Corrosion Rates. Corrosion. 2000;56:199–218. doi: 10.5006/1.3280536. DOI

Raczkiewicz W. Use of polypropylene fi bres to increase the resistance of reinforcement to chloride corrosion in concretes. Sci. Eng. Compos. Mater. 2021;22:555–567. doi: 10.1515/secm-2021-0053. DOI

Raczkiewicz W., Wójcicki A. Temperature impact on the assessment of reinforcement corrosion risk in concrete by galvanostatic pulse method. Appl. Sci. 2020;10:1089. doi: 10.3390/app10031089. DOI

Szweda Z., Skórkowski A., Konečný P. The Influence of Corrosion Processes on the Degradation of Concrete Cover. Materials. 2024;17:1398. doi: 10.3390/ma17061398. PubMed DOI PMC

Szweda Z. The influence of chloride ions content on the mechanical properties of concrete. Struct. Environ. 2024;16:158–165. doi: 10.30540/sae-2024-016. DOI

Szweda Z., Krak M., Czerniak S., Skórkowski A., Małek J. Testing the Corrosion Rate of Prestressed Beams Under Variable Temperature and Humidity Conditions. [(accessed on 9 February 2025)]. Available online: https://zenodo.org/records/14840580.

Cheng L., Maruyama I. A Prediction Method for the Corrosion Rate of Steel Rebar in Carbonated Mortar under Variable Environmental Conditions. J. Adv. Concr. Technol. 2023;21:611–630. doi: 10.3151/jact.21.611. DOI

Alhozaimy A., Hussain R.R., Al-Zaid R., Al-Negheimish A. Coupled effect of ambient high relative humidity and varying temperature marine environment on corrosion of reinforced concrete. Constr. Build. Mater. 2012;28:670–679. doi: 10.1016/j.conbuildmat.2011.10.008. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...