• This record comes from PubMed

The Influence of Corrosion Processes on the Degradation of Concrete Cover

. 2024 Mar 19 ; 17 (6) : . [epub] 20240319

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic

Document type Journal Article

In this work, two methods were used to accelerate the corrosion of concrete. In the first method, chloride ions were injected into the concrete using the migration method. The moment of the initiation of the corrosion process was monitored using an electrochemical method of measuring polarization resistance. In the next step, the corrosion process was accelerated by the electrolysis process. Changes on the sample surface were also monitored using a camera. In the second method, the corrosion process of the reinforcing bar was initiated by the use of the electrolysis process only. Here, changes occurring on the surfaces of the tested sample were recorded using two web cameras placed on planes perpendicular to each other. Continuous measurement of the current flowing through the system was carried out in both cases. It was assumed that in conditions of natural corrosion, a crack would occur when the sum of the mass loss of the reinforcing bar due to corrosion reached the same value in tcr(real) (real time) as it reached in the tcr (time of cracking) during the accelerated corrosion test. The real time value was estimated for C1 concrete with cement CEM I. The estimated value was tcr(real) = 1.1 years and for C2 concrete with cement CEM III, tcr(real) = 11.2 years. However, the main difference that was observed during the tests was the nature of the concrete cracks. In the case of the C1 concrete sample, these occurred along the reinforcing bar, while in the C2 concrete, the failures occurred on a perpendicular plane transverse to the direction of the reinforcing bar.

See more in PubMed

Taerwe L., Matthys S. Fib Model Code for Concrete Structures 2010. Ernst&Sohn; Berlin, Germany: 2013.

Eurocode 2: Design of Concrete Structures-Part 1-1, General Rules and Rules for Buildings. Volume 1 European Committee for Standardization; Brussels, Belgium: 2004.

Xia J., Jin W.-L., Zhao Y.-X., Li L.-Y. Mechanical performance of corroded steel bars in concrete. Proc. Inst. Civ. Eng. Struct. Build. 2013;166:235–246. doi: 10.1680/stbu.11.00048. DOI

Caré S., Nguyen Q., L’Hostis V., Berthaud Y. Mechanical properties of the rust layer induced by impressed current method in reinforced mortar. Cem. Concr. Res. 2008;38:1079–1091. doi: 10.1016/j.cemconres.2008.03.016. DOI

Jamali A., Angst U., Adey B., Elsener B. Modeling of corrosion-induced concrete cover cracking: A critical analysis. Constr. Build. Mater. 2013;42:225–237. doi: 10.1016/j.conbuildmat.2013.01.019. DOI

Xu W., Zhang C., Liu H., Yang J., Wang X., Tian W., Cao K., Zhang T. Simulation and analysis of corrosion fracture of reinforced concrete based on phase field method. Case Stud. Constr. Mater. 2022;17:e01366. doi: 10.1016/j.cscm.2022.e01366. DOI

Suda K., Misra S., Motohashi K. Corrosion products of reinforcing bars embedded in concrete. Corros. Sci. 1993;35:1543–1549. doi: 10.1016/0010-938X(93)90382-Q. DOI

Chehade F.E.H., Younes R., Mroueh H., Chehade F.H. Time-dependent reliability analysis of reinforced-concrete bridges under the combined effect of corrosion, creep and shrinkage. WIT Trans. Built Environ. 2018;174:13–24. doi: 10.2495/SAFE170021. DOI

Vu K.A.T., Stewart M.G. Structural reliability of concrete bridges including improved chloride-induced corrosion models. Struct. Saf. 2000;22:313–333. doi: 10.1016/S0167-4730(00)00018-7. DOI

Stewart M.G. Spatial variability of pitting corrosion and its influence on structural fragility and reliability of RC beams in flexure. Struct. Saf. 2004;26:453–470. doi: 10.1016/j.strusafe.2004.03.002. DOI

Tuutti K. Corrosion of Steel in Concrete. Swedish Cement and Concrete Research Institute; Stockholm, Sweden: 1982. CBI Research Report 4:82.

Collepardi M., Marcialis A., Turriziani R. Penetration of Chloride Ions into Cement Pastes and Concretes. J. Am. Ceram. Soc. 1972;55:534–535. doi: 10.1111/j.1151-2916.1972.tb13424.x. DOI

Tikalsky P.J., Pustka D., Marek P. Statistical Variations in Chloride Diffusion in Concrete Bridges. ACI Struct. J. 2005;102:481. doi: 10.14359/14420. DOI

Konečný P., Tikalsky P.J., Tepke D.G. Performance Evaluation of Concrete Bridge Deck Affected by Chloride Ingress: Simulation-based reliability assessment and finite element modeling. Transp. Res. Rec. 2007;2028:3–8. doi: 10.3141/2028-01. DOI

Vořechovská D., Podroužek J., Chromá M., Rovnaníková P., Teplý B. Modeling of Chloride Concentration Effect on Reinforcement Corrosion. Comput. Civ. Infrastruct. Eng. 2009;24:446–458. doi: 10.1111/j.1467-8667.2009.00602.x. DOI

Marsavina L., Audenaert K., De Schutter G., Faur N., Marsavina D. Experimental and numerical determination of the chloride penetration in cracked concrete. Constr. Build. Mater. 2009;23:264–274. doi: 10.1016/j.conbuildmat.2007.12.015. DOI

Segovia E., de Vera G., Miró M., Ramis J., Climent M. Cement mortar cracking under accelerated steel corrosion test: A mechanical and electrochemical model. J. Electroanal. Chem. 2021;896:115222. doi: 10.1016/j.jelechem.2021.115222. DOI

Castañeda-Valdés A., Corvo F., Marrero-Águila R., Fernández-Domínguez A., Del Angel-Meraz E. The service life of reinforced concrete structures in an extremely aggressive coastal city. Influence of concrete quality. Mater. Struct. Constr. 2023;56:1–16. doi: 10.1617/s11527-023-02100-4. DOI

Chakraborty S., Mandal R., Chakraborty S., Guadagnini M., Pilakoutas K. Chemical attack and corrosion resistance of concrete prepared with electrolyzed water. J. Mater. Res. Technol. 2021;11:1193–1205. doi: 10.1016/j.jmrt.2021.01.101. DOI

Ahmad S. Techniques for Inducing Accelerated Corrosion of Steel in Concrete. Arab. J. Sci. Eng. 2016;34:95.

Ballim Y., Reid J. Reinforcement corrosion and the deflection of RC beams—An experimental critique of current test methods. Cem. Concr. Compos. 2003;25:625–632. doi: 10.1016/S0958-9465(02)00076-8. DOI

Zhang J., Li J., Zhao Y., Wang S., Guan Z. Concrete Cover Cracking and Reinforcement Corrosion Behavior in Concrete with New-to-Old Concrete Interfaces. Materials. 2023;16:5969. doi: 10.3390/ma16175969. PubMed DOI PMC

Zhang X., Wu X., Wang Y. Corrosion-Effected Bond Behavior between PVA-Fiber-Reinforced Concrete and Steel Rebar under Chloride Environment. Materials. 2023;16:2666. doi: 10.3390/ma16072666. PubMed DOI PMC

Caré S., Raharinaivo A. Influence of impressed current on the initiation of damage in reinforced mortar due to corrosion of embedded steel. Cem. Concr. Res. 2007;37:1598–1612. doi: 10.1016/j.cemconres.2007.08.022. DOI

Yuan Y., Ji Y., Shah S.P. Comparison of Two Accelerated Corrosion Techniques for Concrete Structures. ACI Struct. J. 2007;104:344–347. doi: 10.14359/18624. DOI

Geng C., Xu Y., Weng D. A new method to quickly assess the inhibitor efficiency. J. Wuhan Univ. Technol. Sci. Ed. 2008;23:950–954. doi: 10.1007/s11595-007-6950-9. DOI

Krykowski T., Jaśniok T., Recha F., Karolak M. A Cracking Model for Reinforced Concrete Cover, Taking Account of the Accumulation of Corrosion Products in the ITZ Layer, and Including. Materials. 2020;13:5375. doi: 10.3390/ma13235375. PubMed DOI PMC

Bažant Z.P. Physical Model for Steel Corrosion in Concrete Sea Structures—Application. J. Struct. Div. 1979;105:1155–1166. doi: 10.1061/JSDEAG.0005169. DOI

Khan I., François R., Castel A. Prediction of reinforcement corrosion using corrosion induced cracks width in corroded reinforced concrete beams. Cem. Concr. Res. 2014;56:84–96. doi: 10.1016/j.cemconres.2013.11.006. DOI

Liu Y., Weyers R.E. Modeling the time-to-corrosion cracking in chloride contaminated reinforced concrete structures. Materials. 1998;95:675–681.

Vidal T., Castel A., François R. Analyzing crack width to predict corrosion in reinforced concrete. Cem. Concr. Res. 2004;34:165–174. doi: 10.1016/s0008-8846(03)00246-1. DOI

Zhao Y., Dong J., Wu Y., Jin W. Corrosion-induced concrete cracking model considering corrosion. Constr. Build. Mater. 2016;116:273–280. doi: 10.1016/j.conbuildmat.2016.04.097. DOI

Bossio A., Monetta T., Bellucci F., Lignola G.P., Prota A. Modeling of concrete cracking due to corrosion process of reinforcement bars. Cem. Concr. Res. 2015;71:78–92. doi: 10.1016/j.cemconres.2015.01.010. DOI

Recha F., Yurkova K., Krykowski T. Application of Interval Analysis to Assess Concrete Cover Degradation in Accelerated Corrosion Tests. Materials. 2023;16:5845. doi: 10.3390/ma16175845. PubMed DOI PMC

Ranjith A., Rao K.B., Manjunath K. Evaluating the effect of corrosion on service life prediction of RC structures—A parametric study. Int. J. Sustain. Built Environ. 2016;5:587–603. doi: 10.1016/j.ijsbe.2016.07.001. DOI

Shi R., Pan Z., Lun P., Zhan Y., Nie Z., Liu Y., Mo Z., He Z. Research on Corrosion Rate Model of Reinforcement in Concrete under Chloride Ion Environments. Buildings. 2023;13:965. doi: 10.3390/buildings13040965. DOI

Chernin L., Val D.V., Volokh K.Y. Analytical modelling of concrete cover cracking caused by corrosion of reinforcement. Mater. Struct. 2010;43:543–556. doi: 10.1617/s11527-009-9510-2. DOI

Cao C. 3D simulation of localized steel corrosion in chloride contaminated reinforced concrete. Constr. Build. Mater. 2014;72:434–443. doi: 10.1016/j.conbuildmat.2014.09.030. DOI

Guzmán S., Gálvez J.C., Sancho J.M. Modelling of corrosion-induced cover cracking in reinforced concrete by an embedded cohesive crack finite element. Eng. Fract. Mech. 2012;93:92–107. doi: 10.1016/j.engfracmech.2012.06.010. DOI

Michel A., Pease B.J., Peterová A., Geiker M.R., Stang H., Thybo A.E.A. Penetration of corrosion products and corrosion-induced cracking in reinforced cementitious materials: Experimental investigations and numerical simulations. Cem. Concr. Compos. 2014;47:75–86. doi: 10.1016/j.cemconcomp.2013.04.011. DOI

Sola E., Ožbolt J., Balabanić G., Mir Z. Experimental and numerical study of accelerated corrosion of steel reinforcement in concrete: Transport of corrosion products. Cem. Concr. Res. 2019;120:119–131. doi: 10.1016/j.cemconres.2019.03.018. DOI

Cabrera J. Deterioration of concrete due to reinforcement steel corrosion. Cem. Concr. Compos. 1996;9465:47–59. doi: 10.1016/0958-9465(95)00043-7. DOI

Mogire P. Correlation of Accelerated Corrosion and Real Reinforced Concrete Water Structures. J. Mater. Sci. Res. 2023;12:88. doi: 10.5539/jmsr.v12n2p88. DOI

Park S.S., Kwon S.-J., Song H.-W. Analysis technique for restrained shrinkage of concrete containing chlorides. Mater. Struct. 2011;44:475–486. doi: 10.1617/s11527-010-9642-4. DOI

Jain S., Pradhan B. Fresh, mechanical, and corrosion performance of self-compacting concrete in the presence of chloride ions. Constr. Build. Mater. 2020;247:118517. doi: 10.1016/j.conbuildmat.2020.118517. DOI

Szweda Z., Mazurkiewicz J., Konečný P., Ponikiewski T. Effect of Imperial Smelting Process Slag Addition in Self Compacting Concrete Concrete on the Efficiency of Electrochemical Chloride Extraction. Materials. 2023;16:5159. doi: 10.3390/ma16145159. PubMed DOI PMC

Perkowski Z., Szweda Z. The “Skin Effect” Assessment of Chloride Ingress into Concrete Based on the Identification of Effective and Apparent Diffusivity. Appl. Sci. 2022;12:1730. doi: 10.3390/app12031730. DOI

Szweda Z. Evaluating the Impact of Concrete Design on the Effectiveness of the Electrochemical Chloride Extraction Process. Materials. 2023;16:666. doi: 10.3390/ma16020666. PubMed DOI PMC

Szweda Z., Gołaszewski J., Ghosh P., Lehner P., Konečný P. Comparison of Standardized Meth-ods for Determining the Diffusion Coefficient of Chloride in Concrete with Thermodynamic Model of Migration. Materials. 2023;16:637. doi: 10.3390/ma16020637. PubMed DOI PMC

Szweda Z., Jaśniok T., Jaśniok M. Evaluation of the effectiveness of electrochemical chloride extraction from concrete on the basis of testing reinforcement polarization and chloride concentra-tion. Ochr. Przed Korozją. 2018;61:3–9. doi: 10.15199/41.2018.1.1. DOI

Szweda Z., Zybura A. Theoretical Model and Experimental Tests on Chloride Diffusion and Migration Processes in Concrete. Procedia Eng. 2013;57:1121–1130. doi: 10.1016/j.proeng.2013.04.141. DOI

Torres-Acosta A.A., Navarro-Gutierrez S., Terán-Guillén J. Residual flexure capacity of corroded reinforced concrete beams. Eng. Struct. 2007;29:1145–1152. doi: 10.1016/j.engstruct.2006.07.018. DOI

Dixit M., Gupta A.K. Assessment of Corrosion in Rebars by Impressed Current Technique. Lect. Notes Civ. Eng. 2021;143:89–97. doi: 10.1007/978-981-33-6969-6_9. DOI

Auyeung Y., Balaguru P.N., Chung L. Bond Behavior Of Corroded Reinforce-Ment Bars. Aci Mater. J. 2000;97:214–220.

Szweda Z., Skórkowski A., Konečný P. The influence of corrosion processes on the degradation of concrete cover, [Data set]. Zenodo 2022. PubMed DOI

Szweda Z., Kuziak J., Sozańska-Jędrasik L., Czachura D. Analysis of the Effect of Protective Properties of Concretes with Similar Composition on the Corrosion Rate of Reinforcing Steel Induced by Chloride Ions. Materials. 2023;16:3889. doi: 10.3390/ma16103889. PubMed DOI PMC

Miarka P., Seitl S., Horňáková M., Lehner P., Konečný P., Sucharda O., Bílek V. Influence of chlorides on the fracture toughness and fracture resistance under the mixed mode I/II of high-performance concrete. Theor. Appl. Fract. Mech. 2020;110:102812. doi: 10.1016/j.tafmec.2020.102812. DOI

Sungkono K.K.D., Satyarno I., Priyosulistyo H., Perdana I. Corrosion Resistance of High Calcium Fly Ash Based Reinforced Geopolymer Concrete in Marine Environment. Civ. Eng. Arch. 2023;11:3175–3189. doi: 10.13189/cea.2023.110827. DOI

Miranda J., Cobo A., Otero E., González J. Limitations and advantages of electrochemical chloride removal in corroded reinforced concrete structures. Cem. Concr. Res. 2007;37:596–603. doi: 10.1016/j.cemconres.2007.01.005. DOI

Tang F., Lin Z., Chen G., Yi W. Three-dimensional corrosion pit measurement and statistical mechanical degradation analysis of deformed steel bars subjected to accelerated corrosion. Constr. Build. Mater. 2014;70:104–117. doi: 10.1016/j.conbuildmat.2014.08.001. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...