Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology

. 2022 Apr 25 ; 7 (1) : 8. [epub] 20220425

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35467307

Grantová podpora
Bolsa Produtividade 1B cnpq

Odkazy

PubMed 35467307
PubMed Central PMC9038981
DOI 10.1186/s41181-022-00161-4
PII: 10.1186/s41181-022-00161-4
Knihovny.cz E-zdroje

BACKGROUND: Recent advances in nanotechnology have offered new hope for cancer detection, prevention, and treatment. Nanomedicine, a term for the application of nanotechnology in medical and health fields, uses nanoparticles for several applications such as imaging, diagnostic, targeted cancer therapy, drug and gene delivery, tissue engineering, and theranostics. RESULTS: Here, we overview the current state-of-the-art of radiolabeled nanoparticles for molecular imaging and radionuclide therapy. Nanostructured radiopharmaceuticals of technetium-99m, copper-64, lutetium-177, and radium-223 are discussed within the scope of this review article. CONCLUSION: Nanoradiopharmaceuticals may lead to better development of theranostics inspired by ingenious delivery and imaging systems. Cancer nano-theranostics have the potential to lead the way to more specific and individualized cancer treatment.

Zobrazit více v PubMed

Abdin Z, Alim MA, Saidur R, Islam MR, Rashmi W, Mekhilef S, et al. Solar energy harvesting with the application of nanotechnology. Renew Sustain Energy Rev. 2013;26:837–852. doi: 10.1016/j.rser.2013.06.023. DOI

Abou DS, Thiele NA, Gutsche NT, Villmer A, Zhang H, Woods JJ, et al. Towards the stable chelation of radium for biomedical applications with an 18-membered macrocyclic ligand. Chem Sci. 2021;12(10):3733–3742. doi: 10.1039/D0SC06867E. PubMed DOI PMC

Ahmadi MH, Ghazvini M, Alhuyi Nazari M, Ahmadi MA, Pourfayaz F, Lorenzini G, et al. Renewable energy harvesting with the application of nanotechnology: a review. Int J Energy Res. 2019;43(4):1387–1410. doi: 10.1002/er.4282. DOI

Ahmadzadehfar H, Rahbar K, Essler M, Biersack HJ. PSMA-based theranostics: a step-by-step practical approach to diagnosis and therapy for mCRPC patients. Semin Nucl Med. 2020;50(1):98–109. doi: 10.1053/j.semnuclmed.2019.07.003. PubMed DOI

Ahmedova A, Todorov B, Burdzhiev N, Goze C. Copper radiopharmaceuticals for theranostic applications. Eur J Med Chem. 2018;157:1406–1425. doi: 10.1016/j.ejmech.2018.08.051. PubMed DOI

Alnaaimi M, Sulieman A, Alkhorayef M, Salah H, Alduaij M, Algaily M, et al. Organs dosimetry in targeted radionuclide therapy. Radiat Phys Chem. 2021;188:109668. doi: 10.1016/j.radphyschem.2021.109668. DOI

Ancira-Cortez A, Ferro-Flores G, Jiménez-Mancilla N, Morales-Avila E, Trujillo-Benítez D, Ocampo-García B, et al. Synthesis, chemical and biochemical characterization of Lu2O3-iPSMA nanoparticles activated by neutron irradiation. Mater Sci Eng C. 2020;117:111335. doi: 10.1016/j.msec.2020.111335. PubMed DOI

Ancira-Cortez A, Trujillo-Benítez D, Jiménez-Mancilla N, Santos-Cuevas C, Morales-Avila E, Ferro-Flores G. Synthesis and physicochemical characterization of Lu and Sm sesquioxide nanoparticles by precipitation-calcination and pulsed laser ablation in liquids. Mater Chem Phys. 2021;275:125229. doi: 10.1016/j.matchemphys.2021.125229. DOI

Andorko JI, Hess KL, Pineault KG, Jewell CM. Intrinsic immunogenicity of rapidly-degradable polymers evolves during degradation. Acta Biomater. 2016;32:24–34. doi: 10.1016/j.actbio.2015.12.026. PubMed DOI PMC

Aquib M, Farooq MA, Banerjee P, Akhtar F, Filli MS, Boakye-Yiadom KO, et al. Targeted and stimuli–responsive mesoporous silica nanoparticles for drug delivery and theranostic use. J Biomed Mater Res A. 2019;107(12):2643–2666. doi: 10.1002/jbm.a.36770. PubMed DOI

Attarilar S, Yang J, Ebrahimi M, Wang Q, Liu J, Tang Y, et al. The toxicity phenomenon and the related occurrence in metal and metal oxide nanoparticles: a brief review from the biomedical perspective. Front Bioeng Biotechnol. 2020;8:822. doi: 10.3389/fbioe.2020.00822. PubMed DOI PMC

Baetke SC, Lammers T, Kiessling F. Applications of nanoparticles for diagnosis and therapy of cancer. Br J Radiol. 2015;88:1–12. doi: 10.1259/bjr.20150207. PubMed DOI PMC

Ballinger JR. Theranostic radiopharmaceuticals: established agents in current use. Br J Radiol. 2018;91(1091):20170969. doi: 10.1259/bjr.20170969. PubMed DOI PMC

Banerjee S, Pillai MRA, Knapp FF. Lutetium-177 therapeutic radiopharmaceuticals: linking chemistry, radiochemistry, and practical applications. Chem Rev. 2015;115(8):2934–2974. doi: 10.1021/cr500171e. PubMed DOI

Barua S, Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9(2):223–243. doi: 10.1016/j.nantod.2014.04.008. PubMed DOI PMC

Behzadi S, Serpooshan V, Tao W, Hamaly MA, Alkawareek MY, Dreaden EC, et al. Cellular uptake of nanoparticles: journey inside the cell. Chem Soc Rev. 2017;46(14):4218–4244. doi: 10.1039/C6CS00636A. PubMed DOI PMC

Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, et al. Mesoporous silica-based materials with bactericidal properties. Small. 2019;15(24):1900669. doi: 10.1002/smll.201900669. PubMed DOI

Bertrand N, Wu J, Xu X, Kamaly N, Farokhzad OC. Cancer nanotechnology: the impact of passive and active targeting in the era of modern cancer biology. Adv Drug Deliv Rev. 2014;66:2–25. doi: 10.1016/j.addr.2013.11.009. PubMed DOI PMC

Biagiotti G, Pisaneschi F, Gammon ST, Machetti F, Ligi MC, Giambastiani G, et al. Multiwalled carbon nanotubes for combination therapy: a biodistribution and efficacy pilot study. J Mater Chem B. 2019;7(16):2678–2687. doi: 10.1039/C8TB03299H. PubMed DOI PMC

Biswas CS, Biswas A, Galluzzi M, Shekh MI, Wang Q, Ray B, et al. Synthesis and characterization of novel amphiphilic biocompatible block-copolymers of poly(N-isopropylacrylamide)-b-poly(L-phenylalanine methyl ester) by RAFT polymerization. Polymer (Guildf) 2020;203:122760. doi: 10.1016/j.polymer.2020.122760. DOI

Bluemel C, Herrmann K, Giammarile F, Nieweg OE, Dubreuil J, Testori A, et al. EANM practice guidelines for lymphoscintigraphy and sentinel lymph node biopsy in melanoma. Eur J Nucl Med Mol Imaging. 2015;42(11):1750–1766. doi: 10.1007/s00259-015-3135-1. PubMed DOI

Bobo D, Robinson KJ, Islam J, Thurecht KJ, Corrie SR. Nanoparticle-based medicines: a review of FDA-approved materials and clinical trials to date. Pharm Res. 2016;33(10):2373–2387. doi: 10.1007/s11095-016-1958-5. PubMed DOI

Boisseau P, Loubaton B. Nanomedicine, nanotechnology in medicine. C R Phys. 2011;12(7):620–636. doi: 10.1016/j.crhy.2011.06.001. DOI

Buzea C, Pacheco II, Robbie K. Nanomaterials and nanoparticles: sources and toxicity. Biointerphases. 2007;2(4):M17–M71. doi: 10.1116/1.2815690. PubMed DOI

Cai Z, Yook S, Lu Y, Bergstrom D, Winnik MA, Pignol JP, et al. Local radiation treatment of HER2-positive breast cancer using trastuzumab-modified gold nanoparticles labeled with 177Lu. Pharm Res. 2017;34(3):579–590. doi: 10.1007/s11095-016-2082-2. PubMed DOI

Cai H, Xie F, Mulgaonkar A, Chen L, Sun X, Hsieh JT, et al. Bombesin functionalized 64Cu-copper sulfide nanoparticles for targeted imaging of orthotopic prostate cancer. Nanomedicine. 2018;13(14):1695–1705. doi: 10.2217/nnm-2018-0062. PubMed DOI

Cao Q, Wang W, Zhou M, Huang Q, Wen X, Zhao J, et al. Induction of antitumor immunity in mice by the combination of nanoparticle-based photothermolysis and anti-PD-1 checkpoint inhibition. Nanomed Nanotechnol Biol Med. 2020;25:102169. doi: 10.1016/j.nano.2020.102169. PubMed DOI PMC

Castillo PM, Jimenez-Ruiz A, Carnerero JM, Prado-Gotor R. Exploring factors for the design of nanoparticles as drug delivery vectors. ChemPhysChem. 2018;19(21):2810–2828. doi: 10.1002/cphc.201800388. PubMed DOI

Chakravarty R, Guleria A, Jadhav S, Kumar C, Debnath AK, Sarma HD, et al. Bioinspired synthesis of intrinsically 177Lu-labeled hybrid nanoparticles for potential cancer therapy. Ind Eng Chem Res. 2020;59(52):22492–22500. doi: 10.1021/acs.iecr.0c03910. DOI

Chen D, Yang D, Dougherty CA, Lu W, Wu H, He X, et al. In vivo targeting and positron emission tomography imaging of tumor with intrinsically radioactive metal–organic frameworks nanomaterials. ACS Nano. 2017;11(4):4315–4327. doi: 10.1021/acsnano.7b01530. PubMed DOI PMC

Chen F, Goel S, Shi S, Barnhart TE, Lan X, Cai W. General synthesis of silica-based yolk/shell hybrid nanomaterials and in vivo tumor vasculature targeting. Nano Res. 2018;11(9):4890. doi: 10.1007/s12274-018-2078-9. PubMed DOI PMC

Chong KP. Nanotechnology in civil engineering—research and challenge. In: Bartoset PJM al., editors. Nanotechnology in construction (Royal Society of Chemistry, 2004—ISBN 0-85404-632-2) p. 13–22.

Cong VT, Gaus K, Tilley RD, Gooding JJ. Rod-shaped mesoporous silica nanoparticles for nanomedicine: recent progress and perspectives. Expert Opin Drug Deliv. 2018;15(9):881–892. doi: 10.1080/17425247.2018.1517748. PubMed DOI

Conti M, Eriksson L. Physics of pure and non-pure positron emitters for PET: a review and a discussion. EJNMMI Phys. 2016;3(1):1–17. doi: 10.1186/s40658-016-0144-5. PubMed DOI PMC

Corrêa LB, Pinto SR, Alencar LMR, Missailidis S, Rosas EC, de Oliveira MDGM, et al. Nanoparticle conjugated with aptamer anti-MUC1/Y for inflammatory arthritis. Colloids Surf B Biointerfaces. 2022;211:112280. doi: 10.1016/j.colsurfb.2021.112280. PubMed DOI

Costa JAS, Paranhos CM. Mitigation of silica-rich wastes: an alternative to the synthesis eco-friendly silica-based mesoporous materials. Microporous Mesoporous Mater. 2020;309:110570. doi: 10.1016/j.micromeso.2020.110570. DOI

Cui L, Xiong C, Zhou M, Shi S, Chow DSL, Li C. Integrin αvβ3-targeted [64 Cu]CuS nanoparticles for PET/CT imaging and photothermal ablation therapy. Bioconjug Chem. 2018;29(12):4062–4071. doi: 10.1021/acs.bioconjchem.8b00690. PubMed DOI PMC

Cvjetinović Đ, Prijović Ž, Janković D, Radović M, Mirković M, Milanović Z, et al. Bioevaluation of glucose-modified liposomes as a potential drug delivery system for cancer treatment using 177-Lu radiotracking. J Control Release. 2021;332:301–311. doi: 10.1016/j.jconrel.2021.03.006. PubMed DOI

Cytryniak A, Nazaruk E, Bilewicz R, Górzyńska E, Żelechowska-Matysiak K, Walczak R, et al. Lipidic cubic-phase nanoparticles (cubosomes) loaded with doxorubicin and labeled with 177Lu as a potential tool for combined chemo and internal radiotherapy for cancers. Nanomaterials. 2020;10(11):2272. doi: 10.3390/nano10112272. PubMed DOI PMC

Czerwińska M, Fracasso G, Pruszyński M, Bilewicz A, Kruszewski M, Majkowska-Pilip A, et al. Design and evaluation of 223Ra-labeled and anti-PSMA targeted NaA nanozeolites for prostate cancer therapy–part I. Materials (Basel) 2020;13(17):3875. doi: 10.3390/ma13173875. PubMed DOI PMC

D’Abadie P, Hesse M, Louppe A, Lhommel R, Walrand S, Jamar F. Microspheres used in liver radioembolization: from conception to clinical effects. Molecules. 2021;26(13):3966. doi: 10.3390/molecules26133966. PubMed DOI PMC

De Barros ALB, De Oliveira Ferraz KS, Dantas TCS, Andrade GF, Cardoso VN, De SEMB. Synthesis, characterization, and biodistribution studies of 99mTc-labeled SBA-16 mesoporous silica nanoparticles. Mater Sci Eng C. 2015;56:181–188. doi: 10.1016/j.msec.2015.06.030. PubMed DOI

de Carvalho APA, Conte Junior CA. Green strategies for active food packagings: a systematic review on active properties of graphene-based nanomaterials and biodegradable polymers. Trends Food Sci Technol. 2020;103:130–143. doi: 10.1016/j.tifs.2020.07.012. DOI

de Oliveira Freitas LB, de Melo CL, Faria JAQA, dos Santos VM, Resende JM, Leal AS, et al. Multifunctional mesoporous silica nanoparticles for cancer-targeted, controlled drug delivery and imaging. Microporous Mesoporous Mater. 2017;242:271–283. doi: 10.1016/j.micromeso.2017.01.036. DOI

Długosz O, Szostak K, Staroń A, Pulit-Prociak J, Banach M. Methods for reducing the toxicity of metal and metal oxide NPs as biomedicine. Materials (Basel) 2020;13(2):279. doi: 10.3390/ma13020279. PubMed DOI PMC

dos Santos SN, Dos Reis SRR, Pires LP, Helal-Neto E, Sancenon F, Barja-Fidalgo TC, et al. Avoiding the mononuclear phagocyte system using human albumin for mesoporous silica nanoparticle system. Microporous Mesoporous Mater. 2017;251:181–189. doi: 10.1016/j.micromeso.2017.06.005. DOI

Du Y, Liang X, Li Y, Sun T, Jin Z, Xue H, et al. Nuclear and fluorescent labeled PD-1-liposome-DOX-64Cu/IRDye800CW allows improved breast tumor targeted imaging and therapy. Mol Pharm. 2017;14(11):3978–3986. doi: 10.1021/acs.molpharmaceut.7b00649. PubMed DOI

Elci SG, Jiang Y, Yan B, Kim ST, Saha K, Moyano DF, et al. Surface charge controls the suborgan biodistributions of gold nanoparticles. ACS Nano. 2016;10(5):5536–5542. doi: 10.1021/acsnano.6b02086. PubMed DOI

EMA/500948/2018. EMA restricts use of prostate cancer medicine Xofigo [Internet]. London: European Medicines Agency [cited 2021 Oct 25]; 2018. p. 1–4. https://www.ema.europa.eu/en/documents/press-release/ema-restricts-use-prostate-cancer-medicine-xofigo_en.pdf.

Essa BM, El-Mohty AA, El-Hashash MA, Sakr TM. 99mTc-citrate-gold nanoparticles as a tumor tracer: synthesis, characterization, radiolabeling and in-vivo studies. Radiochim Acta. 2020;108(10):809–819. doi: 10.1515/ract-2019-3208. DOI

Falco Reissig D, Zarschler K, Hübner R, Pietzsch HJ, Kopka K, Mamat C. Sub-10 nm radiolabeled barium sulfate nanoparticles as carriers for theranostic applications and targeted alpha therapy. ChemistryOpen. 2020;9(8):797. doi: 10.1002/open.202000126. PubMed DOI PMC

Farjadian F, Ghasemi A, Gohari O, Roointan A, Karimi M, Hamblin MR. Nanopharmaceuticals and nanomedicines currently on the market: challenges and opportunities. Nanomedicine. 2019;14(1):93–126. doi: 10.2217/nnm-2018-0120. PubMed DOI PMC

Fathi-Achachelouei M, Knopf-Marques H, Ribeiro da Silva CE, Barthès J, Bat E, Tezcaner A, et al. Use of nanoparticles in tissue engineering and regenerative medicine. Front Bioeng Biotechnol. 2019;7:113. doi: 10.3389/fbioe.2019.00113. PubMed DOI PMC

Felix DM, Alencar LMR, de Menezes FD, Midlej VDVP, Aguiar L, Piperni SG, et al. Graphene quantum dots decorated with imatinib for leukemia treatment. J Drug Deliv Sci Technol. 2021;61:102117. doi: 10.1016/j.jddst.2020.102117. PubMed DOI PMC

Freire TM, Sant’Anna C, Yoshihara N, Hu R, Qu J, Alencar LMR, et al. Biomedical application of graphitic carbon nitrides: tissue deposition in vivo, induction of reactive oxygen species (ROS) and cell viability in tumor cells. Nanotechnology. 2021;32(43):435301. doi: 10.1088/1361-6528/ac1540. PubMed DOI

Fröhlich E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int J Nanomed. 2012;7:5577. doi: 10.2147/IJN.S36111. PubMed DOI PMC

Gaikwad G, Rohra N, Kumar C, Jadhav S, Sarma HD, Borade L, et al. A facile strategy for synthesis of a broad palette of intrinsically radiolabeled chitosan nanoparticles for potential use in cancer theranostics. J Drug Deliv Sci Technol. 2021;63:102485. doi: 10.1016/j.jddst.2021.102485. DOI

Gao H, Liu X, Tang W, Niu D, Zhou B, Zhang H, et al. 99mTc-conjugated manganese-based mesoporous silica nanoparticles for SPECT, pH-responsive MRI and anti-cancer drug delivery. Nanoscale. 2016;8:19573–19580. doi: 10.1039/C6NR07062K. PubMed DOI

García ÁG, Nagelkerke MMB, Tuinier R, Vis M. Polymer-mediated colloidal stability: on the transition between adsorption and depletion. Adv Colloid Interface Sci. 2020;275:102077. doi: 10.1016/j.cis.2019.102077. PubMed DOI

García-Valdivia AA, García-García A, Jannus F, Zabala-Lekuona A, Méndez-Arriaga JM, Fernández B, et al. Antiparasitic, anti-inflammatory and cytotoxic activities of 2D coordination polymers based on 1H-indazole-5-carboxylic acid. J Inorg Biochem. 2020;208:111098. doi: 10.1016/j.jinorgbio.2020.111098. PubMed DOI

Gawęda W, Pruszyński M, Cędrowska E, Rodak M, Majkowska-Pilip A, Gaweł D, et al. Trastuzumab modified barium ferrite magnetic nanoparticles labeled with radium-223: a new potential radiobioconjugate for alpha radioimmunotherapy. Nanomaterials. 2020;10(10):2067. doi: 10.3390/nano10102067. PubMed DOI PMC

Gharibkandi NA, Molavipordanjani S, Akbari J, Hosseinimehr SJ. Pharmacokinetic evaluation of 99mTc-radiolabeled solid lipid nanoparticles and chitosan coated solid lipid nanoparticles. Curr Drug Metab. 2019;20(13):1044–1052. doi: 10.2174/1389200220666191112145808. PubMed DOI

Gibbens-Bandala B, Morales-Avila E, Ferro-Flores G, Santos-Cuevas C, Luna-Gutiérrez M, Ramírez-Nava G, et al. Synthesis and evaluation of 177Lu-DOTA-DN (PTX)-BN for selective and concomitant radio and drug—therapeutic effect on breast cancer cells. Polymers (Basel) 2019;11(10):1572. doi: 10.3390/polym11101572. PubMed DOI PMC

Gisbert-Garzarán M, Manzano M, Vallet-Regí M. Mesoporous silica nanoparticles for the treatment of complex bone diseases: bone cancer, bone infection and osteoporosis. Pharmaceutics. 2020;12(1):83. doi: 10.3390/pharmaceutics12010083. PubMed DOI PMC

Godlewski T. A new radio-active product from actinium. Nature. 1839;1905(71):294–295.

Godlewski TV. Actinium and its successive products. Lond Edinb Dublin Philos Mag J Sci. 1905;10(55):35–45. doi: 10.1080/14786440509463342. DOI

Goins B, Klipper R, Rudolph AS, Phillips WT. Use of technetium-99m-liposomes in tumor imaging. J Nucl Med. 1994;35:1491–1498. PubMed

Gommans GMM, Gommans E, van der Zant FM, Teule GJJ, van der Schors TG, de Waard JWD. 99mTc Nanocoll: a radiopharmaceutical for sentinel node localisation in breast cancer-In vitro and in vivo results. Appl Radiat Isot. 2009;67(9):1550–1558. doi: 10.1016/j.apradiso.2009.02.091. PubMed DOI

González-Ruíz A, Ferro-Flores G, Azorín-Vega E, Ocampo-García B, Ramírez F, Santos-Cuevas C, et al. Synthesis and in vitro evaluation of an antiangiogenic cancer-specific dual-targeting 177 Lu-Au-nanoradiopharmaceutical. J Radioanal Nucl Chem. 2017;314(2):1337–1345. doi: 10.1007/s10967-017-5465-x. DOI

González-Ruíz A, Ferro-Flores G, Jiménez-Mancilla N, Escudero-Castellanos A, Ocampo-García B, Luna-Gutiérrez M, et al. In vitro and in vivo synergistic effect of radiotherapy and plasmonic photothermal therapy on the viability of cancer cells using 177Lu–Au-NLS-RGD-Aptamer nanoparticles under laser irradiation. J Radioanal Nucl Chem. 2018;318(3):1913–1921. doi: 10.1007/s10967-018-6266-6. DOI

Gott M, Yang P, Kortz U, Stephan H, Pietzsch HJ, Mamat C. A 224Ra-labeled polyoxopalladate as a putative radiopharmaceutical. Chem Commun. 2019;55(53):7631–7634. doi: 10.1039/C9CC02587A. PubMed DOI

Gratton SE, Ropp PA, Pohlhaus PD, Luft JC, Madden VJ, Napier ME, et al. The effect of particle design on cellular internalization pathways. Proc Natl Acad Sci. 2008;105(33):11613–11618. doi: 10.1073/pnas.0801763105. PubMed DOI PMC

Guseva LI, Tikhomirova GS, Dogadkin NN. Anion-exchange separation of radium from alkaline-earth metals and actinides in aqueous-methanol solutions of HNO3. 227Ac–223Ra generator. Radiochemistry. 2004;46(1):58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI

Hagemann UB, Wickstroem K, Hammer S, Bjerke RM, Zitzmann-Kolbe S, Ryan OB, et al. Advances in precision oncology: targeted thorium-227 conjugates as a new modality in targeted alpha therapy. Cancer Biother Radiopharm. 2020;35(7):497–510. doi: 10.1089/cbr.2020.3568. PubMed DOI PMC

Hasan S, Prelas MA. Molybdenum-99 production pathways and the sorbents for 99Mo/99mTc generator systems using (n, γ) 99Mo: a review. SN Appl Sci. 2020;2:1782. doi: 10.1007/s42452-020-03524-1. DOI

He C, Hu Y, Yin L, Tang C, Yin C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials. 2010;31(13):3657–3666. doi: 10.1016/j.biomaterials.2010.01.065. PubMed DOI

He Z, Jia H, Zheng M, Wang H, Yang W, Gao L, et al. Trp2 peptide-assembled nanoparticles with intrinsically self-chelating 64Cu properties for PET imaging tracking and dendritic cell-based immunotherapy against melanoma. ACS Appl Bio Mater. 2021;4:5707–5716. doi: 10.1021/acsabm.1c00480. PubMed DOI

Helal-Neto E, de Barros AODS, Saldanha-Gama R, Brandão-Costa R, Alencar LMR, Dos Santos CC, et al. Molecular and cellular risk assessment of healthy human cells and cancer human cells exposed to nanoparticles. Int J Mol Sci. 2020;21(1):230. doi: 10.3390/ijms21010230. PubMed DOI PMC

Henriksen G, Hoff P, Larsen RH. Evaluation of potential chelating agents for radium. Appl Radiat Isot. 2002;56(5):667–671. doi: 10.1016/S0969-8043(01)00282-2. PubMed DOI

Henriksen G, Schoultz BW, Michaelsen TE, Bruland ØS, Larsen RH. Sterically stabilized liposomes as a carrier for α-emitting radium and actinium radionuclides. Nucl Med Biol. 2004;31(4):441–449. doi: 10.1016/j.nucmedbio.2003.11.004. PubMed DOI

Hilgard P, Hamami M, Fouly AE, Scherag A, Müller S, Ertle J, et al. Radioembolization with yttrium-90 glass microspheres in hepatocellular carcinoma: European experience on safety and long-term survival. Hepatology. 2010;52(5):1741–1749. doi: 10.1002/hep.23944. PubMed DOI

Hortelao AC, Simó C, Guix M, Guallar-Garrido S, Julián E, Vilela D, et al. Swarming behavior and in vivo monitoring of enzymatic nanomotors within the bladder. Sci Robot. 2021;6(52):eabd2823. doi: 10.1126/scirobotics.abd2823. PubMed DOI

Hosono M. Perspectives for concepts of individualized radionuclide therapy, molecular radiotherapy, and theranostic approaches. Nucl Med Mol Imaging. 2010;2019(53):167–171. PubMed PMC

Hou X, Jensen M, Nielsen SP. Use of 99mTc from a commercial 99Mo/99mTc generator as yield tracer for the determination of 99Tc at low levels. Appl Radiat Isot. 2007;65(5):610–618. doi: 10.1016/j.apradiso.2007.01.013. PubMed DOI

Hu P, Cheng D, Huang T, Banizs AB, Xiao J, Liu G, et al. Evaluation of novel 64Cu-labeled theranostic gadolinium-based nanoprobes in HepG2 tumor-bearing nude mice. Nanoscale Res Lett. 2017;12(1):1–6. doi: 10.1186/s11671-016-1773-2. PubMed DOI PMC

Huang YW, Cambre M, Lee HJ. The toxicity of nanoparticles depends on multiple molecular and physicochemical mechanisms. Int J Mol Sci. 2017;18(12):2702. doi: 10.3390/ijms18122702. PubMed DOI PMC

Huang G, Zhao T, Wang C, Nham K, Xiong Y, Gao X, et al. PET imaging of occult tumours by temporal integration of tumour-acidosis signals from pH-sensitive 64 Cu-labelled polymers. Nat Biomed Eng. 2020;4(3):314–324. doi: 10.1038/s41551-019-0416-1. PubMed DOI PMC

Hulla JE, Sahu SC, Hayes AW. Nanotechnology: history and future. Hum Exp Toxicol. 2015;34(12):1318–1321. doi: 10.1177/0960327115603588. PubMed DOI

Hung JC, Redfern MG, Mahoney DW, Thorson LM, Wiseman GA. Evaluation of macroaggregated albumin particle sizes for use in pulmonary shunt patient studies. J Am Pharm Assoc. 2000;40(1):46–51. PubMed

Hunt AP, Frier M, Johnson RA, Berezenko S, Perkins AC. Preparation of Tc-99m-macroaggregated albumin from recombinant human albumin for lung perfusion imaging. Eur J Pharm Biopharm. 2006;62(1):26–31. doi: 10.1016/j.ejpb.2005.06.005. PubMed DOI

Imlimthan S, Khng Y, Keinänen O, Zhang W, Airaksinen A, Kostiainen M, et al. A theranostic cellulose nanocrystal-based drug delivery system with enhanced retention in pulmonary metastasis of melanoma. Small. 2021;17(18):2007705. doi: 10.1002/smll.202007705. PubMed DOI PMC

Jamre M, Shamsaei M, Erfani M, Sadjadi S, Ghannadi MM. Preparation and evaluation of 188Re sulfide colloidal nanoparticles loaded biodegradable poly (L-lactic acid) microspheres for radioembolization therapy. J Label Compd Radiopharm. 2018;61(8):586–594. doi: 10.1002/jlcr.3627. PubMed DOI

Jana P, Shyam M, Singh S, Jayaprakash V, Dev A. Biodegradable polymers in drug delivery and oral vaccination. Eur Polym J. 2020;142:111055.

Jeon J, Shim HE, Mushtaq S, Choi MH, Park SH, Choi DS, et al. An optimized protocol for the efficient radiolabeling of gold nanoparticles by using a 125I-labeled azide prosthetic group. JoVE (J Vis Exp). 2016;116:e54759. PubMed PMC

Jeong WJ, Bu J, Kubiatowicz LJ, Chen SS, Kim Y, Hong S. Peptide–nanoparticle conjugates: a next generation of diagnostic and therapeutic platforms? Nano Converg. 2018;5(1):1–18. doi: 10.1186/s40580-018-0170-1. PubMed DOI PMC

Jin Q, Zhu W, Jiang D, Zhang R, Kutyreff C, Engle JW, et al. Ultra-small iron-gallic acid coordination polymer nanoparticles for chelator-free labeling of 64 Cu and multimodal imaging-guided photothermal therapy. Nanoscale. 2017;9(34):12609–12617. doi: 10.1039/C7NR03086J. PubMed DOI PMC

Jowanaridhi B, Sriwiang W. Radiolabeling efficiency and stability study on Lutetium-177 labeled bombesin peptide. J Phys Conf Ser. 2019;1380(1):12020. doi: 10.1088/1742-6596/1380/1/012020. DOI

Juzeniene A, Stenberg VY, Bruland ØS, Larsen RH. Preclinical and clinical status of PSMA-targeted alpha therapy for metastatic castration-resistant prostate cancer. Cancers (Basel) 2021;13(4):779. doi: 10.3390/cancers13040779. PubMed DOI PMC

Kanniyappan H, Venkatesan M, Panji J, Ramasamy M, Muthuvijayan V. Evaluating the inherent osteogenic and angiogenic potential of mesoporous silica nanoparticles to augment vascularized bone tissue formation. Microporous Mesoporous Mater. 2021;311:110687. doi: 10.1016/j.micromeso.2020.110687. DOI

Kazakov AG, Garashchenko BL, Yakovlev RY, Vinokurov SE, Kalmykov SN, Myasoedov BF. An experimental study of sorption/desorption of selected radionuclides on carbon nanomaterials: a quest for possible applications in future nuclear medicine. Diam Relat Mater. 2020;104:107752. doi: 10.1016/j.diamond.2020.107752. DOI

Keisari Y, Kelson I. The potentiation of anti-tumor immunity by tumor abolition with alpha particles, protons, or carbon ion radiation and its enforcement by combination with immunoadjuvants or inhibitors of immune suppressor cells and checkpoint molecules. Cells. 2021;10(2):228. doi: 10.3390/cells10020228. PubMed DOI PMC

Kennedy A, Coldwell D, Sangro B, Wasan H, Salem R. Radioembolization for the treatment of liver tumors: general principles. Am J Clin Oncol. 2012;35(1):91–99. doi: 10.1097/COC.0b013e3181f47583. PubMed DOI

Kesse S, Oti Boakye-Yiadom K, Owoya Ochete B, Opoku-Damoah Y, Akhtar F, Sied Filli M, et al. Mesoporous silica nanomaterials: versatile nanocarriers for cancer theranostics and drug and gene delivery. Pharmaceutics. 2019;11(2):77. doi: 10.3390/pharmaceutics11020077. PubMed DOI PMC

Khan I, Saeed K, Khan I. Nanoparticles: properties, applications and toxicities. Arab J Chem. 2019;12(7):908–931. doi: 10.1016/j.arabjc.2017.05.011. DOI

Kim R, Osaki A, Kojima J, Toge T. Significance of lymphoscintigraphic mapping with Tc-99m human serum albumin and tin colloid in sentinel lymph node biopsy in breast cancer. Int J Oncol. 2001;19(5):991–996. PubMed

Kim J, Chhour P, Hsu J, Litt HI, Ferrari VA, Popovtzer R, et al. Use of nanoparticle contrast agents for cell tracking with computed tomography. Bioconjug Chem. 2017;28(6):1581–1597. doi: 10.1021/acs.bioconjchem.7b00194. PubMed DOI PMC

Kim HY, Li R, Ng TSC, Courties G, Rodell CB, Prytyskach M, et al. Quantitative imaging of tumor-associated macrophages and their response to therapy using 64 Cu-labeled macrin. ACS Nano. 2018;12(12):12015–12029. doi: 10.1021/acsnano.8b04338. PubMed DOI PMC

Kleynhans J, Sathekge M, Ebenhan T. Obstacles and recommendations for clinical translation of nanoparticle system-based targeted alpha-particle therapy. Materials (Basel) 2021;14(17):4784. doi: 10.3390/ma14174784. PubMed DOI PMC

Korangath P, Barnett JD, Sharma A, Henderson ET, Stewart J, Yu SH, et al. Nanoparticle interactions with immune cells dominate tumor retention and induce T cell–mediated tumor suppression in models of breast cancer. Sci Adv. 2020;6(13):1601. doi: 10.1126/sciadv.aay1601. PubMed DOI PMC

Kozempel J, Mokhodoeva O, Vlk M. Progress in targeted alpha-particle therapy. What we learned about recoils release from in vivo generators. Molecules. 2018;23(3):581. doi: 10.3390/molecules23030581. PubMed DOI PMC

Krasnovskaya O, Naumov A, Guk D, Gorelkin P, Erofeev A, Beloglazkina E, et al. Copper coordination compounds as biologically active agents. Int J Mol Sci. 2020;21(11):3965. doi: 10.3390/ijms21113965. PubMed DOI PMC

Kratochwil C, Bruchertseifer F, Giesel FL, Weis M, Verburg FA, Mottaghy F, et al. 225Ac-PSMA-617 for PSMA-targeted α-radiation therapy of metastatic castration-resistant prostate cancer. J Nucl Med. 2016;57(12):1941–1944. doi: 10.2967/jnumed.116.178673. PubMed DOI

Kucharczyk K, Rybka JD, Hilgendorff M, Krupinski M, Slachcinski M, Mackiewicz A, et al. Composite spheres made of bioengineered spider silk and iron oxide nanoparticles for theranostics applications. PLoS ONE. 2019;14(7):e0219790. doi: 10.1371/journal.pone.0219790. PubMed DOI PMC

Kukleva E, Suchánková P, Štamberg K, Vlk M, Šlouf M, Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9(38):21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC

Lankoff A, Czerwińska M, Walczak R, Karczmarczyk U, Tomczyk K, Brzóska K, et al. Design and evaluation of 223Ra-labeled and anti-PSMA Targeted NaA nanozeolites for prostate cancer therapy—part II. Toxicity, pharmacokinetics and biodistribution. Int J Mol Sci. 2021;22(11):5702. doi: 10.3390/ijms22115702. PubMed DOI PMC

Lee H, Shields AF, Siegel BA, Miller KD, Krop I, Ma CX, et al. 64Cu-MM-302 positron emission tomography quantifies variability of enhanced permeability and retention of nanoparticles in relation to treatment response in patients. Clin Cancer Res. 2017;23(15):4190–4202. doi: 10.1158/1078-0432.CCR-16-3193. PubMed DOI PMC

Lee H, Gaddy D, Ventura M, Bernards N, de Souza R, Kirpotin D, et al. Companion diagnostic 64Cu-liposome positron emission tomography enables characterization of drug delivery to tumors and predicts response to cancer. Theranostics. 2018;8(9):2300. doi: 10.7150/thno.21670. PubMed DOI PMC

Lee W, Il An G, Park H, Sarkar S, Ha YS, Huynh PT, et al. Imaging strategy that achieves ultrahigh contrast by utilizing differential esterase activity in organs: application in early detection of pancreatic cancer. ACS Nano. 2021;15(11):17348–17360. doi: 10.1021/acsnano.1c05165. PubMed DOI

Li SD, Huang L. Pharmacokinetics and biodistribution of nanoparticles. Mol Pharm. 2008;5(4):496–504. doi: 10.1021/mp800049w. PubMed DOI

Li RG, Napoli E, Jorstad IS, Bønsdorff TB, Juzeniene A, Bruland ØS, et al. Calcium carbonate microparticles as carriers of 224Ra: impact of specific activity in mice with intraperitoneal ovarian cancer. Curr Radiopharm. 2020;14(2):145–153. doi: 10.2174/1874471013666201201102056. PubMed DOI

Liang L, Zhang X, Su X, Li J, Tian Y, Xue H, et al. 99mTc-labeled oligomeric nanoparticles as potential agents for folate receptor-positive tumor targeting. J Label Compd Radiopharm. 2018;61(2):54–60. doi: 10.1002/jlcr.3577. PubMed DOI

Licciardello N, Hunoldt S, Bergmann R, Singh G, Mamat C, Faramus A, et al. Biodistribution studies of ultrasmall silicon nanoparticles and carbon dots in experimental rats and tumor mice. Nanoscale. 2018;10(21):9880–9891. doi: 10.1039/C8NR01063C. PubMed DOI

Liu CG, Han YH, Kankala RK, Wang SB, Chen AZ. Subcellular performance of nanoparticles in cancer therapy. Int J Nanomedicine. 2020;15:675. doi: 10.2147/IJN.S226186. PubMed DOI PMC

Lu AH, Salabas EE, Schüth F. Magnetic nanoparticles: synthesis, protection, functionalization, and application. Angew Chemie Int Ed. 2007;46(8):1222–1244. doi: 10.1002/anie.200602866. PubMed DOI

Madru R, Budassi M, Benveniste H, Lee H, Smith SD, Schlyer DJ, et al. Simultaneous preclinical positron emission tomography-magnetic resonance imaging study of lymphatic drainage of chelator-free 64Cu-labeled nanoparticles. Cancer Biother Radiopharm. 2018;33(6):213–220. doi: 10.1089/cbr.2017.2412. PubMed DOI

Magne TM, de Oliveira Vieira T, Alencar LMR, Junior FFM, Gemini-Piperni S, Carneiro SV, Fechine LMUD, Freire RM, Golokhvast K, Metrangolo P, Fechine PBA, Santos-Oliveira R. Graphene and its derivatives: understanding the main chemical and medicinal chemistry roles for biomedical applications. J Nanostructure Chem. 2021;1–35. 10.1007/s40097-021-00444-3. PubMed PMC

Magne TM, Helal-Neto E, Correa LB, Alencar LMR, Piperni SG, Iram SH, et al. Rheumatoid arthritis treatment using hydroxychloroquine and methotrexate co-loaded nanomicelles: in vivo results. Colloids Surf B Biointerfaces. 2021;206:111952. doi: 10.1016/j.colsurfb.2021.111952. PubMed DOI PMC

Maiolo D, Del Pino P, Metrangolo P, Parak WJ, Baldelli BF. Nanomedicine delivery: does protein corona route to the target or off road? Nanomedicine. 2015;10(21):3231–3247. doi: 10.2217/nnm.15.163. PubMed DOI

Marenco M, Canziani L, De Matteis G, Cavenaghi G, Aprile C, Lodola L. Chemical and physical characterisation of human serum albumin nanocolloids: kinetics, strength and specificity of bonds with 99mTc and 68Ga. Nanomaterials. 2021;11(7):1776. doi: 10.3390/nano11071776. PubMed DOI PMC

Martins C, Sousa F, Araújo F, Sarmento B. Functionalizing PLGA and PLGA derivatives for drug delivery and tissue regeneration applications. Adv Healthc Mater. 2018;7(1):1701035. doi: 10.1002/adhm.201701035. PubMed DOI

Mathew J, Joy J, George SC. Potential applications of nanotechnology in transportation: a review. J King Saud Univ. 2019;31(4):586–594. doi: 10.1016/j.jksus.2018.03.015. DOI

Matyskin AV, Hansson NL, Brown PL, Ekberg C. Barium and radium complexation with ethylenediaminetetraacetic acid in aqueous alkaline sodium chloride media. J Solution Chem. 2017;46(11):1951–1969. doi: 10.1007/s10953-017-0679-7. PubMed DOI PMC

McClelland CM, Onuegbulem E, Carter NJ, Leahy M, O’Doherty MJ, Pooley FD, et al. 99mTc-SnF2 colloid “LLK”: particle size, morphology and leucocyte labelling behaviour. Nucl Med Commun. 2003;24(2):191–202. doi: 10.1097/00006231-200302000-00012. PubMed DOI

McMillan DD, Maeda J, Bell JJ, Genet MD, Phoonswadi G, Mann KA, et al. Validation of 64Cu-ATSM damaging DNA via high-LET Auger electron emission. J Radiat Res. 2015;56(5):784–791. doi: 10.1093/jrr/rrv042. PubMed DOI PMC

Mehta D, Guvva S, Patil M. Future impact of nanotechnology on medicine and dentistry. J Indian Soc Periodontol. 2008;12(2):34–40. doi: 10.4103/0972-124X.44088. PubMed DOI PMC

Mendoza-Nava H, Ferro-Flores G, De María RF, Ocampo-García B, Santos-Cuevas C, Azorín-Vega E, et al. Fluorescent, plasmonic, and radiotherapeutic properties of the 177Lu-dendrimer-AuNP-folate-bombesin nanoprobe located inside cancer cells. Mol Imaging. 2017;16:1536012117704768. doi: 10.1177/1536012117704768. PubMed DOI PMC

Mir M, Ahmed N, ur Rehman A. Recent applications of PLGA based nanostructures in drug delivery. Colloids Surf B Biointerfaces. 2017;159:217–231. doi: 10.1016/j.colsurfb.2017.07.038. PubMed DOI

Moghimi SM, Reviews HM. Serum-mediated recognition of liposomes by phagocytic cells of the reticuloendothelial system—the concept of tissue specificity. Adv Drug Deliv Rev. 1998;32(1–2):45–60. doi: 10.1016/S0169-409X(97)00131-2. PubMed DOI

Moghimi SM, Hunter AC, Murray JC. Long-circulating and target-specific nanoparticles: theory to practice. Pharmacol Rev. 2001;53(2):283–318. PubMed

Mokhodoeva O, Vlk M, Málková E, Kukleva E, Mičolová P, Štamberg K, et al. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: towards new prospective theranostic SPIONs. J Nanopart Res. 2016;18(301):1–12.

Monteiro LOF, Fernandes RS, Oda CMR, Lopes SC, Townsend DM, Cardoso VN, et al. Paclitaxel-loaded folate-coated long circulating and pH-sensitive liposomes as a potential drug delivery system: a biodistribution study. Biomed Pharmacother. 2018;97:489–495. doi: 10.1016/j.biopha.2017.10.135. PubMed DOI PMC

Müller C, van der Meulen NP, Benešová M, Schibli R. Therapeutic radiometals beyond 177Lu and 90Y: production and application of promising α-particle, β−-particle, and auger electron emitters. J Nucl Med. 2017;58(Supplement 2):91S–96S. doi: 10.2967/jnumed.116.186825. PubMed DOI

Nallathamby PD, Mortensen NP, Palko HA, Malfatti M, Smith C, Sonnett J, et al. New surface radiolabeling schemes of super paramagnetic iron oxide nanoparticles (SPIONs) for biodistribution studies. Nanoscale. 2015;7(15):6545–6555. doi: 10.1039/C4NR06441K. PubMed DOI PMC

Navarro G, Cabral P, Cabrera M, Fernández M, Gambini JP, Malanga A, et al. 99mTc-labeling and biological evaluation of conventional liposomes. Alasbimn J. 2011;51:1–8.

NCT04167969. The use of nanoparticles to guide the surgical treatment of prostate cancer [Internet]. Memorial Sloan Kettering Cancer Center. https://ichgcp.net/clinical-trials-registry/NCT04167969

Niazi JH, Gu MB. Toxicity of metallic nanoparticles in microorganisms—a review. In: Kim YJ, Platt U, Gu MB, Iwahashi H, editors. Atmospheric and biological environmental monitoring. Dordrecht: Springer; 2009. pp. 193–206.

Niccoli Asabella A, Cascini GL, Altini C, Paparella D, Notaristefano A, Rubini G. The copper radioisotopes: a systematic review with special interest to 64Cu. Biomed Res Int. 2014;2014:1–9. PubMed PMC

Novy Z, Lobaz V, Vlk M, Kozempel J, Stepanek P, Popper M, et al. Head-To-head comparison of biological behavior of biocompatible polymers poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[N-(2-hydroxypropyl) methacrylamide] as coating materials for hydroxyapatite nanoparticles in animal solid tumor model. Nanomaterials. 2020;10(9):1690. doi: 10.3390/nano10091690. PubMed DOI PMC

Ocampo-García BE, de Ramírez FM, Ferro-Flores G, De León-Rodríguez LM, Santos-Cuevas CL, Morales-Avila E, et al. 99mTc-labelled gold nanoparticles capped with HYNIC-peptide/mannose for sentinel lymph node detection. Nucl Med Biol. 2011;38(1):1–11. doi: 10.1016/j.nucmedbio.2010.07.007. PubMed DOI

Oda CMR, Fernandes RS, de Araújo Lopes SC, de Oliveira MC, Cardoso VN, Santos DM, et al. Synthesis, characterization and radiolabeling of polymeric nano-micelles as a platform for tumor delivering. Biomed Pharmacother. 2017;89:268–275. doi: 10.1016/j.biopha.2017.01.144. PubMed DOI PMC

Ognjanovic M, Radovic M, Mirković M, Prijovic Z, Morales MP, Čeh M, et al. 99mTc-, 90Y-, and 177Lu-labeled iron oxide nanoflowers designed for potential use in dual magnetic hyperthermia/radionuclide cancer therapy and diagnosis. ACS Appl Mater Interfaces. 2019;11(44):41109–17. doi: 10.1021/acsami.9b16428. PubMed DOI

Padmanabhan P, Kumar A, Kumar S, Chaudhary RK, Gulyás B. Nanoparticles in practice for molecular-imaging applications: an overview. Acta Biomater. 2016;41:1–16. doi: 10.1016/j.actbio.2016.06.003. PubMed DOI

Paik T, Chacko AM, Mikitsh JL, Friedberg JS, Pryma DA, Murray CB. Shape-controlled synthesis of isotopic yttrium-90-labeled rare earth fluoride nanocrystals for multimodal imaging. ACS Nano. 2015;9(9):8718–8728. doi: 10.1021/acsnano.5b03355. PubMed DOI

Paiva I, Mattingly S, Wuest M, Leier S, Vakili MR, Weinfeld M, et al. Synthesis and analysis of 64Cu-labeled GE11-modified polymeric micellar nanoparticles for EGFR-targeted molecular imaging in a colorectal cancer model. Mol Pharm. 2020;17(5):1470–1481. doi: 10.1021/acs.molpharmaceut.9b01043. PubMed DOI

Palestro CJ, Love C, Tronco GG, Tomas MB, Rini JN. Combined labeled leukocyte and technetium 99m sulfur colloid bone marrow imaging for diagnosing musculoskeletal infection. Radiographics. 2006;26(3):859–870. doi: 10.1148/rg.263055139. PubMed DOI

Pei P, Shen W, Zhou H, Sun Y, Zhong J, Liu T, et al. Radionuclide labeled gold nanoclusters boost effective anti-tumor immunity for augmented radio-immunotherapy of cancer. Elsevier. 2021;38:01144.

Pei P, Shen W, Zhou H, Sun Y, Zhong J, Liu T, et al. Radionuclide labeled gold nanoclusters boost effective anti-tumor immunity for augmented radio-immunotherapy of cancer. Nano Today. 2021;38:101144. doi: 10.1016/j.nantod.2021.101144. DOI

Penoy N, Grignard B, Evrard B, Piel G. A supercritical fluid technology for liposome production and comparison with the film hydration method. Int J Pharm. 2020;592:120093. doi: 10.1016/j.ijpharm.2020.120093. PubMed DOI

Perrin J, Capitao M, Allard M, Chouin N, Gouard S, Marionneau-Lambot S, et al. Targeted alpha particle therapy remodels the tumor microenvironment and improves efficacy of immunotherapy. Int J Radiat Oncol Biol Phys. 2022;112(3):790–801. doi: 10.1016/j.ijrobp.2021.10.013. PubMed DOI

Peterson S. Transmutation of radium to actinium (Ac-227) In: Seaborg GT, Katz JJMW, editors. The transuranium elements research papers, part 2. New York: McGraw-Hill book company Inc; 1949. pp. 1393–1394.

Pharmacopoeia E. European medicine agency, London [Internet]. 2014 [cited 2021 Oct 25]. http://www.ema.europa.eu

Phillips WT, Klipper R, Goins B. Use of 99mTc-labeled liposomes encapsulating blue dye for identification of the sentinel lymph node. J Nucl Med. 2001;42(3):446–451. PubMed

Popovtzer A, Rosenfeld E, Mizrachi A, Bellia SR, Ben-Hur R, Feliciani G, et al. Initial safety and tumor control results from a “first-in-human” multicenter prospective trial evaluating a novel alpha-emitting radionuclide for the treatment of locally advanced recurrent squamous cell carcinomas of the skin and head and neck. Int J Radiat Oncol Biol Phys. 2020;106(3):571–578. doi: 10.1016/j.ijrobp.2019.10.048. PubMed DOI

Poty S, Francesconi LC, McDevitt MR, Morris MJ, Lewis JS. α-Emitters for radiotherapy: from basic radiochemistry to clinical studies—part 1. J Nucl Med. 2018;59(6):878–884. doi: 10.2967/jnumed.116.186338. PubMed DOI PMC

Pratt EC, Shaffer TM, Grimm J. Nanoparticles and radiotracers: advances toward radionanomedicine. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2016;8(6):872–890. doi: 10.1002/wnan.1402. PubMed DOI PMC

Rasmussen JW, Martinez E, Louka P, Wingett DG. Zinc oxide nanoparticles for selective destruction of tumor cells and potential for drug delivery applications. Expert Opin Drug Deliv. 2010;7(9):1063–1077. doi: 10.1517/17425247.2010.502560. PubMed DOI PMC

Reissig F, Hübner R, Steinbach J, Pietzsch HJ, Mamat C. Facile preparation of radium-doped, functionalized nanoparticles as carriers for targeted alpha therapy. Inorg Chem Front. 2019;6(6):1341–1349. doi: 10.1039/C9QI00208A. DOI

Reynolds JG, Hart BR. Nanomaterials and their application to defense and homeland security. JOM. 2004;56(1):36–39. doi: 10.1007/s11837-004-0270-8. DOI

Rizvi SA, Saleh AM. Applications of nanoparticle systems in drug delivery technology. Saudi Pharm J. 2018;26(1):64–70. doi: 10.1016/j.jsps.2017.10.012. PubMed DOI PMC

Romero-Arrieta MR, Uria-Canseco E, Perez-Casas S. Simultaneous encapsulation of hydrophilic and lipophilic molecules in liposomes of DSPC. Thermochim Acta. 2020;687:178462. doi: 10.1016/j.tca.2019.178462. DOI

Rosar F, Krause J, Bartholomä M, Maus S, Stemler T, Hierlmeier I, et al. Efficacy and safety of [225Ac]Ac-PSMA-617 augmented [177Lu]Lu-PSMA-617 radioligand therapy in patients with highly advanced mCRPC with poor prognosis. Pharmaceutics. 2021;13(5):722. doi: 10.3390/pharmaceutics13050722. PubMed DOI PMC

Rosenbaum CE, Verkooijen HM, Lam MG, Smits ML, Koopman M, van Seeters T, et al. Radioembolization for treatment of salvage patients with colorectal cancer liver metastases: a systematic review. J Nucl Med. 2013;54(11):1890–1895. doi: 10.2967/jnumed.113.119545. PubMed DOI

Rosenberg YO, Sade Z, Ganor J. The precipitation of gypsum, celestine, and barite and coprecipitation of radium during seawater evaporation. Geochim Cosmochim Acta. 2018;233:50–65. doi: 10.1016/j.gca.2018.04.019. DOI

Saini R, Saini S, Sharma S. Nanotechnology: the future medicine. J Cutan Aesthet Surg. 2010;3(1):32–33. doi: 10.4103/0974-2077.63301. PubMed DOI PMC

Saleh TB. Technetium-99m Radiopharmaceuticals. In: Khalil M, editor. Basic Sciences of Nuclear Medicine. Berlin, Heidelberg: Springer; 2010.

Saptiama I, Lestari E, Sarmini E, Lubis H, Marlina M, Mutalib A. Development of 99Mo/99mTc generator system for production of medical radionuclide 99mTc using a neutron-activated 99Mo and zirconium based material (ZBM) as its adsorbent. Atom Indones. 2016;42(3):115–121. doi: 10.17146/aij.2016.531. DOI

Sengul AB, Asmatulu E. Toxicity of metal and metal oxide nanoparticles: a review. Environ Chem Lett. 2020;18(5):1659–1683. doi: 10.1007/s10311-020-01033-6. DOI

Sgouros G, Bodei L, McDevitt MR, Nedrow JR. Radiopharmaceutical therapy in cancer: clinical advances and challenges. Nat Rev Drug Discov. 2020;19(9):589–608. doi: 10.1038/s41573-020-0073-9. PubMed DOI PMC

Sharifi M, Jalilian AR, Yousefnia H, Alirezapour B, Bahrami-Samani A, Zolghadri S. Production, quality control, biodistribution and imaging studies of 177Lu-PSMA-617 in breast adenocarcinoma model. Radiochim Acta. 2018;106(6):507–513. doi: 10.1515/ract-2017-2874. DOI

Sharma S, Zvyagin AV, Roy I. Theranostic applications of nanoparticle-mediated photoactivated therapies. J Nanotheranostics. 2021;2(3):131–156. doi: 10.3390/jnt2030009. DOI

Shi X, Shen L. Integrin αvβ3 receptor targeting PET/MRI dual-modal imaging probe based on the 64Cu labeled manganese ferrite nanoparticles. J Inorg Biochem. 2018;186:257–263. doi: 10.1016/j.jinorgbio.2018.06.004. PubMed DOI

Shi Y, Van der Meel R, Chen X, Lammers T. The EPR effect and beyond: strategies to improve tumor targeting and cancer nanomedicine treatment efficacy. Theranostics. 2020;10(17):7921. doi: 10.7150/thno.49577. PubMed DOI PMC

Shokeen M, Anderson CJ. Molecular imaging of cancer with copper-64 radiopharmaceuticals and positron emission tomography (PET) Acc Chem Res. 2009;42(7):832–841. doi: 10.1021/ar800255q. PubMed DOI PMC

Silindir-Gunay M, Ozer AY. 99mTc-radiolabeled levofloxacin and micelles as infection and inflammation imaging agents. J Drug Deliv Sci Technol. 2020;56:1015711. PubMed PMC

Singh T, Shukla S, Kumar P, Wahla V, Bajpai VK, Rather IA. Application of nanotechnology in food science: perception and overview. Front Microbiol. 2017;8:1501. doi: 10.3389/fmicb.2017.01501. PubMed DOI PMC

Soubaneh YD, Pelletier E, Desbiens I, Rouleau C. Radiolabeling of amide functionalized multi-walled carbon nanotubes for bioaccumulation study in fish bone using whole-body autoradiography. Environ Sci Pollut Res. 2020;27(4):3756–3767. doi: 10.1007/s11356-019-05794-8. PubMed DOI

Spa SJ, Welling MM, van Oosterom MN, Rietbergen DD, Burgmans MC, Verboom W, et al. A supramolecular approach for liver radioembolization. Theranostics. 2018;8(9):2377. doi: 10.7150/thno.23567. PubMed DOI PMC

Suchánková P, Kukleva E, Štamberg K, Nykl P, Sakmár M, Vlk M, et al. Determination, modeling and evaluation of kinetics of 223Ra sorption on hydroxyapatite and titanium dioxide nanoparticles. Materials (Basel) 2020;13(8):1915. doi: 10.3390/ma13081915. PubMed DOI PMC

Suchánková P, Kukleva E, Nykl E, Nykl P, Sakmár M, Vlk M, et al. Hydroxyapatite and titanium dioxide nanoparticles: radiolabelling and in vitro stability of prospective theranostic nanocarriers for 223Ra and 99mTc. Nanomaterials. 2020;10(9):1632. doi: 10.3390/nano10091632. PubMed DOI PMC

Surasi DS, O’Malley J, Bhambhvani P. 99mTc-Tilmanocept: a novel molecular agent for lymphatic mapping and sentinel lymph node localization. J Nucl Med Technol. 2015;43(2):87–91. doi: 10.2967/jnmt.115.155960. PubMed DOI

Synowiecki MA, Perk LR, Nijsen JFW. Production of novel diagnostic radionuclides in small medical cyclotrons. EJNMMI Radiopharm Chem. 2018;3(1):1–25. doi: 10.1186/s41181-018-0038-z. PubMed DOI PMC

Talip Z, Favaretto C, Geistlich S, Van Der Meulen NP. A step-by-step guide for the novel radiometal production for medical applications: case studies with 68 Ga, 44 Sc, 177 Lu and 161 Tb. Molecules. 2020;25(4):966. doi: 10.3390/molecules25040966. PubMed DOI PMC

Tao Y, Sun Y, Shi K, Pei P, Ge F, Yang K, et al. Versatile labeling of multiple radionuclides onto a nanoscale metal–organic framework for tumor imaging and radioisotope therapy. Biomater Sci. 2021;9(8):2947–2954. doi: 10.1039/D0BM02225J. PubMed DOI

Taran M, Safaei M, Karimi N, Almasi A. Benefits and application of nanotechnology in environmental science: an overview. Biointerface Res Appl Chem. 2021;11(1):7860–7870.

Thakare V, Tran VL, Natuzzi M, Thomas E, Moreau M, Romieu A, et al. Functionalization of theranostic AGuIX® nanoparticles for PET/MRI/optical imaging. RSC Adv. 2019;9(43):24811–24815. doi: 10.1039/C9RA00365G. PubMed DOI PMC

Thakor AS, Jokerst JV, Ghanouni P, Campbell JL, Mittra E, Gambhir SS. Clinically approved nanoparticle imaging agents. J Nucl Med. 2016;57(12):1833–1837. doi: 10.2967/jnumed.116.181362. PubMed DOI PMC

Toro-González M, Dame AN, Mirzadeh S, Rojas JV. Encapsulation and retention of 225Ac, 223Ra, 227Th, and decay daughters in zircon-type gadolinium vanadate nanoparticles. Radiochim Acta. 2020;108(12):967–977. doi: 10.1515/ract-2019-3206. PubMed DOI

Tran VL, Thakare V, Natuzzi M, Moreau M, Oudot A, Vrigneaud JM, et al. Functionalization of gadolinium chelates silica nanoparticle through silane chemistry for simultaneous MRI/64Cu PET imaging. Contrast Media Mol Imaging. 2018;2018(ID7938267):10. PubMed PMC

Trujillo-Nolasco M, Morales-Avila E, Cruz-Nova P, Katti KV, Ocampo-García B. Nanoradiopharmaceuticals based on alpha emitters: recent developments for medical applications. Pharmaceutics. 2021;13(8):1123. doi: 10.3390/pharmaceutics13081123. PubMed DOI PMC

Tsiapa I, Efthimiadou EK, Fragogeorgi E, Loudos G, Varvarigou AD, Bouziotis P, et al. 99mTc-labeled aminosilane-coated iron oxide nanoparticles for molecular imaging of ανβ3-mediated tumor expression and feasibility for hyperthermia treatment. J Colloid Interface Sci. 2014;433:163–175. doi: 10.1016/j.jcis.2014.07.032. PubMed DOI

Tsopelas C. Lymphoscintigraphy is more effective using higher specific activity 99mTc-antimony trisulfide colloid in the rat. Hell J Nucl Med. 2014;17(1):19–26. PubMed

Vallet-Regí M, Balas F, Arcos D. Mesoporous materials for drug delivery. Angew Chem Int Ed Engl. 2007;46:7548–7558. doi: 10.1002/anie.200604488. PubMed DOI

Vats K, Satpati AK, Sharma R, Sarma HD, Satpati D, Dash A. 177Lu-labeled cyclic Asn-Gly-Arg peptide tagged carbon nanospheres as tumor targeting radio-nanoprobes. J Pharm Biomed Anal. 2018;152:173–178. doi: 10.1016/j.jpba.2018.01.052. PubMed DOI

Veerapandian M, Yan K, Subbiah R, Lee M-H. Cytotoxicity of biosynthesized nanomaterials and functionalized nanomaterials: use in therapy. In: Yi DK, Papaefthymiou GC, editors. Nanobiomaterials: development and applications. USA, Florida: CRC Press; 2014. pp. 417–41.

Viana RDS, Costa LADM, Harmon AC, Gomes Filho MA, Falcão EHL, Vicente MGH, et al. 177Lu-Labeled Eu-doped mesoporous SiO2 nanoparticles as a theranostic radiopharmaceutical for colorectal cancer. ACS Appl Nano Mater. 2020;3(9):8691–8701. doi: 10.1021/acsanm.0c01427. DOI

Wadas T, Wong E, Weisman GR, Anderson CJ. Copper chelation chemistry and its role in copper radiopharmaceuticals. Curr Pharm Des. 2007;13(1):3–16. doi: 10.2174/138161207779313768. PubMed DOI

Welch MJ, Hawker CJ, Wooley KL. The advantages of nanoparticles for PET. J Nucl Med. 2009;50(11):1743–1746. doi: 10.2967/jnumed.109.061846. PubMed DOI

Westrøm S, Bønsdorff TB, Bruland ØS, Larsen RH. Therapeutic effect of α-emitting 224Ra-labeled calcium carbonate microparticles in mice with intraperitoneal ovarian cancer. Transl Oncol. 2018;11(2):259–267. doi: 10.1016/j.tranon.2017.12.011. PubMed DOI PMC

Wigner P, Zielinski K, Michlewska S, Danielska P, Marczak A, Ricci EJ, et al. Disturbance of cellular homeostasis as a molecular risk evaluation of human endothelial cells exposed to nanoparticles. Sci Rep. 2021;11(1):1–16. doi: 10.1038/s41598-020-79139-8. PubMed DOI PMC

Wolfram J, Zhu M, Yang Y, Shen J, Gentile E, Paolino D, et al. Safety of nanoparticles in medicine. Curr Drug Targets. 2015;16(14):1671–1681. doi: 10.2174/1389450115666140804124808. PubMed DOI PMC

Wong P, Li L, Chea J, Delgado MK, Poku E, Szpikowska B, et al. Synthesis, positron emission tomography imaging, and therapy of diabody targeted drug lipid nanoparticles in a prostate cancer murine model. Cancer Biother Radiopharm. 2017;32(7):247–257. doi: 10.1089/cbr.2017.2253. PubMed DOI PMC

Wong P, Li L, Chea J, Hu W, Poku E, Ebner T, et al. Antibody targeted PET imaging of 64Cu-DOTA-anti-CEA PEGylated lipid nanodiscs in CEA positive tumors. Bioconjug Chem. 2020;31(3):743–753. doi: 10.1021/acs.bioconjchem.9b00854. PubMed DOI PMC

Wu M, Shu J. Multimodal molecular imaging: current status and future directions. Contrast Media Mol Imaging. 2018;2018:1–12. PubMed PMC

Wu M, Li X, Guo Q, Li J, Xu G, Li G, et al. Magnetic mesoporous silica nanoparticles-aided dual MR/NIRF imaging to identify macrophage enrichment in atherosclerotic plaques. Nanomed Nanotechnol Biol Med. 2020;32:102330. doi: 10.1016/j.nano.2020.102330. PubMed DOI

Wu S, Helal-Neto E, Matos APDS, Jafari A, Kozempel J, Silva YJDA, et al. Radioactive polymeric nanoparticles for biomedical application. Drug Deliv. 2020;27(1):1544–1561. doi: 10.1080/10717544.2020.1837296. PubMed DOI PMC

Xing Y, Zhu J, Zhao L, Xiong Z, Li Y, Wu S, et al. SPECT/CT imaging of chemotherapy-induced tumor apoptosis using 99mTc-labeled dendrimer-entrapped gold nanoparticles. Drug Deliv. 2018;25(1):1384–1393. doi: 10.1080/10717544.2018.1474968. PubMed DOI PMC

Xu X, Li Y, Cao T, Cheng J, Zhang Y. A novel, chelator-free method for 64Cu labeling of dendrimers. J Nanopart Res. 2018;20(8):1–11. doi: 10.1007/s11051-018-4291-6. DOI

Xu M, Yang G, Bi H, Xu J, Feng L, Yang D, et al. Combination of CuS and g-C3N4 QDs on upconversion nanoparticles for targeted photothermal and photodynamic cancer therapy. Chem Eng J. 2019;360:866–878. doi: 10.1016/j.cej.2018.12.052. DOI

Yang Y, Alencar LMR, Pijeira MSO, Batista BS, França ARS, Rates ERD, et al. [223Ra] RaCl2 nanomicelles showed potent effect against osteosarcoma: targeted alpha therapy in the nanotechnology era. Drug Deliv. 2022;29(1):186–191. doi: 10.1080/10717544.2021.2005719. PubMed DOI PMC

Yao Y, Zang Y, Qu J, Tang M, Zhang T. The toxicity of metallic nanoparticles on liver: the subcellular damages, mechanisms, and outcomes. Int J Nanomedicine. 2019;14:8787. doi: 10.2147/IJN.S212907. PubMed DOI PMC

Yetisgin AA, Cetinel S, Zuvin M, Kosar A, Kutlu O. Therapeutic nanoparticles and their targeted delivery applications. Molecules. 2020;25(9):2193. doi: 10.3390/molecules25092193. PubMed DOI PMC

Yhee JY, Son S, Son S, Joo MK, Kwon IC. The EPR effect in cancer therapy. In: Bae Y, Mrsny R, Park K, editors. Cancer targeted drug delivery. New York: Springer; 2013. pp. 621–632.

Yoo JW, Chambers E, Mitragotri S. Factors that control the circulation time of nanoparticles in blood: challenges, solutions and future prospects. Curr Pharm Des. 2010;16(21):2298–2307. doi: 10.2174/138161210791920496. PubMed DOI

Zein R, Sharrouf W, Selting K. Physical properties of nanoparticles that result in improved cancer targeting. J Oncol. 2020;2020:1–16. doi: 10.1155/2020/5194780. PubMed DOI PMC

Zhao Y, Pang B, Luehmann H, Detering L, Yang X, Sultan D, et al. Gold nanoparticles doped with 199Au atoms and their use for targeted cancer imaging by SPECT. Adv Healthc Mater. 2016;5(8):928–935. doi: 10.1002/adhm.201500992. PubMed DOI PMC

Zhao J, Zhou M, Li C. Synthetic nanoparticles for delivery of radioisotopes and radiosensitizers in cancer therapy. Cancer Nanotechnol. 2016;7(1):1–23. doi: 10.1186/s12645-016-0022-9. PubMed DOI PMC

Zhou Y, Quan G, Wu Q, Zhang X, Niu B, Wu B, et al. Mesoporous silica nanoparticles for drug and gene delivery. Acta Pharm Sin B. 2018;8(2):165–177. doi: 10.1016/j.apsb.2018.01.007. PubMed DOI PMC

Zhou H, Zhang Q, Cheng Y, Xiang L, Shen G, Wu X, et al. 64Cu-labeled melanin nanoparticles for PET/CT and radionuclide therapy of tumor. Nanomed Nanotechnol Biol Med. 2020;29:102248. doi: 10.1016/j.nano.2020.102248. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles

. 2022 Dec 30 ; 16 (1) : . [epub] 20221230

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...