Head-To-Head Comparison of Biological Behavior of Biocompatible Polymers Poly(Ethylene Oxide), Poly(2-Ethyl-2-Oxazoline) and Poly[N-(2-Hydroxypropyl)Methacrylamide] as Coating Materials for Hydroxyapatite Nanoparticles in Animal Solid Tumor Model
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
16-30544A
Ministerstvo Zdravotnictví Ceské Republiky
NU20-08-00095
Ministerstvo Zdravotnictví Ceské Republiky
EATRIS-CZ LM2015064 ERIC
Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32867391
PubMed Central
PMC7558523
DOI
10.3390/nano10091690
PII: nano10091690
Knihovny.cz E-zdroje
- Klíčová slova
- animal model, hydroxyapatite, nanoparticles, poly(2-ethyl-2-oxazoline), poly(ethylene oxide), poly[N-(2-hydroxypropyl)methacrylamide], solid tumor,
- Publikační typ
- časopisecké články MeSH
Nanoparticles (NPs) represent an emerging platform for diagnosis and treatment of various diseases such as cancer, where they can take advantage of enhanced permeability and retention (EPR) effect for solid tumor accumulation. To improve their colloidal stability, prolong their blood circulation time and avoid premature entrapment into reticuloendothelial system, coating with hydrophilic biocompatible polymers is often essential. Most studies, however, employ just one type of coating polymer. The main purpose of this study is to head-to-head compare biological behavior of three leading polymers commonly used as "stealth" coating materials for biocompatibilization of NPs poly(ethylene oxide), poly(2-ethyl-2-oxazoline) and poly[N-(2-hydroxypropyl)methacrylamide] in an in vivo animal solid tumor model. We used radiolabeled biodegradable hydroxyapatite NPs as a model nanoparticle core within this study and we anchored the polymers to the NPs core by hydroxybisphosphonate end groups. The general suitability of polymers for coating of NPs intended for solid tumor accumulation is that poly(2-ethyl-2-oxazoline) and poly(ethylene oxide) gave comparably similar very good results, while poly[N-(2-hydroxypropyl)methacrylamide] was significantly worse. We did not observe a strong effect of molecular weight of the coating polymers on tumor and organ accumulation, blood circulation time, biodistribution and biodegradation of the NPs.
Zobrazit více v PubMed
Matesan M., Bowen S.R., Chapman T.R., Miyaoka R.S., Velez J.W., Wanner M.F., Nyflot M.J., Apisarnthanarax S., Vesselle H. Assessment of functional liver reserve. Nucl. Med. Commun. 2017;38:577–586. doi: 10.1097/MNM.0000000000000695. PubMed DOI
Frati A., Ballester M., Dubernard G., Bats A.-S., Heitz D., Mathevet P., Marret H., Querleu D., Golfier F., Leblanc E., et al. Contribution of Lymphoscintigraphy for Sentinel Lymph Node Biopsy in Women with Early Stage Endometrial Cancer: Results of the SENTI-ENDO Study. Ann. Surg. Oncol. 2014;22:1980–1986. doi: 10.1245/s10434-014-4203-7. PubMed DOI
Chen Y.-H., Ho C.-C., Liu S.-H., Chen H.-T., Lee M.-C. Optimal imaging time for Tc-99m phytate lymphoscintigraphy for sentinel lymph node mapping in patients with breast cancer. Tzu Chi Med. J. 2019;31:163–168. doi: 10.4103/tcmj.tcmj_88_18. PubMed DOI PMC
Yahata H., Kobayashi H., Sonoda K., Kodama K., Yagi H., Yasunaga M., Ohgami T., Onoyama I., Kaneki E., Okugawa K., et al. Prognostic outcome and complications of sentinel lymph node navigation surgery for early-stage cervical cancer. Int. J. Clin. Oncol. 2018;23:1167–1172. doi: 10.1007/s10147-018-1327-y. PubMed DOI
Barkat A., Beg S., Pottoo F.H., Ahmad F.J. Nanopaclitaxel therapy: An evidence based review on the battle for next-generation formulation challenges. Nanomedicine. 2019;14:1323–1341. doi: 10.2217/nnm-2018-0313. PubMed DOI
Gou Y., Miao D., Zhou M., Wang L., Zhou H., Su G. Bio-Inspired Protein-Based Nanoformulations for Cancer Theranostics. Front. Pharmacol. 2018;9:9. doi: 10.3389/fphar.2018.00421. PubMed DOI PMC
Kalyane D., Raval N., Maheshwari R., Tambe V., Kalia K., Tekade R.K. Employment of enhanced permeability and retention effect (EPR): Nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater. Sci. Eng. C. 2019;98:1252–1276. doi: 10.1016/j.msec.2019.01.066. PubMed DOI
Su Y.-L., Hu S.-H. Functional Nanoparticles for Tumor Penetration of Therapeutics. Pharmaceutics. 2018;10:193. doi: 10.3390/pharmaceutics10040193. PubMed DOI PMC
Park J., Choi Y., Chang H., Um W., Ryu J.H., Kwon I.C. Alliance with EPR Effect: Combined Strategies to Improve the EPR Effect in the Tumor Microenvironment. Theranostics. 2019;9:8073–8090. doi: 10.7150/thno.37198. PubMed DOI PMC
Lucas A.T., White T.F., Deal A.M., Herity L., Song G., Santos C.M., Zamboni W.C. Profiling the relationship between tumor-associated macrophages and pharmacokinetics of liposomal agents in preclinical murine models. Nanomed. Nanotechnol. Biol. Med. 2017;13:471–482. doi: 10.1016/j.nano.2016.09.015. PubMed DOI
Golombek S.K., May J.-N., Theek B., Appold L., Drude N., Kiessling F., Lammers T. Tumor targeting via EPR: Strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018;130:17–38. doi: 10.1016/j.addr.2018.07.007. PubMed DOI PMC
Rasheed T., Nabeel F., Raza A., Bilal M., Iqbal H. Biomimetic nanostructures/cues as drug delivery systems: A review. Mater. Today Chem. 2019;13:147–157. doi: 10.1016/j.mtchem.2019.06.001. DOI
Hussain Z., Khan S., Imran M., Sohail M., Shah S.W.A., De Matas M. PEGylation: A promising strategy to overcome challenges to cancer-targeted nanomedicines: A review of challenges to clinical transition and promising resolution. Drug Deliv. Transl. Res. 2019;9:721–734. doi: 10.1007/s13346-019-00631-4. PubMed DOI
Lowe S., Connal L.A., O’Brien-Simpson N.M. Antibiofouling polymer interfaces: Poly(ethylene glycol) and other promising candidates. Polym. Chem. 2015;6:198–212. doi: 10.1039/C4PY01356E. DOI
Chen W., Zhou S., Ge L., Wu W., Jiang X. Translatable High Drug Loading Drug Delivery Systems Based on Biocompatible Polymer Nanocarriers. Biomacromolecules. 2018;19:1732–1745. doi: 10.1021/acs.biomac.8b00218. PubMed DOI
Wilson P., Ke P.C., Davis T.P., Kempe K. Poly(2-oxazoline)-based micro- and nanoparticles: A review. Eur. Polym. J. 2017;88:486–515. doi: 10.1016/j.eurpolymj.2016.09.011. DOI
Deirram N., Zhang C., Kermaniyan S.S., Johnston A.P.R., Such G.K. pH-Responsive Polymer Nanoparticles for Drug Delivery. Macromol. Rapid Commun. 2019;40:e1800917. doi: 10.1002/marc.201800917. PubMed DOI
Shiraishi K., Yokoyama M. Toxicity and immunogenicity concerns related to PEGylated-micelle carrier systems: A review. Sci. Technol. Adv. Mater. 2019;20:324–336. doi: 10.1080/14686996.2019.1590126. PubMed DOI PMC
Verhoef J.J., Carpenter J.F., Anchordoquy T.J., Schellekens H. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today. 2014;19:1945–1952. doi: 10.1016/j.drudis.2014.08.015. PubMed DOI
Glassner M., Vergaelen M., Hoogenboom R. Poly(2-oxazoline)s: A comprehensive overview of polymer structures and their physical properties. Polym. Int. 2017;67:32–45. doi: 10.1002/pi.5457. DOI
Verbraeken B., Monnery B.D., Lava K., Hoogenboom R. The chemistry of poly(2-oxazoline)s. Eur. Polym. J. 2017;88:451–469. doi: 10.1016/j.eurpolymj.2016.11.016. DOI
Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2017;18:18. doi: 10.1002/mabi.201700209. PubMed DOI
Lobaz V., Konefał R., Pánek J., Vlk M., Kozempel J., Petrik M., Novy Z., Gurská S., Znojek P., Štěpánek P., et al. In Situ In Vivo radiolabeling of polymer-coated hydroxyapatite nanoparticles to track their biodistribution in mice. Colloids Surf. B Biointerfaces. 2019;179:143–152. doi: 10.1016/j.colsurfb.2019.03.057. PubMed DOI
Kostiv U., Lobaz V., Kucka J., Švec P., Sedlacek O., Hruby M., Janoušková O., Francova P., Kolářová V., Šefc L., et al. A simple neridronate-based surface coating strategy for upconversion nanoparticles: Highly colloidally stable 125 I-radiolabeled NaYF 4:Yb 3+ /Er 3+ @PEG nanoparticles for multimodal in vivo tissue imaging. Nanoscale. 2017;9:16680–16688. doi: 10.1039/C7NR05456D. PubMed DOI
Ogawa K., Ishizaki A. Well-Designed Bone-Seeking Radiolabeled Compounds for Diagnosis and Therapy of Bone Metastases. BioMed Res. Int. 2015;2015:1–12. doi: 10.1155/2015/676053. PubMed DOI PMC
Sedlacek O., Monnery B.D., Mattova J., Kucka J., Pánek J., Janoušková O., Hocherl A., Verbraeken B., Vergaelen M., Zadinova M., et al. Poly(2-ethyl-2-oxazoline) conjugates with doxorubicin for cancer therapy: In vitro and in vivo evaluation and direct comparison to poly[N-(2-hydroxypropyl)methacrylamide] analogues. Biomaterials. 2017;146:1–12. doi: 10.1016/j.biomaterials.2017.09.003. PubMed DOI
Blocker S.J., Douglas K.A., Polin L.A., Lee H., Hendriks B.S., Lalo E., Chen W., Shields A.F. Liposomal 64Cu-PET Imaging of Anti-VEGF Drug Effects on Liposomal Delivery to Colon Cancer Xenografts. Theranostics. 2017;7:4229–4239. doi: 10.7150/thno.21688. PubMed DOI PMC
Pola R., Heinrich A.-K., Mueller T., Kostka L., Mäder K., Pechar M., Etrych T. Passive Tumor Targeting of Polymer Therapeutics: In Vivo Imaging of Both the Polymer Carrier and the Enzymatically Cleavable Drug Model. Macromol. Biosci. 2016;16:1577–1582. doi: 10.1002/mabi.201600273. PubMed DOI
Caruthers S.D., A Wickline S., Lanza G.M. Nanotechnological applications in medicine. Curr. Opin. Biotechnol. 2007;18:26–30. doi: 10.1016/j.copbio.2007.01.006. PubMed DOI
Chen K., Chen X. Design and development of molecular imaging probes. Curr. Top. Med. Chem. 2010;10:1227–1236. doi: 10.2174/156802610791384225. PubMed DOI PMC
Forte E., Fiorenza D., Torino E., Di Polidoro A.C., Cavaliere C., Netti P., Salvatore M., Aiello M. Radiolabeled PET/MRI Nanoparticles for Tumor Imaging. J. Clin. Med. 2019;9:89. doi: 10.3390/jcm9010089. PubMed DOI PMC
Xing Y., Zhao J., Conti P.S., Chen K. Radiolabeled Nanoparticles for Multimodality Tumor Imaging. Theranostics. 2014;4:290–306. doi: 10.7150/thno.7341. PubMed DOI PMC
Van Leeuwen F.W., Buckle T., Batteau L., Pool B., Sinaasappel M., Jonkers J., Gilhuijs K.G. Potential value of color-coded dynamic breast-specific gamma-imaging; comparing 99mTc-(V)-DMSA, 99mTc-MIBI, and 99mTc-HDP in a mouse mammary tumor model. Appl. Radiat. Isot. 2010;68:2117–2124. doi: 10.1016/j.apradiso.2010.05.008. PubMed DOI
Khmelinskii A., Groen H.C., Baiker M., De Jong M., Lelieveldt B.P.F. Segmentation and Visual Analysis of Whole-Body Mouse Skeleton microSPECT. PLoS ONE. 2012;7:e48976. doi: 10.1371/journal.pone.0048976. PubMed DOI PMC
Rahmim A., Zaidi H. PET versus SPECT: Strengths, limitations and challenges. Nucl. Med. Commun. 2008;29:193–207. doi: 10.1097/MNM.0b013e3282f3a515. PubMed DOI
Zheng J., Zhou W. In Vivo Imaging of Nano-hydroxyapatite Biodistribution Using Positron Emission Tomography Imaging. Chem. Lett. 2012;41:1606–1607. doi: 10.1246/cl.2012.1606. DOI
Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology