Determination, Modeling and Evaluation of Kinetics of 223Ra Sorption on Hydroxyapatite and Titanium Dioxide Nanoparticles

. 2020 Apr 19 ; 13 (8) : . [epub] 20200419

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32325792

Grantová podpora
SGS19/194/OHK4/3T/14 České Vysoké Učení Technické v Praze
TA03010027 Technology Agency of the Czech Republic
NV16-30544A HEALTH RESEARCH AGENCY OF THE CZECH REPUBLIC
CZ.02.1.01/0.0/0.0/15_003/0000464 EU and the Ministry of Education, Youth and Sports of the Czech Republic

Sorption kinetics of radium on hydroxyapatite and titanium dioxide nanomaterials were studied. The main aim of the current study was to determine the rate-controlling process and the corresponding kinetic model, due to the application of studied nanomaterials as α-emitters' carriers, and to assess the sorption properties of both materials from the radiopharmaceutical point of view by time regulated sorption experiments on the nanoparticles. Radium-223 was investigated as radionuclide used in targeted alpha particle therapy as an in vivo generator. It was found that the controlling process of the 223Ra sorption kinetics was the diffusion in a reacted layer. Therefore, parameters like particle size, their specific surface area, contact time and temperature played important role. Moreover, the composition of liquid phase, such as pH, the concentration of 223Ra, ionic strength, the presence of complexation ligands, etc., had to be considered. Experiments were conducted under free air conditions and at pH 8 for hydroxyapatite and pH 6 for titanium dioxide in Britton-Robinson buffer. Initial 223Ra concentration was in the range from 10-11 to 10-12 mol/L. It was found that sorption kinetics was very fast (more than 90% in the first hour) in the case of both nanomaterials, so they can be directly used for efficient radium sorption.

Zobrazit více v PubMed

RES3T/Rossendorf Expert System for Surface and Sorption Thermodynamics. [(accessed on 16 January 2019)]; Available online: https://www.hzdr.de/db/res3t.login.

Yasukawa A., Yokoyama T., Kandori K., Ishikawa T. Reaction of calcium hydroxyapatite with Cd2+ and Pb2+ ions. Colloids Surf. A Physicochem. Eng. Asp. 2007;299:203–208. doi: 10.1016/j.colsurfa.2006.11.042. DOI

Sandrine B., Ange N., Didier B.A., Eric C., Patrick S. Removal of aqueous lead ions by hydroxyapatites: Equilibria and kinetic processes. J. Hazard. Mater. 2007;139:443–446. doi: 10.1016/j.jhazmat.2006.02.039. PubMed DOI

Maruszewska A., Podsiadly R. Dyes based on the azo-1H-pyrrole moiety—Synthesis, spectroscopic and electrochemical properties, and adsorption on TiO2. Colora. Technol. 2016;132:92–97. doi: 10.1111/cote.12192. DOI

Li W., Pan G., Zhang M., Zhao D., Yang Y., Chen H., He G. EXAFS studies on adsorption irreversibility of Zn(II) on TiO2: Temperature dependence. J. Colloid Interface Sci. 2008;319:385–391. doi: 10.1016/j.jcis.2007.11.028. PubMed DOI

Kukleva E., Suchankova P., Stamberg K., Vlk M., Slouf M., Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC

Dzombak D.A., Morel F.M.N. Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley-Interscience; New York, NY, USA: 1990.

Luetzenkirchen J. Surface Complexation Modelling. Academic Press; Amsterdam, The Netherlands: 2006.

Filipská H., Štamberg K. Mathematical Modeling of a Cs(I)-Sr(II)-Bentonite—Magnetite Sorption System, Simulating the Processes Taking Place in a Deep Geological Repository. Acta Polytech. J. Adv. Eng. 2005;45:11–18.

Suchánková P., Kukleva E., Štamberg K., Nykl P., Vlk M., Kozempel J. Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH. RSC Adv. 2020;10:3659–3666. doi: 10.1039/C9RA08953E. PubMed DOI PMC

Kroupová H., Štamberg K. Experimental study and mathematical modelling of Cs(I) and Sr(II) sorption on bentonite as barrier material in deep geological repository. Acta Geodynam. Mater. 2005;2:79–86.

Liu M., Jing H., Bai R., Wang Y. Adsorption of icariin on nano-hydroxyapatite: Isotherm, kinetics, pH, ionic strength and construction. Nanomed. Nanotechnol. Biol. Med. 2016;12:478–479. doi: 10.1016/j.nano.2015.12.095. DOI

Valizadeh S., Rasoulifard M.H., Dorraji M.S.S. Adsorption and photocatalytic degradation of organic dyes onto crystalline and amorphous hydroxyapatite: Optimization, kinetic and isotherm studies. Korean J. Chem. Eng. 2016;33:481–489. doi: 10.1007/s11814-015-0172-1. DOI

Hammari L.E., Laghzizil A., Saoiabi A., Barboux P., Meyer M., Brandès S., Guilard R. Some Factors Affecting the Removal of Lead(II) Ions from Aqueous Solution by Porous Calcium Hydroxyapatite: Relationships between Surface and Adsorption Properties. Adsorpt. Sci. Technol. 2006;24:507–516. doi: 10.1260/026361706780154419. DOI

Gómez del Río J., Sanchez P., Morando P.J., Cicerone D.S. Retention of Cd, Zn and Co on hydroxyapatite filters. Chemosphere. 2006;64:1015–1020. doi: 10.1016/j.chemosphere.2006.02.008. PubMed DOI

Summary of Product Characteristic: GalliaPharm—Radionuclide Generator. [(accessed on 17 January 2019)]; Available online: http://mri.medagencies.org/download/DK_H_2294_001_FinalPI.pdf.

Alvarez-Corena J.R., Bergendahl J.A., Hart F.L. Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification. J. Environ. Manag. 2016;181:544–551. doi: 10.1016/j.jenvman.2016.07.015. PubMed DOI

Roncaroli F., Blesa M.A. Kinetics of adsorption of oxalic acid on different titanium dioxide samples. J. Colloid Interface Sci. 2011;356:227–233. doi: 10.1016/j.jcis.2010.11.051. PubMed DOI

Pena M.E., Korfiatis G.P., Patel M., Lippincott L., Meng X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 2005;39:2327–2337. doi: 10.1016/j.watres.2005.04.006. PubMed DOI

Jegadeesan G., Al-Abed S.R., Sundaram V., Choi H., Scheckel K.G., Dionysiou D.D. Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Res. 2010;44:965–973. doi: 10.1016/j.watres.2009.10.047. PubMed DOI

Nano G.V., Strathmann T.J. Ferrous iron sorption by hydrous metal oxides. J. Colloid Interface Sci. 2006;297:443–454. doi: 10.1016/j.jcis.2005.11.030. PubMed DOI

Vasileva E., Proinova I., Hadjiivanov K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide (anatase) Analyst. 1996;121:607–612. doi: 10.1039/an9962100607. DOI

Kozempel J., Vlk M. Nanoconstructs in Targeted Alpha-Therapy. Recent Pat. Nanomed. 2014;4:71–76. doi: 10.2174/1877912305666150102000549. DOI

Parker C., Nilsson S., Heinrich D., Helle S.I., O’sullivan J.M., Fosså S.D., Chodacki A., Wiechno P., Logue J., Widmark A., et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Eng. J. Med. 2013;369:213–223. doi: 10.1056/NEJMoa1213755. PubMed DOI

EMA: Xofigo. [(accessed on 20 November 2019)];2013 Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xofigo.

EMA: PRAC Recommendation. [(accessed on 20 December 2019)];2018 Available online: https://www.ema.europa.eu/en/documents/referral/xofigo-article-20-procedure-prac-recommends-restricting-use-prostate-cancer-medicine-xofigo_en.pdf.

Guseva L.I., Tikhomirova G.S., Dogadkin N.N. Anion-Exchange Separation of Radium from Alkaline-Earth Metals and Actinides in Aqueous-Methanol Solutions of HNO3. 227Ac-223Ra Generator. Radiochemistry. 2004;46:58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI

Beneš P., Štamberg K., Štegman R. Study of the Kinetics of the Interaction of Cs-137 and Sr-85 with Soils Using a Batch Method: Methodological Problems. Radiochim. Acta. 1994;66:315–321.

Herbelin A.L., Westall J.C. FITEQL-A Computer Programm for Determination of Chemical Equilibrium Constants from Experimental Data, 1996, Version 3.2. Report 96-01. Department of Chemistry, Oregon State University; Corvallis, OR, USA: 1996.

Mokhodoeva O., Vlk M., Málková E., Kukleva E., Mičolová P., Štamberg K., Šlouf M., Dzhenloda R., Kozempel J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016;18:301. doi: 10.1007/s11051-016-3615-7. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...