Determination, Modeling and Evaluation of Kinetics of 223Ra Sorption on Hydroxyapatite and Titanium Dioxide Nanoparticles
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
SGS19/194/OHK4/3T/14
České Vysoké Učení Technické v Praze
TA03010027
Technology Agency of the Czech Republic
NV16-30544A
HEALTH RESEARCH AGENCY OF THE CZECH REPUBLIC
CZ.02.1.01/0.0/0.0/15_003/0000464
EU and the Ministry of Education, Youth and Sports of the Czech Republic
PubMed
32325792
PubMed Central
PMC7216037
DOI
10.3390/ma13081915
PII: ma13081915
Knihovny.cz E-zdroje
- Klíčová slova
- hydroxyapatite, ion sorption kinetics, kinetic models, nanoparticles, radium-223, titanium dioxide,
- Publikační typ
- časopisecké články MeSH
Sorption kinetics of radium on hydroxyapatite and titanium dioxide nanomaterials were studied. The main aim of the current study was to determine the rate-controlling process and the corresponding kinetic model, due to the application of studied nanomaterials as α-emitters' carriers, and to assess the sorption properties of both materials from the radiopharmaceutical point of view by time regulated sorption experiments on the nanoparticles. Radium-223 was investigated as radionuclide used in targeted alpha particle therapy as an in vivo generator. It was found that the controlling process of the 223Ra sorption kinetics was the diffusion in a reacted layer. Therefore, parameters like particle size, their specific surface area, contact time and temperature played important role. Moreover, the composition of liquid phase, such as pH, the concentration of 223Ra, ionic strength, the presence of complexation ligands, etc., had to be considered. Experiments were conducted under free air conditions and at pH 8 for hydroxyapatite and pH 6 for titanium dioxide in Britton-Robinson buffer. Initial 223Ra concentration was in the range from 10-11 to 10-12 mol/L. It was found that sorption kinetics was very fast (more than 90% in the first hour) in the case of both nanomaterials, so they can be directly used for efficient radium sorption.
Zobrazit více v PubMed
RES3T/Rossendorf Expert System for Surface and Sorption Thermodynamics. [(accessed on 16 January 2019)]; Available online: https://www.hzdr.de/db/res3t.login.
Yasukawa A., Yokoyama T., Kandori K., Ishikawa T. Reaction of calcium hydroxyapatite with Cd2+ and Pb2+ ions. Colloids Surf. A Physicochem. Eng. Asp. 2007;299:203–208. doi: 10.1016/j.colsurfa.2006.11.042. DOI
Sandrine B., Ange N., Didier B.A., Eric C., Patrick S. Removal of aqueous lead ions by hydroxyapatites: Equilibria and kinetic processes. J. Hazard. Mater. 2007;139:443–446. doi: 10.1016/j.jhazmat.2006.02.039. PubMed DOI
Maruszewska A., Podsiadly R. Dyes based on the azo-1H-pyrrole moiety—Synthesis, spectroscopic and electrochemical properties, and adsorption on TiO2. Colora. Technol. 2016;132:92–97. doi: 10.1111/cote.12192. DOI
Li W., Pan G., Zhang M., Zhao D., Yang Y., Chen H., He G. EXAFS studies on adsorption irreversibility of Zn(II) on TiO2: Temperature dependence. J. Colloid Interface Sci. 2008;319:385–391. doi: 10.1016/j.jcis.2007.11.028. PubMed DOI
Kukleva E., Suchankova P., Stamberg K., Vlk M., Slouf M., Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC
Dzombak D.A., Morel F.M.N. Surface Complexation Modeling: Hydrous Ferric Oxide. Wiley-Interscience; New York, NY, USA: 1990.
Luetzenkirchen J. Surface Complexation Modelling. Academic Press; Amsterdam, The Netherlands: 2006.
Filipská H., Štamberg K. Mathematical Modeling of a Cs(I)-Sr(II)-Bentonite—Magnetite Sorption System, Simulating the Processes Taking Place in a Deep Geological Repository. Acta Polytech. J. Adv. Eng. 2005;45:11–18.
Suchánková P., Kukleva E., Štamberg K., Nykl P., Vlk M., Kozempel J. Study of 223Ra uptake mechanism on hydroxyapatite and titanium dioxide nanoparticles as a function of pH. RSC Adv. 2020;10:3659–3666. doi: 10.1039/C9RA08953E. PubMed DOI PMC
Kroupová H., Štamberg K. Experimental study and mathematical modelling of Cs(I) and Sr(II) sorption on bentonite as barrier material in deep geological repository. Acta Geodynam. Mater. 2005;2:79–86.
Liu M., Jing H., Bai R., Wang Y. Adsorption of icariin on nano-hydroxyapatite: Isotherm, kinetics, pH, ionic strength and construction. Nanomed. Nanotechnol. Biol. Med. 2016;12:478–479. doi: 10.1016/j.nano.2015.12.095. DOI
Valizadeh S., Rasoulifard M.H., Dorraji M.S.S. Adsorption and photocatalytic degradation of organic dyes onto crystalline and amorphous hydroxyapatite: Optimization, kinetic and isotherm studies. Korean J. Chem. Eng. 2016;33:481–489. doi: 10.1007/s11814-015-0172-1. DOI
Hammari L.E., Laghzizil A., Saoiabi A., Barboux P., Meyer M., Brandès S., Guilard R. Some Factors Affecting the Removal of Lead(II) Ions from Aqueous Solution by Porous Calcium Hydroxyapatite: Relationships between Surface and Adsorption Properties. Adsorpt. Sci. Technol. 2006;24:507–516. doi: 10.1260/026361706780154419. DOI
Gómez del Río J., Sanchez P., Morando P.J., Cicerone D.S. Retention of Cd, Zn and Co on hydroxyapatite filters. Chemosphere. 2006;64:1015–1020. doi: 10.1016/j.chemosphere.2006.02.008. PubMed DOI
Summary of Product Characteristic: GalliaPharm—Radionuclide Generator. [(accessed on 17 January 2019)]; Available online: http://mri.medagencies.org/download/DK_H_2294_001_FinalPI.pdf.
Alvarez-Corena J.R., Bergendahl J.A., Hart F.L. Advanced oxidation of five contaminants in water by UV/TiO2: Reaction kinetics and byproducts identification. J. Environ. Manag. 2016;181:544–551. doi: 10.1016/j.jenvman.2016.07.015. PubMed DOI
Roncaroli F., Blesa M.A. Kinetics of adsorption of oxalic acid on different titanium dioxide samples. J. Colloid Interface Sci. 2011;356:227–233. doi: 10.1016/j.jcis.2010.11.051. PubMed DOI
Pena M.E., Korfiatis G.P., Patel M., Lippincott L., Meng X. Adsorption of As(V) and As(III) by nanocrystalline titanium dioxide. Water Res. 2005;39:2327–2337. doi: 10.1016/j.watres.2005.04.006. PubMed DOI
Jegadeesan G., Al-Abed S.R., Sundaram V., Choi H., Scheckel K.G., Dionysiou D.D. Arsenic sorption on TiO2 nanoparticles: Size and crystallinity effects. Water Res. 2010;44:965–973. doi: 10.1016/j.watres.2009.10.047. PubMed DOI
Nano G.V., Strathmann T.J. Ferrous iron sorption by hydrous metal oxides. J. Colloid Interface Sci. 2006;297:443–454. doi: 10.1016/j.jcis.2005.11.030. PubMed DOI
Vasileva E., Proinova I., Hadjiivanov K. Solid-phase extraction of heavy metal ions on a high surface area titanium dioxide (anatase) Analyst. 1996;121:607–612. doi: 10.1039/an9962100607. DOI
Kozempel J., Vlk M. Nanoconstructs in Targeted Alpha-Therapy. Recent Pat. Nanomed. 2014;4:71–76. doi: 10.2174/1877912305666150102000549. DOI
Parker C., Nilsson S., Heinrich D., Helle S.I., O’sullivan J.M., Fosså S.D., Chodacki A., Wiechno P., Logue J., Widmark A., et al. Alpha Emitter Radium-223 and Survival in Metastatic Prostate Cancer. N. Eng. J. Med. 2013;369:213–223. doi: 10.1056/NEJMoa1213755. PubMed DOI
EMA: Xofigo. [(accessed on 20 November 2019)];2013 Available online: https://www.ema.europa.eu/en/medicines/human/EPAR/xofigo.
EMA: PRAC Recommendation. [(accessed on 20 December 2019)];2018 Available online: https://www.ema.europa.eu/en/documents/referral/xofigo-article-20-procedure-prac-recommends-restricting-use-prostate-cancer-medicine-xofigo_en.pdf.
Guseva L.I., Tikhomirova G.S., Dogadkin N.N. Anion-Exchange Separation of Radium from Alkaline-Earth Metals and Actinides in Aqueous-Methanol Solutions of HNO3. 227Ac-223Ra Generator. Radiochemistry. 2004;46:58–62. doi: 10.1023/B:RACH.0000024637.39523.e4. DOI
Beneš P., Štamberg K., Štegman R. Study of the Kinetics of the Interaction of Cs-137 and Sr-85 with Soils Using a Batch Method: Methodological Problems. Radiochim. Acta. 1994;66:315–321.
Herbelin A.L., Westall J.C. FITEQL-A Computer Programm for Determination of Chemical Equilibrium Constants from Experimental Data, 1996, Version 3.2. Report 96-01. Department of Chemistry, Oregon State University; Corvallis, OR, USA: 1996.
Mokhodoeva O., Vlk M., Málková E., Kukleva E., Mičolová P., Štamberg K., Šlouf M., Dzhenloda R., Kozempel J. Study of 223Ra uptake mechanism by Fe3O4 nanoparticles: Towards new prospective theranostic SPIONs. J. Nanopart. Res. 2016;18:301. doi: 10.1007/s11051-016-3615-7. DOI
Study of 213Bi and 211Pb Recoils Release from 223Ra Labelled TiO2 Nanoparticles
Radiolabeled nanomaterials for biomedical applications: radiopharmacy in the era of nanotechnology