α-Zirconium(IV) Phosphate: Static Study of 225Ac Sorption in an Acidic Environment and Its Kinetic Sorption Study Using natEu as a Model System for 225Ac
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ04000129
Technology Agency of the Czech Republic
SGS22/188/OHK4/3T/14
Czech Technical University in Prague
PubMed
37687424
PubMed Central
PMC10488901
DOI
10.3390/ma16175732
PII: ma16175732
Knihovny.cz E-zdroje
- Klíčová slova
- actinium-225, bismuth-213, kinetics, phosphate, sorption, zirconium,
- Publikační typ
- časopisecké články MeSH
Zirconium phosphate (ZrP), especially its alpha allotropic modification, appears to be a very promising sorbent material for the sorption and separation of various radionuclides due to its properties such as an extremely high ion exchange capacity and good radiation stability. Actinium-225 and its daughter nuclide 213Bi are alpha emitting radioisotopes of high interest for application in targeted alpha therapy of cancer. Thus, the main aim of this paper is to study the sorption of 225Ac on the α-ZrP surface and its kinetics, while the kinetics of the sorption is studied using natEu as a non-radioactive homologue of 225Ac. The sorption properties of α-ZrP were tested in an acidic environment (hydrochloric and nitric acid) using batch sorption experiments and characterized using equilibrium weight distribution coefficients Dw (mL/g). The modeling of the experimental data shows that the kinetics of 225Ac sorption on the surface of α-ZrP can be described using a film diffusion model (FD). The equilibrium weight distribution coefficient Dw for 225Ac in both hydrochloric and nitric acid reached the highest values in the concentration range 5.0-7.5 mM (14,303 ± 153 and 65,272 ± 612 mL/g, respectively). Considering the results obtained in radioactive static sorption experiments with 225Ac and in non-radioactive kinetic experiments with natEu, α-ZrP seems to be a very promising material for further construction of a 225Ac/213Bi generator.
Zobrazit více v PubMed
Clearfield A., Stynes J.A. The preparation of crystalline zirconium phosphate and some observations on its ion exchange behavior. J. Inorg. Nucl. Chem. 1964;26:117–129. doi: 10.1016/0022-1902(64)80238-4. DOI
Amphlett C.B., McDonald L.A., Redman M.J. Synthetic inorganic ion-exchange materials—I zirconium phosphate. J. Inorg. Nucl. Chem. 1958;6:220–235. doi: 10.1016/0022-1902(58)80152-9. DOI
Alberti G., Constantino U. Recent progress in the field of synthetic inorganic exchangers having a layered or fibrous structure. J. Chromatogr. A. 1974;102:5–29. doi: 10.1016/S0021-9673(01)85423-6. DOI
Clearfield A., Thakur D.S. Zirconium and titanium phosphates as catalysts: A review. Appl. Catal. 1984;26:1–26. doi: 10.1016/S0166-9834(00)82538-5. DOI
Pica M. Zirconium Phosphate Catalysts in the XXI Century: State of the Art from 2010 to Date. Catalysts. 2017;7:190. doi: 10.3390/catal7060190. DOI
Colón J.L., Casañas B. Tailored Organic-Inorganic Materials. Wiley; Hoboken, NJ, USA: 2015. Drug carriers based on zirconium phosphate nanoparticles; pp. 395–437.
Alongi J., Frache A. Flame retardancy properties of α-zirconium phosphate based composites. Polym. Degrad. Stab. 2010;95:1928–1933. doi: 10.1016/j.polymdegradstab.2010.04.007. DOI
Huang T.C., Lai G.H., Li C.E., Tsai M.H., Wan P.Y., Chung Y.H., Lin M.H. Advanced anti-corrosion coatings prepared from α-zirconium phosphate/polyurethane nanocomposites. RSC Adv. 2017;7:9908–9913. doi: 10.1039/C6RA27588E. DOI
Xiao H., Liu S. Zirconium phosphate (ZrP)-based functional materials: Synthesis, properties and applications. Mater. Des. 2018;155:19–35. doi: 10.1016/j.matdes.2018.05.041. DOI
Wiikinkoski E.W., Harjula R.O., Lehto J.K., Kemell M.L., Koivula R.T. Effects of synthesis conditions on ion exchange properties of α-zirconium phosphate for Eu and Am. Radiochim. Acta. 2017;105:1033–1042. doi: 10.1515/ract-2016-2740. DOI
Wiikinkoski E.W., Rautsola I., Xu J., Koivula R. Column Separation of Am (III) and Eu (III) by α-Zirconium Phosphate Ion Exchanger in Nitric Acid. Chem. Eng. 2020;4:14. doi: 10.3390/chemengineering4010014. DOI
Wiikinkoski E.W., Xu J., Zhang W., Hietala S., Koivula R.T. Modification of α-Zirconium Phosphate Synthesis–Effects of Crystallinity and Acidity on Eu (III) and Am (III) Ion Exchange. ChemistrySelect. 2018;3:9583–9588. doi: 10.1002/slct.201801601. DOI
Lee J.Y., Vyas C.K., Kim B.R., Kim H.J., Hur M.G., Yang S.D., Park J.H., Kim S.W. Acid resistant zirconium phosphate for the long term application of 68Ge/68Ga generator system. Appl. Radiat. Isot. 2016;118:343–349. doi: 10.1016/j.apradiso.2016.09.025. PubMed DOI
Clearfield A. Group IV phosphates as catalysts and catalyst supports. J. Mol. Catal. 1984;27:251–262. doi: 10.1016/0304-5102(84)85084-1. DOI
Troup J., Clearfield A. Mechanism of ion exchange in zirconium phosphates. 20. Refinement of the crystal structure of α-zirconium phosphate. Inorg. Chem. 1977;16:3311–3314. doi: 10.1021/ic50178a065. DOI
Clearfield A. Inorganic ion exchangers with layered structures. Annu. Rev. Mater. Sci. 1984;14:205–229. doi: 10.1146/annurev.ms.14.080184.001225. DOI
Albertsson J., Oskarsson A., Tellgren R., Thomas J. Inorganic ion exchangers. 10. A neutron powder diffraction study of the hydrogen bond geometry in α-zirconium bis(monohydrogen orthophosphate) monohydrate. A model for the ion exchange. J. Phys. Chem. 1977;81:1574–1578. doi: 10.1021/j100531a011. DOI
Clearfield A., Smith G.D. The crystallography and structure of α-zirconium bis(monohydrogenorthophosphate) monohydrate. Inorg. Chem. 1969;8:431. doi: 10.1021/ic50073a005. DOI
Kullberg L., Clearfield A. Mechanism of ion exchange in zirconium phosphates. 32. Thermodynamics of alkali metal ion exchange on crystalline α-ZrP. J. Phys. Chem. 1981;85:1585–1589. doi: 10.1021/j150611a025. DOI
Möller T., Bestaoui N., Wierzbicki M., Adams T., Clearfield A. Separation of lanthanum, hafnium, barium and radiotracers yttrium-88 and barium-133 using crystalline zirconium phosphate and phosphonate compounds as prospective materials for a Ra-223 radioisotope generator. Appl. Radiat. Isot. 2011;69:947–954. doi: 10.1016/j.apradiso.2011.02.033. PubMed DOI
Mimura H., Akiba K. Adsorption properties of europium on granulated α-zirconium phosphate. J. Nucl. Sci. Technol. 1996;33:592–596. doi: 10.1080/18811248.1996.9731960. DOI
Jayswal A., Chudasama U. Synthesis and Characterization of a New Phase of Zirconium Phosphate for the Separation of Metal Ions. J. Iran. Chem. Soc. 2007;4:510–515. doi: 10.1007/BF03247240. DOI
Xu J., Virolainen S., Zhang W., Kuva J., Sainio T., Koivula R. Polyacrylonitrile-encapsulated amorphous zirconium phosphate composite adsorbent for Co, Nd and Dy separations. J. Chem. Eng. 2018;351:832–840. doi: 10.1016/j.cej.2018.06.112. DOI
Yan M., Wu S., Wang Y., Liang M., Wang M., Hu W., Yu G., Mao Z., Huang F., Zhou J. Recent Progress of Supramolecular Chemotherapy Based on Host–Guest Interactions. Adv. Mater. 2023 doi: 10.1002/adma.202304249. PubMed DOI
Zhou J., Rao L., Yu G., Cook T.R., Chen X., Huang F. Supramolecular cancer nanotheranostics. Chem. Soc. Rev. 2021;50:2839–2891. doi: 10.1039/D0CS00011F. PubMed DOI
Jurcic J.G., Larson S.M., Sgouros G., McDevitt M.R., Finn R.D., Divgi C.R., Ballangrud A.M., Hamacher K.A., Ma D., Humm J.L., et al. Targeted α particle immunotherapy for myeloid leukemia. Blood. 2002;100:1233–1239. doi: 10.1182/blood.V100.4.1233.h81602001233_1233_1239. PubMed DOI
Autenrieth M.E., Seidl C., Bruchertseifer F., Horn T., Kurtz F., Feuerecker B., D’Alessandria C., Pfob C., Nekolla S., Apostolidis C., et al. Treatment of carcinoma in situ of the urinary bladder with an alpha-emitter immunoconjugate targeting the epidermal growth factor receptor: A pilot study. Eur. J. Nucl. Med. Mol. Imaging. 2018;45:1364–1371. doi: 10.1007/s00259-018-4003-6. PubMed DOI
Kratochwil C., Giesel F.L., Bruchertseifer F., Mier W., Apostolidis C., Boll R., Murphy K., Haberkorn U., Morgenstern A. 213Bi-DOTATOC receptor-targeted alpha-radionuclide therapy induces remission in neuroendocrine tumours refractory to beta radiation: A first-in-human experience. Eur. J. Nucl. Med. Mol. Imaging. 2014;41:2106–2119. doi: 10.1007/s00259-014-2857-9. PubMed DOI PMC
Allen B.J., Raja C., Rizvi S., Li Y., Tsui W., Graham P., Thompson J., Reisfeld R., Kearsley J., Morgenstern A., et al. Intralesional targeted alpha therapy for metastatic melanoma. Cancer Biol. Ther. 2005;4:1318–1324. doi: 10.4161/cbt.4.12.2251. PubMed DOI
Kneifel S., Cordier D., Good S., Ionescu M.C., Ghaffari A., Hofer S., Kretzschmar M., Tolnay M., Apostolidis C., Waser B., et al. Local targeting of malignant gliomas by the diffusible peptidic vector 1, 4, 7, 10-tetraazacyclododecane-1-glutaric acid-4, 7, 10-triacetic acid-substance p. Clin. Cancer Res. 2006;12:3843–3850. doi: 10.1158/1078-0432.CCR-05-2820. PubMed DOI
Kellerbauer A., Bruchertseifer F., Malmbeck R., Morgenstern A. Targeted α therapy with 213Bi and 225Ac. J. Phys. Conf. Ser. 2020;1643:012205. doi: 10.1088/1742-6596/1643/1/012205. DOI
Ondrák L., Ondrák-Fialová K., Sakmár M., Vlk M., Štamberg K., Drtinová B., Šlouf M., Bruchertseifer F., Morgenstern A., Kozempel J. Preparation and characterization of α-zirconium phosphate as a perspective material for separation of 225Ac and 213Bi. J. Radioanal. Nucl. Chem. 2023;332:1527–1532. doi: 10.1007/s10967-022-08682-7. DOI
Yu S., Tang H., Zhang D., Wang S., Qiu M., Song G., Fu D., Hu B., Wang X. MXenes as emerging nanomaterials in water purification and environmental remediation. Sci. Total Environ. 2022;811:152280. doi: 10.1016/j.scitotenv.2021.152280. PubMed DOI
Missana T., Alonso U., García-Gutiérrez M. Evaluation of component additive modeling approach for europium adsorption on 2:1 clays: Experimental, thermodynamic databases, and models. Chemosphere. 2021;272:129877. doi: 10.1016/j.chemosphere.2021.129877. PubMed DOI
Rabung T., Pierret M.C., Bauer A., Geckeis H., Bradbury M.H., Baeyens B. Sorption of Eu (III)/Cm (III) on Ca-montmorillonite and Na-illite. Part 1: Batch sorption and time-resolved laser fluorescence spectroscopy experiments. Geochim. Cosmochim. 2005;69:5393–5402. doi: 10.1016/j.gca.2005.06.030. DOI
Bradbury M.H., Baeyens B., Geckeis H., Rabung T. Sorption of Eu (III)/Cm (III) on Ca-montmorillonite and Na-illite. Part 2: Surface complexation modeling. Geochim. Cosmochim. 2005;69:5403–5412. doi: 10.1016/j.gca.2005.06.031. DOI
Beneš P., Stamberg K., Štegman R. Study of the Kinetics of Interaction of Cs-137 and Sr-85 with Soils using a Batch Method: Methodological Problems. Radiochim. Acta. 1994;66:315–321. doi: 10.1524/ract.1994.6667.special-issue.315. DOI
Suchánková P., Kukleva E., Štamberg K., Nykl P., Sakmár M., Vlk M., Kozempel J. Determination, modeling and evaluation of kinetics of 223Ra sorption on hydroxyapatite and titanium dioxide nanoparticle. Materials. 2020;13:1915. doi: 10.3390/ma13081915. PubMed DOI PMC
Manecke G. Ionenaustauscher, Band I: Grundlagen. Struktur—Herstellung—Theorie, von F. Helfferich. Verlag Chemie GmbH, Weinheim/Bergstraße 1959. 1. Aufl., VIII, 520 S., 153 Abb., 14 Tab., geb. DM 48.–. Angew. Chem. 1962;74:596. doi: 10.1002/ange.19620741527. DOI
Starý J., Kyrš M., Marhol M. Separační metody v radiochemii (Separation methods in radiochemistry) Academia; Praha, Czech Republic: 1975. 253p
Wu C., Brechbiel M.W., Gansow O.A. An improved generator for the production of 213Bi from 225Ac. Radiochim. Acta. 1997;79:141–144. doi: 10.1524/ract.1997.79.2.141. DOI
McAlister D.R., Horwitz E.P. Automated two column generator systems for medical radionuclides. Appl. Radiat. Isot. 2009;67:1985–1991. doi: 10.1016/j.apradiso.2009.07.019. PubMed DOI
Bray L.A., Tingey J.M., DesChane J.R., Egorov O.B., Tenforde T.S., Wilbur D.S., Hamlin D.K., Pathare P.M. Development of a unique bismuth (Bi-213) automated generator for use in cancer therapy. Ind. Eng. Chem. Res. 2000;39:3189–3194. doi: 10.1021/ie990068r. DOI