Preparation and Surface Characterization of Cerium Dioxide for Separation of 68Ge/68Ga and Other Medicinal Radionuclides

. 2023 Feb 21 ; 16 (5) : . [epub] 20230221

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36902874

Grantová podpora
TJ01000334 Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000464 Ministry of Education, Youth and Sports of the Czech Republic
SGS22/188/OHK4/3T/14 Czech Technical University in Prague

The overall need for the preparation of new medicinal radionuclides has led to the fast development of new sorption materials, extraction agents, and separation methods. Inorganic ion exchangers, mainly hydrous oxides, are the most widely used materials for the separation of medicinal radionuclides. One of the materials that has been studied for a long time is cerium dioxide, a competitive sorption material for the broadly used titanium dioxide. In this study, cerium dioxide was prepared through calcination of ceric nitrate and fully characterized using X-ray powder diffraction (XRPD), infrared spectrometry (FT-IR), scanning and transmission electron microscopy (SEM and TEM), thermogravimetric and differential thermal analysis (TG and DTA), dynamic light scattering (DLS), and analysis of surface area. In order to estimate the sorption mechanism and capacity of the prepared material, characterization of surface functional groups was carried out using acid-base titration and mathematical modeling. Subsequently, the sorption capacity of the prepared material for germanium was measured. It can be stated that the prepared material is prone to exchange anionic species in a wider range of pH than titanium dioxide. This characteristic makes the material superior as a matrix in 68Ge/68Ga radionuclide generators, and its suitability should be further studied in batch, kinetic, and column experiments.

Zobrazit více v PubMed

Gebrewold F. Advances in Inorganic Ion Exchangers and Their Applications A Review Article. Chem. Mater. Res. 2017;9:1–5.

International atomic energy agency . Technical Report Series No. 408. 2002. IAEA; Wien, Vienna: 2002. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers.

Naushad F. Inorganic and Composite Ion Exchange Materials and their Applications. Ion Exch. Lett. 2009;2:1–14.

Veselý V., Pekárek V. Synthetic inorganic ion-exchangers—I Hydrous oxides and acidic salts of multivalent metals. Talanta. 1972;19:219–262. doi: 10.1016/0039-9140(72)80075-4. PubMed DOI

Roesch F., Riss P.J. The Renaissance of the 68Ge/68Ga Radionuclide generator Initiates New Developments in 68Ga Radiophamaceutical Chemistry. Curr. Top. Med. Chem. 2010;10:1633–1668. doi: 10.2174/156802610793176738. PubMed DOI

Roesch F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2013;76:24–30. doi: 10.1016/j.apradiso.2012.10.012. PubMed DOI

Saha G.B. Fundamentals of Nuclear Pharmacy. 6th ed. Springer; New York, NY, USA: 2010. Radionuclide generator; pp. 67–82.

Brihaye C., Guillaume M., O’Brien H.A., Raets D., de Landsheere C., Rigo P. Preparation and evaluation of hydrous tin(IV) oxide 82Sr/82Rb medical generator system for continuous elution. Int. J Rad. Appl. Instrum. A. 1987;38:213–217. doi: 10.1016/0883-2889(87)90090-6. PubMed DOI

Chakravarty R., Shukla R., Ram R., Tyagi A.K., Dash A., Venkatesh M. Development of nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl. Med. Biol. 2011;38:575–583. doi: 10.1016/j.nucmedbio.2010.10.007. PubMed DOI

Pijarowska-Kruszyna J., Pociegiel M., Mikolajczak R. Radionuclide generators. Nucl. Med. Mol. Imaging. 2022;1:66–78. doi: 10.1016/B978-0-12-822960-6.00005-3. DOI

Health Products Regulatory Authority. [(accessed on 16 January 2023)]. Available online: https://www.hpra.ie/img/uploaded/swedocuments/Licence_PA2192-001-001_25012021092314.pdf.

Bao B., Song M. A new 68Ge/68Ga generator based on CeO2. J. Radioanal. Nucl. Chem. Lett. 1996;213:233–238. doi: 10.1007/BF02163569. DOI

Chakravarty R., Shukla R., Ram R., Venkatesh M., Dash A., Tyagi A.K. Nanoceria-PAN composite-based advanced sorbent material: A major step forward in the field of clinical-grade 68Ge/68Ga generator. ACS Appl. Mater. Interfaces. 2010;2:2069–2075. doi: 10.1021/am100325s. PubMed DOI

Sakthiraj K., Karthikeyan B. Synthesis and characterization of cerium oxide nanoparticles using different solvents for electrochemical applications. Appl. Phys. A. 2020;126:52. doi: 10.1007/s00339-019-3227-z. DOI

Corma A., Atienzar P., Garcia H., Chane-Ching J.-Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004;3:394–397. doi: 10.1038/nmat1129. PubMed DOI

Dhall A., Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants. 2018;7:97. doi: 10.3390/antiox7080097. PubMed DOI PMC

Nyoka M., Choonara Y., Kumar P., Kondiah P.P.D., Pillay V. Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Appplications. Nanomaterials. 2020;10:242. doi: 10.3390/nano10020242. PubMed DOI PMC

Pandiyan A., Meena M., Moorthy S.B.K. A review on cerium oxide-based electrolytes for ITSOFC. Nanomater. Energy. 2012;1:288–305. doi: 10.1680/nme.12.00015. DOI

Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and Catalytic Applications of CeO2-based Materials. Chem. Rev. 2016;116:5987–6041. doi: 10.1021/acs.chemrev.5b00603. PubMed DOI

Hu T., Xiao S., Yang H., Chen L., Chen Y. Cerium Oxide as Efficient Electron Extraction Layer for p-i-n Structured Perovskite Solar Cells. Chem. Commun. 2018;54:471–474. doi: 10.1039/C7CC08657A. PubMed DOI

Meng R., Feng X., Yang Y., Lv X., Cao J., Tang Y. Cerium-Oxide-Modified Anodes for Efficient and UV-Stable ZnO-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2019;11:13273–13278. doi: 10.1021/acsami.9b01587. PubMed DOI

Hirst S.M., Karakoti A.S., Tyler R.D., Sriranganathan N., Seal S., Reilly C.M. Anti-Inflammatory Properties of Cerium Oxide Nanoparticles. Small. 2009;5:2848–2856. doi: 10.1002/smll.200901048. PubMed DOI

Zal Z., Ghasemi A., Azizi S., Asgarian-Omran H., Montazeri A., Hosseinimehr S.J. Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Curr. Radiopharm. 2018;11:109–115. doi: 10.2174/1874471011666180528095203. PubMed DOI

Do M., Stinson K., Geroge R. Reflectance structured illumination imaging of internalized cerium oxide nanoparticles modulating dose-dependent reactive oxygen species in breast cancer cells. Biochem. Biophys. Rep. 2020;22:100745. doi: 10.1016/j.bbrep.2020.100745. PubMed DOI PMC

Khabirova S., Aleshin G., Plakhova T., Zubenko A., Shchukina A., Fedorova O., Averin A., Belova E., Bazarkina E., Kvashnina K., et al. CeO2-Azacrown Conjugate as a Nanoplatfomr for Combined Radiopharmaceuticals. Nanomaterials. 2022;12:4484. doi: 10.3390/nano12244484. PubMed DOI PMC

Djurčic B., Pickering S. Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc. 1999;19:1925–1934. doi: 10.1016/S0955-2219(99)00006-0. DOI

Chen H.I., Chang H.Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram. Int. 2005;31:795–802. doi: 10.1016/j.ceramint.2004.09.006. DOI

Nilchi A., Yaftian M., Aboulhasanlo G., Garmarodi R. Adsorption of selected ions on hydrous cerium oxide. J. Radioanal. Nucl. Chem. 2009;279:65–74. doi: 10.1007/s10967-007-7255-3. DOI

Tok A.I.Y., Boey F.Y.C., Dong Z., Sun X.L. Hydrothermal synthesis of CeO2 nano-particles. J. Mater. Process. Technol. 2007;190:217–222. doi: 10.1016/j.jmatprotec.2007.02.042. DOI

Pang J.H., Liu Y., Li J., Yang X.J. Solvothermal synthesis of nano-CeO2 aggregates and its application as a high-efficient arsenic adsorbent. Rare Met. 2019;38:73–80. doi: 10.1007/s12598-018-1072-4. DOI

Wu Y., Li H., Bian X., Wu W., Wang Z., Liu Y. Green and Short Preparation of CeO2 Nanoparticles with Large Specific Surface Area by Spray Pyrolysis. Materials. 2021;14:4963. doi: 10.3390/ma14174963. PubMed DOI PMC

Filipská H., Štamberg K. Mathematical modelling of a Cs(I)-Sr(II)-bentonite-magnetite sorption system simulating the processes taking place in deep geological repository. Acta Polytech. 2005;45:11–18. doi: 10.14311/758. DOI

Kukleva K., Suchánková P., Štamberg K., Vlk M., Šlouf M., Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC

Vlasova N., Markitan O. Phosphate–nucleotide–nucleic acid: Adsorption onto nanocrystalline ceria surface. Colloids Surf. A Physicochem. Eng. Asp. 2022;648:129214. doi: 10.1016/j.colsurfa.2022.129214. DOI

ICDD PDF-2 Database, Version 2013. ISDD; Decatur, GA, USA: 2013.

Ondrák L., Ondrák Fialová K., Sakmár M., Vlk M., Štamberg K., Drtinová B., Šlouf M., Brucherseifer F., Morgenstern A., Kozempel J. Preparation and characterization of α-zirconium phosphate as a perspective material for separation of 225Ac and 213Bi. J. Radioanal. Nucl. Chem. 2023 doi: 10.1007/s10967-022-08682-7. PubMed DOI

Labar J.L. Consistent indexing of a (set of) SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI

Šlouf M. EDIFF Package. [(accessed on 20 November 2022)]. Available online: https://pypi.org/project/ediff.

Grazulis S., Chateigner D., Downs R.T., Yokochi A.T., Quiros M., Lutterotti L., Manakova E., Butkus J., Moeck P., Le Bail A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Cryst. 2009;42:726–729. doi: 10.1107/S0021889809016690. PubMed DOI PMC

Šebesta F. Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds. J. Radioanal. Nucl. Chem. 1997;220:77–88. doi: 10.1007/BF02035352. DOI

Williams D.B., Carter C.B. Transmission Electron Microscopy. 2nd ed. Springer; New York, NY, USA: 2009.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...