Preparation and Surface Characterization of Cerium Dioxide for Separation of 68Ge/68Ga and Other Medicinal Radionuclides
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
TJ01000334
Technology Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000464
Ministry of Education, Youth and Sports of the Czech Republic
SGS22/188/OHK4/3T/14
Czech Technical University in Prague
PubMed
36902874
PubMed Central
PMC10004219
DOI
10.3390/ma16051758
PII: ma16051758
Knihovny.cz E-zdroje
- Klíčová slova
- FT-IR, SEM, TEM, XRPD, acid-base titration, cerium dioxide, mechanism, sorption, thermal analysis,
- Publikační typ
- časopisecké články MeSH
The overall need for the preparation of new medicinal radionuclides has led to the fast development of new sorption materials, extraction agents, and separation methods. Inorganic ion exchangers, mainly hydrous oxides, are the most widely used materials for the separation of medicinal radionuclides. One of the materials that has been studied for a long time is cerium dioxide, a competitive sorption material for the broadly used titanium dioxide. In this study, cerium dioxide was prepared through calcination of ceric nitrate and fully characterized using X-ray powder diffraction (XRPD), infrared spectrometry (FT-IR), scanning and transmission electron microscopy (SEM and TEM), thermogravimetric and differential thermal analysis (TG and DTA), dynamic light scattering (DLS), and analysis of surface area. In order to estimate the sorption mechanism and capacity of the prepared material, characterization of surface functional groups was carried out using acid-base titration and mathematical modeling. Subsequently, the sorption capacity of the prepared material for germanium was measured. It can be stated that the prepared material is prone to exchange anionic species in a wider range of pH than titanium dioxide. This characteristic makes the material superior as a matrix in 68Ge/68Ga radionuclide generators, and its suitability should be further studied in batch, kinetic, and column experiments.
Zobrazit více v PubMed
Gebrewold F. Advances in Inorganic Ion Exchangers and Their Applications A Review Article. Chem. Mater. Res. 2017;9:1–5.
International atomic energy agency . Technical Report Series No. 408. 2002. IAEA; Wien, Vienna: 2002. Application of ion exchange processes for the treatment of radioactive waste and management of spent ion exchangers.
Naushad F. Inorganic and Composite Ion Exchange Materials and their Applications. Ion Exch. Lett. 2009;2:1–14.
Veselý V., Pekárek V. Synthetic inorganic ion-exchangers—I Hydrous oxides and acidic salts of multivalent metals. Talanta. 1972;19:219–262. doi: 10.1016/0039-9140(72)80075-4. PubMed DOI
Roesch F., Riss P.J. The Renaissance of the 68Ge/68Ga Radionuclide generator Initiates New Developments in 68Ga Radiophamaceutical Chemistry. Curr. Top. Med. Chem. 2010;10:1633–1668. doi: 10.2174/156802610793176738. PubMed DOI
Roesch F. Past, present and future of 68Ge/68Ga generators. Appl. Radiat. Isot. 2013;76:24–30. doi: 10.1016/j.apradiso.2012.10.012. PubMed DOI
Saha G.B. Fundamentals of Nuclear Pharmacy. 6th ed. Springer; New York, NY, USA: 2010. Radionuclide generator; pp. 67–82.
Brihaye C., Guillaume M., O’Brien H.A., Raets D., de Landsheere C., Rigo P. Preparation and evaluation of hydrous tin(IV) oxide 82Sr/82Rb medical generator system for continuous elution. Int. J Rad. Appl. Instrum. A. 1987;38:213–217. doi: 10.1016/0883-2889(87)90090-6. PubMed DOI
Chakravarty R., Shukla R., Ram R., Tyagi A.K., Dash A., Venkatesh M. Development of nano-zirconia based 68Ge/68Ga generator for biomedical applications. Nucl. Med. Biol. 2011;38:575–583. doi: 10.1016/j.nucmedbio.2010.10.007. PubMed DOI
Pijarowska-Kruszyna J., Pociegiel M., Mikolajczak R. Radionuclide generators. Nucl. Med. Mol. Imaging. 2022;1:66–78. doi: 10.1016/B978-0-12-822960-6.00005-3. DOI
Health Products Regulatory Authority. [(accessed on 16 January 2023)]. Available online: https://www.hpra.ie/img/uploaded/swedocuments/Licence_PA2192-001-001_25012021092314.pdf.
Bao B., Song M. A new 68Ge/68Ga generator based on CeO2. J. Radioanal. Nucl. Chem. Lett. 1996;213:233–238. doi: 10.1007/BF02163569. DOI
Chakravarty R., Shukla R., Ram R., Venkatesh M., Dash A., Tyagi A.K. Nanoceria-PAN composite-based advanced sorbent material: A major step forward in the field of clinical-grade 68Ge/68Ga generator. ACS Appl. Mater. Interfaces. 2010;2:2069–2075. doi: 10.1021/am100325s. PubMed DOI
Sakthiraj K., Karthikeyan B. Synthesis and characterization of cerium oxide nanoparticles using different solvents for electrochemical applications. Appl. Phys. A. 2020;126:52. doi: 10.1007/s00339-019-3227-z. DOI
Corma A., Atienzar P., Garcia H., Chane-Ching J.-Y. Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat. Mater. 2004;3:394–397. doi: 10.1038/nmat1129. PubMed DOI
Dhall A., Self W. Cerium Oxide Nanoparticles: A Brief Review of Their Synthesis Methods and Biomedical Applications. Antioxidants. 2018;7:97. doi: 10.3390/antiox7080097. PubMed DOI PMC
Nyoka M., Choonara Y., Kumar P., Kondiah P.P.D., Pillay V. Synthesis of Cerium Oxide Nanoparticles Using Various Methods: Implications for Biomedical Appplications. Nanomaterials. 2020;10:242. doi: 10.3390/nano10020242. PubMed DOI PMC
Pandiyan A., Meena M., Moorthy S.B.K. A review on cerium oxide-based electrolytes for ITSOFC. Nanomater. Energy. 2012;1:288–305. doi: 10.1680/nme.12.00015. DOI
Montini T., Melchionna M., Monai M., Fornasiero P. Fundamentals and Catalytic Applications of CeO2-based Materials. Chem. Rev. 2016;116:5987–6041. doi: 10.1021/acs.chemrev.5b00603. PubMed DOI
Hu T., Xiao S., Yang H., Chen L., Chen Y. Cerium Oxide as Efficient Electron Extraction Layer for p-i-n Structured Perovskite Solar Cells. Chem. Commun. 2018;54:471–474. doi: 10.1039/C7CC08657A. PubMed DOI
Meng R., Feng X., Yang Y., Lv X., Cao J., Tang Y. Cerium-Oxide-Modified Anodes for Efficient and UV-Stable ZnO-Based Perovskite Solar Cells. ACS Appl. Mater. Interfaces. 2019;11:13273–13278. doi: 10.1021/acsami.9b01587. PubMed DOI
Hirst S.M., Karakoti A.S., Tyler R.D., Sriranganathan N., Seal S., Reilly C.M. Anti-Inflammatory Properties of Cerium Oxide Nanoparticles. Small. 2009;5:2848–2856. doi: 10.1002/smll.200901048. PubMed DOI
Zal Z., Ghasemi A., Azizi S., Asgarian-Omran H., Montazeri A., Hosseinimehr S.J. Radioprotective effect of cerium oxide nanoparticles against genotoxicity induced by ionizing radiation on human lymphocytes. Curr. Radiopharm. 2018;11:109–115. doi: 10.2174/1874471011666180528095203. PubMed DOI
Do M., Stinson K., Geroge R. Reflectance structured illumination imaging of internalized cerium oxide nanoparticles modulating dose-dependent reactive oxygen species in breast cancer cells. Biochem. Biophys. Rep. 2020;22:100745. doi: 10.1016/j.bbrep.2020.100745. PubMed DOI PMC
Khabirova S., Aleshin G., Plakhova T., Zubenko A., Shchukina A., Fedorova O., Averin A., Belova E., Bazarkina E., Kvashnina K., et al. CeO2-Azacrown Conjugate as a Nanoplatfomr for Combined Radiopharmaceuticals. Nanomaterials. 2022;12:4484. doi: 10.3390/nano12244484. PubMed DOI PMC
Djurčic B., Pickering S. Nanostructured cerium oxide: Preparation and properties of weakly-agglomerated powders. J. Eur. Ceram. Soc. 1999;19:1925–1934. doi: 10.1016/S0955-2219(99)00006-0. DOI
Chen H.I., Chang H.Y. Synthesis of nanocrystalline cerium oxide particles by the precipitation method. Ceram. Int. 2005;31:795–802. doi: 10.1016/j.ceramint.2004.09.006. DOI
Nilchi A., Yaftian M., Aboulhasanlo G., Garmarodi R. Adsorption of selected ions on hydrous cerium oxide. J. Radioanal. Nucl. Chem. 2009;279:65–74. doi: 10.1007/s10967-007-7255-3. DOI
Tok A.I.Y., Boey F.Y.C., Dong Z., Sun X.L. Hydrothermal synthesis of CeO2 nano-particles. J. Mater. Process. Technol. 2007;190:217–222. doi: 10.1016/j.jmatprotec.2007.02.042. DOI
Pang J.H., Liu Y., Li J., Yang X.J. Solvothermal synthesis of nano-CeO2 aggregates and its application as a high-efficient arsenic adsorbent. Rare Met. 2019;38:73–80. doi: 10.1007/s12598-018-1072-4. DOI
Wu Y., Li H., Bian X., Wu W., Wang Z., Liu Y. Green and Short Preparation of CeO2 Nanoparticles with Large Specific Surface Area by Spray Pyrolysis. Materials. 2021;14:4963. doi: 10.3390/ma14174963. PubMed DOI PMC
Filipská H., Štamberg K. Mathematical modelling of a Cs(I)-Sr(II)-bentonite-magnetite sorption system simulating the processes taking place in deep geological repository. Acta Polytech. 2005;45:11–18. doi: 10.14311/758. DOI
Kukleva K., Suchánková P., Štamberg K., Vlk M., Šlouf M., Kozempel J. Surface protolytic property characterization of hydroxyapatite and titanium dioxide nanoparticles. RSC Adv. 2019;9:21989–21995. doi: 10.1039/C9RA03698A. PubMed DOI PMC
Vlasova N., Markitan O. Phosphate–nucleotide–nucleic acid: Adsorption onto nanocrystalline ceria surface. Colloids Surf. A Physicochem. Eng. Asp. 2022;648:129214. doi: 10.1016/j.colsurfa.2022.129214. DOI
ICDD PDF-2 Database, Version 2013. ISDD; Decatur, GA, USA: 2013.
Ondrák L., Ondrák Fialová K., Sakmár M., Vlk M., Štamberg K., Drtinová B., Šlouf M., Brucherseifer F., Morgenstern A., Kozempel J. Preparation and characterization of α-zirconium phosphate as a perspective material for separation of 225Ac and 213Bi. J. Radioanal. Nucl. Chem. 2023 doi: 10.1007/s10967-022-08682-7. PubMed DOI
Labar J.L. Consistent indexing of a (set of) SAED pattern(s) with the ProcessDiffraction program. Ultramicroscopy. 2005;103:237–249. doi: 10.1016/j.ultramic.2004.12.004. PubMed DOI
Šlouf M. EDIFF Package. [(accessed on 20 November 2022)]. Available online: https://pypi.org/project/ediff.
Grazulis S., Chateigner D., Downs R.T., Yokochi A.T., Quiros M., Lutterotti L., Manakova E., Butkus J., Moeck P., Le Bail A. Crystallography Open Database—An open-access collection of crystal structures. J. Appl. Cryst. 2009;42:726–729. doi: 10.1107/S0021889809016690. PubMed DOI PMC
Šebesta F. Composite sorbents of inorganic ion-exchangers and polyacrylonitrile binding matrix I. Methods of modification of properties of inorganic ion-exchangers for application in column packed beds. J. Radioanal. Nucl. Chem. 1997;220:77–88. doi: 10.1007/BF02035352. DOI
Williams D.B., Carter C.B. Transmission Electron Microscopy. 2nd ed. Springer; New York, NY, USA: 2009.