Artificial Intelligence-Aided Massively Parallel Spectroscopy of Freely Diffusing Nanoscale Entities
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
37552526
PubMed Central
PMC10448498
DOI
10.1021/acs.analchem.3c01043
Knihovny.cz E-zdroje
- MeSH
- nanočástice * chemie MeSH
- spektrální analýza MeSH
- streptavidin MeSH
- umělá inteligence * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- streptavidin MeSH
Massively parallel spectroscopy (MPS) of many single nanoparticles in an aqueous dispersion is reported. As a model system, bioconjugated photon-upconversion nanoparticles (UCNPs) with a near-infrared excitation are prepared. The UCNPs are doped either with Tm3+ (emission 450 and 802 nm) or Er3+ (emission 554 and 660 nm). These UCNPs are conjugated to biotinylated bovine serum albumin (Tm3+-doped) or streptavidin (Er3+-doped). MPS is correlated with an ensemble spectra measurement, and the limit of detection (1.6 fmol L-1) and the linearity range (4.8 fmol L-1 to 40 pmol L-1) for bioconjugated UCNPs are estimated. MPS is used for observing the bioaffinity clustering of bioconjugated UCNPs. This observation is correlated with a native electrophoresis and bioaffinity assay on a microtiter plate. A competitive MPS bioaffinity assay for biotin is developed and characterized with a limit of detection of 6.6 nmol L-1. MPS from complex biological matrices (cell cultivation medium) is performed without increasing background. The compatibility with polydimethylsiloxane microfluidics is proven by recording MPS from a 30 μm deep microfluidic channel.
Zobrazit více v PubMed
Haase M.; Schäfer H. Upconverting Nanoparticles. Angew. Chem., Int. Ed. 2011, 50, 5808–5829. 10.1002/anie.201005159. PubMed DOI
Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004, 104, 139–174. 10.1021/cr020357g. PubMed DOI
Wu Y.; Bennett D.; Tilley R. D.; Gooding J. J. How Nanoparticles Transform Single Molecule Measurements into Quantitative Sensors. Adv. Mater. 2020, 32, 190433910.1002/adma.201904339. PubMed DOI
Algar W. R.; Massey M.; Rees K.; Higgins R.; Krause K. D.; Darwish G. H.; Peveler W. J.; Xiao Z.; Tsai H.-Y.; Gupta R.; Lix K.; Tran M. V.; Kim H. Photoluminescent Nanoparticles for Chemical and Biological Analysis and Imaging. Chem. Rev. 2021, 121, 9243–9358. 10.1021/acs.chemrev.0c01176. PubMed DOI
Zhou B.; Shi B.; Jin D.; Liu X. Controlling Upconversion Nanocrystals for Emerging Applications. Nat. Nanotechnol. 2015, 10, 924–936. 10.1038/nnano.2015.251. PubMed DOI
Wilhelm S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11, 10644–10653. 10.1021/acsnano.7b07120. PubMed DOI
Jin D.; Xi P.; Wang B.; Zhang L.; Enderlein J.; van Oijen A. M. Nanoparticles for Super-Resolution Microscopy and Single-Molecule Tracking. Nat. Methods 2018, 15, 415–423. 10.1038/s41592-018-0012-4. PubMed DOI
Hlaváček; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of Photon-Upconversion Nanoparticles for Cancer Biomarker Detection and Imaging. Nat. Protoc. 2022, 17, 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI
Hlaváček A.; Farka Z.; Hübner M.; Horňáková V.; Němeček D.; Niessner R.; Skládal P.; Knopp D.; Gorris H. H. Competitive Upconversion-Linked Immunosorbent Assay for the Sensitive Detection of Diclofenac. Anal. Chem. 2016, 88, 6011–6017. 10.1021/acs.analchem.6b01083. PubMed DOI
Hlaváček A.; Peterek M.; Farka Z.; Mickert M. J.; Prechtl L.; Knopp D.; Gorris H. H. Rapid Single-Step Upconversion-Linked Immunosorbent Assay for Diclofenac. Microchim. Acta 2017, 184, 4159–4165. 10.1007/s00604-017-2456-0. DOI
Lahtinen S.; Krause S.; Arppe R.; Soukka T.; Vosch T. Upconversion Cross-Correlation Spectroscopy of a Sandwich Immunoassay. Chem. – Eur. J. 2018, 24, 9229–9233. 10.1002/chem.201801962. PubMed DOI PMC
Lahtinen S.; Baldtzer Liisberg M.; Raiko K.; Krause S.; Soukka T.; Vosch T. Thulium- and Erbium-Doped Nanoparticles with Poly(Acrylic Acid) Coating for Upconversion Cross-Correlation Spectroscopy-Based Sandwich Immunoassays in Plasma. ACS Appl. Nano Mater. 2021, 4, 432–440. 10.1021/acsanm.0c02770. DOI
Haustein E.; Schwille P. Fluorescence Correlation Spectroscopy: Novel Variations of an Established Technique. Annu. Rev. Biophys. Biomol. Struct. 2007, 36, 151–169. 10.1146/annurev.biophys.36.040306.132612. PubMed DOI
Hess S. T.; Huang S.; Heikal A. A.; Webb W. W. Biological and Chemical Applications of Fluorescence Correlation Spectroscopy: A Review. Biochemistry 2002, 41, 697–705. 10.1021/bi0118512. PubMed DOI
Holzmeister P.; Acuna G. P.; Grohmann D.; Tinnefeld P. Breaking the Concentration Limit of Optical Single-Molecule Detection. Chem. Soc. Rev. 2014, 43, 1014–1028. 10.1039/C3CS60207A. PubMed DOI
Howell S. B.Handbook of CCD Astronomy, 2nd ed.; Cambridge Observing Handbooks for Research Astronomers; Cambridge University Press: Cambridge, 2006.
Wang Y.; Robberto M.; Dickinson M.; Hillenbrand L. A.; Fraser W.; Behroozi P.; Brinchmann J.; Chuang C.-H.; Cimatti A.; Content R.; Daddi E.; Ferguson H. C.; Hirata C.; Hudson M. J.; Kirkpatrick J. D.; Orsi A.; Ryan R.; Shapley A.; Ballardini M.; Barkhouser R.; Bartlett J.; Benjamin R.; Chary R.; Conroy C.; Donahue M.; Doré O.; Eisenhardt P.; Glazebrook K.; Helou G.; Malhotra S.; Moscardini L.; Newman J. A.; Ninkov Z.; Ressler M.; Rhoads J.; Rhodes J.; Scolnic D.; Smee S.; Valentino F.; Wechsler R. H. ATLAS Probe: Breakthrough Science of Galaxy Evolution, Cosmology, Milky Way, and the Solar System. Publ. Astron. Soc. Aust. 2019, 36, e01510.1017/pasa.2019.5. DOI
Gardner J. P.; Mather J. C.; Clampin M.; Doyon R.; Greenhouse M. A.; Hammel H. B.; Hutchings J. B.; Jakobsen P.; Lilly S. J.; Long K. S.; Lunine J. I.; Mccaughrean M. J.; Mountain M.; Nella J.; Rieke G. H.; Rieke M. J.; Rix H.-W.; Smith E. P.; Sonneborn G.; Stiavelli M.; Stockman H. S.; Windhorst R. A.; Wright G. S. The James Webb Space Telescope. Space Sci. Rev. 2006, 123, 485–606. 10.1007/s11214-006-8315-7. DOI
Zhou J.; Chizhik A. I.; Chu S.; Jin D. Single-Particle Spectroscopy for Functional Nanomaterials. Nature 2020, 579, 41–50. 10.1038/s41586-020-2048-8. PubMed DOI
Yan R.; Moon S.; Kenny S. J.; Xu K. Spectrally Resolved and Functional Super-Resolution Microscopy via Ultrahigh-Throughput Single-Molecule Spectroscopy. Acc. Chem. Res. 2018, 51, 697–705. 10.1021/acs.accounts.7b00545. PubMed DOI
Zhang Z.; Kenny S. J.; Hauser M.; Li W.; Xu K. Ultrahigh-Throughput Single-Molecule Spectroscopy and Spectrally Resolved Super-Resolution Microscopy. Nat. Methods 2015, 12, 935–938. 10.1038/nmeth.3528. PubMed DOI
Hlaváček A.; Křivánková J.; Brožková H.; Weisová J.; Pizúrová N.; Foret F. Absolute Counting Method with Multiplexing Capability for Estimating the Number Concentration of Nanoparticles Using Anisotropically Collapsed Gels. Anal. Chem. 2022, 94, 14340–14348. 10.1021/acs.analchem.2c02989. PubMed DOI
Hlaváček A.; Křivánková J.; Přikryl J.; Foret F. Photon-Upconversion Barcoding with Multiple Barcode Channels: Application for Droplet Microfluidics. Anal. Chem. 2019, 91, 12630–12635. 10.1021/acs.analchem.9b03117. PubMed DOI
Hlaváček A.; Křivánková J.; Pizúrová N.; Václavek T.; Foret F. Photon-Upconversion Barcode for Monitoring an Enzymatic Reaction with a Fluorescence Reporter in Droplet Microfluidics. Analyst 2020, 145, 7718.10.1039/D0AN01667E. PubMed DOI
Kraft M.; Würth C.; Palo E.; Soukka T.; Resch-Genger U. Colour-Optimized Quantum Yields of Yb, Tm Co-Doped Upconversion Nanocrystals. Methods Appl. Fluoresc. 2019, 7, 02400110.1088/2050-6120/ab023b. PubMed DOI
Homann C.; Krukewitt L.; Frenzel F.; Grauel B.; Würth C.; Resch-Genger U.; Haase M. NaYF4:Yb,Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew. Chem., Int. Ed. 2018, 57, 8765–8769. 10.1002/anie.201803083. PubMed DOI
Frenzel F.; Würth C.; Dukhno O.; Przybilla F.; Wiesholler L. M.; Muhr V.; Hirsch T.; Mély Y.; Resch-Genger U. Multiband Emission from Single β-NaYF4(Yb,Er) Nanoparticles at High Excitation Power Densities and Comparison to Ensemble Studies. Nano Res. 2021, 14, 4107–4115. 10.1007/s12274-021-3350-y. DOI
Zhao J.; Jin D.; Schartner E. P.; Lu Y.; Liu Y.; Zvyagin A. V.; Zhang L.; Dawes J. M.; Xi P.; Piper J. A.; Goldys E. M.; Monro T. M. Single-Nanocrystal Sensitivity Achieved by Enhanced Upconversion Luminescence. Nat. Nanotechnol. 2013, 8, 729–734. 10.1038/nnano.2013.171. PubMed DOI
Hlaváček A.; Mickert M. J.; Soukka T.; Lahtinen S.; Tallgren T.; Pizúrová N.; Król A.; Gorris H. H. Large-Scale Purification of Photon-Upconversion Nanoparticles by Gel Electrophoresis for Analogue and Digital Bioassays. Anal. Chem. 2019, 91, 1241–1246. 10.1021/acs.analchem.8b04488. PubMed DOI
Hlaváček A.; Sedlmeier A.; Skládal P.; Gorris H. H. Electrophoretic Characterization and Purification of Silica-Coated Photon-Upconverting Nanoparticles and Their Bioconjugates. ACS Appl. Mater. Interfaces 2014, 6, 6930–6935. 10.1021/am500732y. PubMed DOI
Maaloum M.; Pernodet N.; Tinland B. Agarose Gel Structure Using Atomic Force Microscopy: Gel Concentration and Ionic Strength Effects. Electrophoresis 1998, 19, 1606–1610. 10.1002/elps.1150191015. PubMed DOI
LeCun Y.; Bengio Y.; Hinton G. Deep Learning. Nature 2015, 521, 436–444. 10.1038/nature14539. PubMed DOI
Newby J. M.; Schaefer A. M.; Lee P. T.; Forest M. G.; Lai S. K. Convolutional Neural Networks Automate Detection for Tracking of Submicron-Scale Particles in 2D and 3D. Proc. Natl. Acad. Sci. U. S. A. 2018, 115, 9026–9031. 10.1073/pnas.1804420115. PubMed DOI PMC
Ronneberger O.; Fischer P.; Brox T.. U-Net: Convolutional Networks for Biomedical Image Segmentation. Lect. Notes Comput. Sci. Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics, 2015, vol 9351; pp 234–241.
Duffy D. C. Digital Detection of Proteins. Lab Chip 2023, 23, 818–847. 10.1039/D2LC00783E. PubMed DOI
Su D.; Hou Y.; Dong C.; Ren J. Fluctuation Correlation Spectroscopy and Its Applications in Homogeneous Analysis. Anal. Bioanal. Chem. 2019, 411, 4523–4540. 10.1007/s00216-019-01884-1. PubMed DOI
Miller A. E.; Hollars C. W.; Lane S. M.; Laurence T. A. Fluorescence Cross-Correlation Spectroscopy as a Universal Method for Protein Detection with Low False Positives. Anal. Chem. 2009, 81, 5614–5622. 10.1021/ac9001645. PubMed DOI
Landry J. P.; Ke Y.; Yu G.-L.; Zhu X. D. Measuring Affinity Constants of 1450 Monoclonal Antibodies to Peptide Targets with a Microarray-Based Label-Free Assay Platform. J. Immunol. Methods 2015, 417, 86–96. 10.1016/j.jim.2014.12.011. PubMed DOI PMC
Krieger J. W.; Singh A. P.; Bag N.; Garbe C. S.; Saunders T. E.; Langowski J.; Wohland T. Imaging Fluorescence (Cross-) Correlation Spectroscopy in Live Cells and Organisms. Nat. Protoc. 2015, 10, 1948–1974. 10.1038/nprot.2015.100. PubMed DOI
Medintz I. L.; Hildebrandt N.. FRET – Förster Resonance Energy Transfer: From Theory to Applications; Wiley-VCH Verlag, 2013.
Su Q.; Feng W.; Yang D.; Li F. Resonance Energy Transfer in Upconversion Nanoplatforms for Selective Biodetection. Acc. Chem. Res. 2017, 50, 32–40. 10.1021/acs.accounts.6b00382. PubMed DOI
Wang J.; Deng R. Energy Transfer in Dye-Coupled Lanthanide-Doped Nanoparticles: From Design to Application. Chem. – Asian J. 2018, 13, 614–625. 10.1002/asia.201701817. PubMed DOI
Kuningas K.; Rantanen T.; Ukonaho T.; Lövgren T.; Soukka T. Homogeneous Assay Technology Based on Upconverting Phosphors. Anal. Chem. 2005, 77, 7348–7355. 10.1021/ac0510944. PubMed DOI
Labib M.; Kelley S. O. Single-Cell Analysis Targeting the Proteome. Nat. Rev. Chem. 2020, 4, 143–158. 10.1038/s41570-020-0162-7. PubMed DOI
Montes-García V.; Squillaci M. A.; Diez-Castellnou M.; Ong Q. K.; Stellacci F.; Samorì P. Chemical Sensing with Au and Ag Nanoparticles. Chem. Soc. Rev. 2021, 50, 1269–1304. 10.1039/D0CS01112F. PubMed DOI
Priest L.; Peters J. S.; Kukura P. Scattering-Based Light Microscopy: From Metal Nanoparticles to Single Proteins. Chem. Rev. 2021, 121, 11937–11970. 10.1021/acs.chemrev.1c00271. PubMed DOI PMC
Krämer J.; Kang R.; Grimm L. M.; De Cola L.; Picchetti P.; Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem. Rev. 2022, 122, 3459–3636. 10.1021/acs.chemrev.1c00746. PubMed DOI PMC