Amplification-Free Attomolar Detection of Short Nucleic Acids with Upconversion Luminescence: Eliminating Nonspecific Binding by Hybridization Complex Transfer

. 2025 Jan 28 ; 97 (3) : 1775-1782. [epub] 20250112

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39799476

The anti-Stokes emission of photon upconversion nanoparticles (UCNPs) facilitates their use as labels for ultrasensitive detection in biological samples as infrared excitation does not induce autofluorescence at visible wavelengths. The detection of extremely low-abundance analytes, however, remains challenging as it is impossible to completely avoid nonspecific binding of label conjugates. To overcome this limitation, we developed a novel hybridization complex transfer technique using UCNP labels to detect short nucleic acids directly without target amplification. The assay involves capturing the target-label complexes on an initial solid phase, then using releasing oligonucleotides to specifically elute only the target-UCNP complexes and recapturing them on another solid phase. The nonspecifically adsorbed labels remain on the first solid phase, enabling background-free, ultrasensitive detection. When magnetic microparticles were used as the first solid phase in a sample volume of 120 μL, the assay achieved a limit of detection (LOD) of 310 aM, a 27-fold improvement over the reference assay without transfer. Moreover, the additional target-specific steps introduced in the complex transfer procedure improved the sequence specificity of the complex transfer assay compared with the reference assay. The suitability for clinical analysis was confirmed using spiked plasma samples, resulting in an LOD of 190 aM. By increasing the sample volume to 600 μL and using magnetic preconcentration, the LOD was improved to 46 aM. These results highlight the importance of background elimination in achieving ultralow LODs for the analysis of low-abundance biomarkers.

Zobrazit více v PubMed

Li M.; Yin F.; Song L.; Mao X.; Li F.; Fan C.; Zuo X.; Xia Q. Nucleic Acid Tests for Clinical Translation. Chem. Rev. 2021, 121 (17), 10469–10558. 10.1021/acs.chemrev.1c00241. PubMed DOI

Valihrach L.; Androvic P.; Kubista M. Circulating MiRNA Analysis for Cancer Diagnostics and Therapy. Mol. Aspects Med. 2020, 72, 100825.10.1016/j.mam.2019.10.002. PubMed DOI

Qian S.; Chen Y.; Xu X.; Peng C.; Wang X.; Wu H.; Liu Y.; Zhong X.; Xu J.; Wu J. Advances in Amplification-Free Detection of Nucleic Acid: CRISPR/Cas System as a Powerful Tool. Anal. Biochem. 2022, 643, 114593.10.1016/j.ab.2022.114593. PubMed DOI

Kim D.-J.; Linnstaedt S.; Palma J.; Park J. C.; Ntrivalas E.; Kwak-Kim J. Y. H.; Gilman-Sachs A.; Beaman K.; Hastings M. L.; Martin J. N.; Duelli D. M. Plasma Components Affect Accuracy of Circulating Cancer-Related MicroRNA Quantitation. J. Mol. Diagn. 2012, 14 (1), 71–80. 10.1016/j.jmoldx.2011.09.002. PubMed DOI PMC

Koshiol J.; Wang E.; Zhao Y.; Marincola F.; Landi M. T. Strengths and Limitations of Laboratory Procedures for MicroRNA Detection. Cancer Epidemiol. Biomarkers Prev. 2010, 19 (4), 907–911. 10.1158/1055-9965.EPI-10-0071. PubMed DOI PMC

Li W.; Ruan K. MicroRNA Detection by Microarray. Anal. Bioanal. Chem. 2009, 394 (4), 1117–1124. 10.1007/s00216-008-2570-2. PubMed DOI

Koscianska E.; Starega-Roslan J.; Sznajder L. J.; Olejniczak M.; Galka-Marciniak P.; Krzyzosiak W. J. Northern Blotting Analysis of MicroRNAs, Their Precursors and RNA Interference Triggers. BMC Mol. Biol. 2011, 12 (1), 14.10.1186/1471-2199-12-14. PubMed DOI PMC

Liang G.; Wang H.; Shi H.; Wang H.; Zhu M.; Jing A.; Li J.; Li G. Recent Progress in the Development of Upconversion Nanomaterials in Bioimaging and Disease Treatment. J. Nanobiotechnol. 2020, 18 (1), 154.10.1186/s12951-020-00713-3. PubMed DOI PMC

Wen S.; Zhou J.; Zheng K.; Bednarkiewicz A.; Liu X.; Jin D. Advances in Highly Doped Upconversion Nanoparticles. Nat. Commun. 2018, 9 (1), 2415.10.1038/s41467-018-04813-5. PubMed DOI PMC

Hlaváček A.; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of Photon-Upconversion Nanoparticles for Cancer Biomarker Detection and Imaging. Nat. Protoc. 2022, 17 (4), 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI

Wu S.; Han G.; Milliron D. J.; Aloni S.; Altoe V.; Talapin D. V.; Cohen B. E.; Schuck P. J. Non-Blinking and Photostable Upconverted Luminescence from Single Lanthanide-Doped Nanocrystals. Proc. Natl. Acad. Sci. U.S.A. 2009, 106 (27), 10917–10921. 10.1073/pnas.0904792106. PubMed DOI PMC

Guan L.; Peng J.; Liu T.; Huang S.; Yang Y.; Wang X.; Hao X. Ultrasensitive MiRNA Detection Based on Magnetic Upconversion Nanoparticle Enhancement and CRISPR/Cas13a-Driven Signal Amplification. Anal. Chem. 2023, 95 (48), 17708–17715. 10.1021/acs.analchem.3c03554. PubMed DOI

Wu X.; Li Y.; Yang M. Y.; Mao C. B. Simultaneous Ultrasensitive Detection of Two Breast Cancer MicroRNA Biomarkers by Using a Dual Nanoparticle/Nanosheet Fluorescence Resonance Energy Transfer Sensor. Mater. Today Adv. 2021, 12, 100163.10.1016/j.mtadv.2021.100163. DOI

Chen C.; Hu S.; Tian L.; Qi M.; Chang Z.; Li L.; Wang L.; Dong B. A Versatile Upconversion-Based Multimode Lateral Flow Platform for Rapid and Ultrasensitive Detection of MicroRNA towards Health Monitoring. Biosens. Bioelectron. 2024, 252, 116135.10.1016/j.bios.2024.116135. PubMed DOI

Wang J.; Hua G.; Li L.; Li D.; Wang F.; Wu J.; Ye Z.; Zhou X.; Ye S.; Yang J.; Zhang X.; Ren L. Upconversion Nanoparticle and Gold Nanocage Satellite Assemblies for Sensitive CtDNA Detection in Serum. Analyst 2020, 145 (16), 5553–5562. 10.1039/D0AN00701C. PubMed DOI

Güven E.; Duus K.; Lydolph M. C.; Jørgensen C. S.; Laursen I.; Houen G. Non-Specific Binding in Solid Phase Immunoassays for Autoantibodies Correlates with Inflammation Markers. J. Immunol. Methods 2014, 403 (1–2), 26–36. 10.1016/j.jim.2013.11.014. PubMed DOI

Lahtinen S.; Lyytikäinen A.; Sirkka N.; Päkkilä H.; Soukka T. Improving the Sensitivity of Immunoassays by Reducing Non-Specific Binding of Poly(Acrylic Acid) Coated Upconverting Nanoparticles by Adding Free Poly(Acrylic Acid). Microchim. Acta 2018, 185 (4), 220.10.1007/s00604-018-2756-z. PubMed DOI

Hariri A. A.; Newman S. S.; Tan S.; Mamerow D.; Adams A. M.; Maganzini N.; Zhong B. L.; Eisenstein M.; Dunn A. R.; Soh H. T. Improved Immunoassay Sensitivity and Specificity Using Single-Molecule Colocalization. Nat. Commun. 2022, 13 (1), 5359.10.1038/s41467-022-32796-x. PubMed DOI PMC

Buchwalow I.; Samoilova V.; Boecker W.; Tiemann M. Non-Specific Binding of Antibodies in Immunohistochemistry: Fallacies and Facts. Sci. Rep. 2011, 1 (1), 28.10.1038/srep00028. PubMed DOI PMC

Wauthier L.; Plebani M.; Favresse J. Interferences in Immunoassays: Review and Practical Algorithm. Clin. Chem. Lab. Med. 2022, 60 (6), 808–820. 10.1515/cclm-2021-1288. PubMed DOI

Mendez-Gonzalez D.; Lahtinen S.; Laurenti M.; López-Cabarcos E.; Rubio-Retama J.; Soukka T. Photochemical Ligation to Ultrasensitive DNA Detection with Upconverting Nanoparticles. Anal. Chem. 2018, 90 (22), 13385–13392. 10.1021/acs.analchem.8b03106. PubMed DOI

Baltierra-Jasso L. E.; Morten M. J.; Laflör L.; Quinn S. D.; Magennis S. W. Crowding-Induced Hybridization of Single DNA Hairpins. J. Am. Chem. Soc. 2015, 137 (51), 16020–16023. 10.1021/jacs.5b11829. PubMed DOI

Brandmeier J. C.; Raiko K.; Farka Z.; Peltomaa R.; Mickert M. J.; Hlaváček A.; Skládal P.; Soukka T.; Gorris H. H. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv. Healthcare Mater. 2021, 10 (18), 2100506.10.1002/adhm.202100506. PubMed DOI PMC

Chang L.; Rissin D. M.; Fournier D. R.; Piech T.; Patel P. P.; Wilson D. H.; Duffy D. C. Single Molecule Enzyme-Linked Immunosorbent Assays: Theoretical Considerations. J. Immunol. Methods 2012, 378 (1–2), 102–115. 10.1016/j.jim.2012.02.011. PubMed DOI PMC

Ekins R. P.; Chu F. W. Multianalyte Microspot Immunoassay--Microanalytical “Compact Disk” of the Future. Clin. Chem. 1991, 37 (11), 1955–1967. 10.1093/clinchem/37.11.1955. PubMed DOI

Shapoval O.; Brandmeier J. C.; Nahorniak M.; Oleksa V.; Makhneva E.; Gorris H. H.; Farka Z.; Horák D. PMVEMA-Coated Upconverting Nanoparticles for Upconversion-Linked Immunoassay of Cardiac Troponin. Talanta 2022, 244, 123400.10.1016/j.talanta.2022.123400. PubMed DOI

Nsubuga A.; Sgarzi M.; Zarschler K.; Kubeil M.; Hübner R.; Steudtner R.; Graham B.; Joshi T.; Stephan H. Facile Preparation of Multifunctionalisable ‘Stealth’ Upconverting Nanoparticles for Biomedical Applications. Dalton Trans. 2018, 47 (26), 8595–8604. 10.1039/C8DT00241J. PubMed DOI

Raiko K.; Lyytikäinen A.; Ekman M.; Nokelainen A.; Lahtinen S.; Soukka T. Supersensitive Photon Upconversion Based Immunoassay for Detection of Cardiac Troponin I in Human Plasma. Clin. Chim. Acta 2021, 523, 380–385. 10.1016/j.cca.2021.10.023. PubMed DOI

Chen H.; Wang L.; Yeh J.; Wu X.; Cao Z.; Wang Y. A.; Zhang M.; Yang L.; Mao H. Reducing Non-Specific Binding and Uptake of Nanoparticles and Improving Cell Targeting with an Antifouling PEO-b-PγMPS Copolymer Coating. Biomaterials 2010, 31 (20), 5397–5407. 10.1016/j.biomaterials.2010.03.036. PubMed DOI PMC

Weng Z.; Yu H.; Luo W.; Guo Y.; Liu Q.; Zhang L.; Zhang Z.; Wang T.; Dai L.; Zhou X.; Han X.; Wang L.; Li J.; Yang Y.; Xie G. Cooperative Branch Migration: A Mechanism for Flexible Control of DNA Strand Displacement. ACS Nano 2022, 16 (2), 3135–3144. 10.1021/acsnano.1c10797. PubMed DOI

Kohno T.; Ishikawa E.; Mitsukawa T.; Matsukura S. Novel Enzyme Immunoassay (Immune Complex Transfer Enzyme Immunoassay) for Anti-thyroglobulin IgG in Human Serum. J. Clin. Lab. Anal. 1988, 2 (4), 209–214. 10.1002/jcla.1860020406. DOI

Kohno T.; Mitsukawa T.; Matsukura S.; Tsunetoshi Y.; Ishikawa E. More Sensitive and Simpler Immune Complex Transfer Enzyme Immunoassay for Antithyroglobulin Igg in Serum. J. Clin. Lab. Anal. 1989, 3 (3), 163–168. 10.1002/jcla.1860030306. PubMed DOI

Gorris H. H.; Soukka T. What Digital Immunoassays Can Learn from Ambient Analyte Theory: A Perspective. Anal. Chem. 2022, 94 (16), 6073–6083. 10.1021/acs.analchem.1c05591. PubMed DOI

Chheda U.; Pradeepan S.; Esposito E.; Strezsak S.; Fernandez-Delgado O.; Kranz J. Factors Affecting Stability of RNA – Temperature, Length, Concentration, PH, and Buffering Species. J. Pharm. Sci. 2024, 113 (2), 377–385. 10.1016/j.xphs.2023.11.023. PubMed DOI

Soukka T.; Kuningas K.; Rantanen T.; Haaslahti V.; Lövgren T. Photochemical Characterization of Up-Converting Inorganic Lanthanide Phosphors as Potential Labels. J. Fluoresc. 2005, 15 (4), 513–528. 10.1007/s10895-005-2825-7. PubMed DOI

Yakovchuk P.; Protozanova E.; Frank-Kamenetskii M. D. Base-Stacking and Base-Pairing Contributions into Thermal Stability of the DNA Double Helix. Nucleic Acids Res. 2006, 34 (2), 564–574. 10.1093/nar/gkj454. PubMed DOI PMC

Ekins R.; Chu F.; Micallef J. High Specific Activity Chemiluminescent and Fluorescent Markers: Their Potential Application to High Sensitivity and ‘Multi-analyte’ Immunoassays. J. Biolumin. Chemilumin. 1989, 4 (1), 59–78. 10.1002/bio.1170040113. PubMed DOI

Zhou X.; Zhu W.; Li H.; Wen W.; Cheng W.; Wang F.; Wu Y.; Qi L.; Fan Y.; Chen Y.; Ding Y.; Xu J.; Qian J.; Huang Z.; Wang T.; Zhu D.; Shu Y.; Liu P. Diagnostic Value of a Plasma MicroRNA Signature in Gastric Cancer: A MicroRNA Expression Analysis. Sci. Rep. 2015, 5 (1), 11251.10.1038/srep11251. PubMed DOI PMC

Ferracin M.; Lupini L.; Salamon I.; Saccenti E.; Zanzi M. V.; Rocchi A.; Da Ros L.; Zagatti B.; Musa G.; Bassi C.; Mangolini A.; Cavallesco G.; Frassoldati A.; Volpato S.; Carcoforo P.; Hollingsworth A. B.; Negrini M. Absolute Quantification of Cell-Free MicroRNAs in Cancer Patients. Oncotarget 2015, 6 (16), 14545–14555. 10.18632/oncotarget.3859. PubMed DOI PMC

Mitchell P. S.; Parkin R. K.; Kroh E. M.; Fritz B. R.; Wyman S. K.; Pogosova-Agadjanyan E. L.; Peterson A.; Noteboom J.; O’Briant K. C.; Allen A.; Lin D. W.; Urban N.; Drescher C. W.; Knudsen B. S.; Stirewalt D. L.; Gentleman R.; Vessella R. L.; Nelson P. S.; Martin D. B.; Tewari M. Circulating MicroRNAs as Stable Blood-Based Markers for Cancer Detection. Proc. Natl. Acad. Sci. U.S.A. 2008, 105 (30), 10513–10518. 10.1073/pnas.0804549105. PubMed DOI PMC

Farka Z.; Mickert M. J.; Hlaváček A.; Skládal P.; Gorris H. H. Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal. Chem. 2017, 89 (21), 11825–11830. 10.1021/acs.analchem.7b03542. PubMed DOI

Christopoulos T. K.; Lianidou E. S.; Diamandis E. P. Ultrasensitive Time-Resolved Fluorescence Method for α-Fetoprotein. Clin. Chem. 1990, 36 (8), 1497–1502. 10.1093/clinchem/36.8.1497. PubMed DOI

Kuusinen S.; Lahtinen S.; Soukka T. Upconversion Luminescence Based Direct Hybridization Assay to Detect Subfemtomolar MiR-20 a DNA Analogue in Plasma. Anal. Sens. 2024, 4 (4), e20240000510.1002/anse.202400005. DOI

Watanabe T.; Hashida S. The Immune Complex Transfer Enzyme Immunoassay: Mechanism of Improved Sensitivity Compared with Conventional Sandwich Enzyme Immunoassay. J. Immunol. Methods 2018, 459, 76–80. 10.1016/j.jim.2018.05.010. PubMed DOI

Morrissey D. V.; Lombardo M.; Eldredge J. K.; Kearney K. R.; Groody E. P.; Collins M. L. Nucleic Acid Hybridization Assays Employing DA-Tailed Capture Probes. Anal. Biochem. 1989, 181 (2), 345–359. 10.1016/0003-2697(89)90255-8. PubMed DOI

Masterson A. N.; Chowdhury N. N.; Fang Y.; Yip-Schneider M. T.; Hati S.; Gupta P.; Cao S.; Wu H.; Schmidt C. M.; Fishel M. L.; Sardar R. Amplification-Free, High-Throughput Nanoplasmonic Quantification of Circulating MicroRNAs in Unprocessed Plasma Microsamples for Earlier Pancreatic Cancer Detection. ACS Sens. 2023, 8 (3), 1085–1100. 10.1021/acssensors.2c02105. PubMed DOI

Ramshani Z.; Zhang C.; Richards K.; Chen L.; Xu G.; Stiles B. L.; Hill R.; Senapati S.; Go D. B.; Chang H.-C. Extracellular Vesicle MicroRNA Quantification from Plasma Using an Integrated Microfluidic Device. Commun. Biol. 2019, 2 (1), 189.10.1038/s42003-019-0435-1. PubMed DOI PMC

Majd S. M.; Salimi A.; Ghasemi F. An Ultrasensitive Detection of MiRNA-155 in Breast Cancer via Direct Hybridization Assay Using Two-Dimensional Molybdenum Disulfide Field-Effect Transistor Biosensor. Biosens. Bioelectron. 2018, 105, 6–13. 10.1016/j.bios.2018.01.009. PubMed DOI

Wegman D. W.; Ghasemi F.; Khorshidi A.; Yang B. B.; Liu S. K.; Yousef G. M.; Krylov S. N. Highly-Sensitive Amplification-Free Analysis of Multiple MiRNAs by Capillary Electrophoresis. Anal. Chem. 2015, 87 (2), 1404–1410. 10.1021/ac504406s. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...