Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration

. 2025 Feb 11 ; 97 (5) : 2588-2592. [epub] 20250131

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39886935

We present a simplistic and absolute method for estimating the number concentration of nanoparticles. Macroscopic volumes of a nanoparticle dispersion (several μL) are dropped on a glass surface and the solvent is evaporated. The optical microscope scans the entire surface of the dried droplet (several mm2), micrographs are stitched together (several tens), and all nanoparticles are counted (several thousand per droplet) by using an artificial neural network. We call this method evaporated volume analysis (EVA) because nanoparticles are counted after droplet volume evaporation. As a model, the concentration of ∼60 nm Tm3+-doped photon-upconversion nanoparticles coated in carboxylated silica shells is estimated with a combined relative standard uncertainty of 2.7%. Two reference methods provided comparable concentration values. A wider applicability is tested by imaging ∼80 nm Nile red-doped polystyrene and ∼90 nm silver nanoparticles. Theoretical limits of EVA such as the limit of detection, limit of quantification, and optimal working range are discussed.

Zobrazit více v PubMed

Shang J.; Gao X. Nanoparticle Counting: Towards Accurate Determination of the Molar Concentration. Chem. Soc. Rev. 2014, 43 (21), 7267–7278. 10.1039/C4CS00128A. PubMed DOI PMC

Pashirova T. N.; Shaihutdinova Z. M.; Souto E. B.; Masson P.; Mironov V. F. Nanoparticle Concentration as an Important Parameter for Characterization of Dispersion and Its Applications in Biomedicine. Colloid J. 2023, 85 (5), 770–781. 10.1134/S1061933X23600720. DOI

Wang S.; Li L.; Jin S.; Li W.; Hang W.; Yan X. Rapid and Quantitative Measurement of Single Quantum Dots in a Sheath Flow Cuvette. Anal. Chem. 2017, 89 (18), 9857–9863. 10.1021/acs.analchem.7b01885. PubMed DOI

Song Y.; Zhang J.; Li D. Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review. Micromachines 2017, 8 (7), 204.10.3390/mi8070204. PubMed DOI PMC

Laborda F.; Bolea E.; Jiménez-Lamana J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86 (5), 2270–2278. 10.1021/ac402980q. PubMed DOI

Gallego-Urrea J. A.; Tuoriniemi J.; Hassellöv M. Applications of Particle-Tracking Analysis to the Determination of Size Distributions and Concentrations of Nanoparticles in Environmental, Biological and Food Samples. TrAC Trends Anal. Chem. 2011, 30 (3), 473–483. 10.1016/j.trac.2011.01.005. DOI

Moerner W. E.; Fromm D. P. Methods of Single-Molecule Fluorescence Spectroscopy and Microscopy. Rev. Sci. Instrum. 2003, 74 (8), 3597–3619. 10.1063/1.1589587. DOI

Cui J.; Hibbs B.; Gunawan S. T.; Braunger J. A.; Chen X.; Richardson J. J.; Hanssen E.; Caruso F. Immobilized Particle Imaging for Quantification of Nano- and Microparticles. Langmuir 2016, 32 (14), 3532–3540. 10.1021/acs.langmuir.6b00229. PubMed DOI

Elsaesser A.; Barnes C. A.; McKerr G.; Salvati A.; Lynch I.; Dawson K. A.; Howard C. V. Quantification of Nanoparticle Uptake by Cells Using an Unbiased Sampling Method and Electron Microscopy. Nanomed. 2011, 6 (7), 1189–1198. 10.2217/nnm.11.70. PubMed DOI

Tai L.-A.; Kang Y.-T.; Chen Y.-C.; Wang Y.-C.; Wang Y.-J.; Wu Y.-T.; Liu K.-L.; Wang C.-Y.; Ko Y.-F.; Chen C.-Y.; Huang N.-C.; Chen J.-K.; Hsieh Y.-F.; Yew T.-R.; Yang C.-S. Quantitative Characterization of Nanoparticles in Blood by Transmission Electron Microscopy with a Window-Type Microchip Nanopipet. Anal. Chem. 2012, 84 (15), 6312–6316. 10.1021/ac301523n. PubMed DOI

Hlaváček A.; Křivánková J.; Brožková H.; Weisová J.; Pizúrová N.; Foret F. Absolute Counting Method with Multiplexing Capability for Estimating the Number Concentration of Nanoparticles Using Anisotropically Collapsed Gels. Anal. Chem. 2022, 94 (41), 14340–14348. 10.1021/acs.analchem.2c02989. PubMed DOI

Härmä H.; Soukka T.; Lövgren T. Europium Nanoparticles and Time-Resolved Fluorescence for Ultrasensitive Detection of Prostate-Specific Antigen. Clin. Chem. 2001, 47 (3), 561–568. 10.1093/clinchem/47.3.561. PubMed DOI

Stiborek M.; Jindřichová L.; Meliorisová S.; Bednařík A.; Prysiazhnyi V.; Kroupa J.; Houška P.; Adamová B.; Navrátilová J.; Kanický V.; Preisler J. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal. Chem. 2022, 94 (51), 18114–18120. 10.1021/acs.analchem.2c05216. PubMed DOI

Li H.; Buesen D.; Williams R.; Henig J.; Stapf S.; Mukherjee K.; Freier E.; Lubitz W.; Winkler M.; Happe T.; Plumeré N. Preventing the Coffee-Ring Effect and Aggregate Sedimentation by in Situ Gelation of Monodisperse Materials. Chem. Sci. 2018, 9 (39), 7596–7605. 10.1039/C8SC03302A. PubMed DOI PMC

Hlaváček A.; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of Photon-Upconversion Nanoparticles for Cancer Biomarker Detection and Imaging. Nat. Protoc. 2022, 17 (4), 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI

Lahtinen S.; Lyytikäinen A.; Päkkilä H.; Hömppi E.; Perälä N.; Lastusaari M.; Soukka T. Disintegration of Hexagonal NaYF4:Yb3+,Er3+ Upconverting Nanoparticles in Aqueous Media: The Role of Fluoride in Solubility Equilibrium. J. Phys. Chem. C 2017, 121 (1), 656–665. 10.1021/acs.jpcc.6b09301. DOI

Vo N. T.; Atwood R. C.; Drakopoulos M. Radial Lens Distortion Correction with Sub-Pixel Accuracy for X-Ray Micro-Tomography. Opt. Express 2015, 23 (25), 32859–32868. 10.1364/OE.23.032859. PubMed DOI

Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC

Preibisch S.; Saalfeld S.; Tomancak P. Globally Optimal Stitching of Tiled 3D Microscopic Image Acquisitions. Bioinformatics 2009, 25 (11), 1463–1465. 10.1093/bioinformatics/btp184. PubMed DOI PMC

Möckl L.; Roy A. R.; Moerner W. E. Deep Learning in Single-Molecule Microscopy: Fundamentals, Caveats, and Recent Developments [Invited]. Biomed. Opt. Express 2020, 11 (3), 1633–1661. 10.1364/BOE.386361. PubMed DOI PMC

Torquato S.; Lu B.; Rubinstein J. Nearest-Neighbour Distribution Function for Systems on Interacting Particles. J. Phys. Math. Gen. 1990, 23 (3), L103.10.1088/0305-4470/23/3/005. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...