Optical Microscopy and Deep Learning for Absolute Quantification of Nanoparticles on a Macroscopic Scale and Estimating Their Number Concentration
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
39886935
PubMed Central
PMC11822731
DOI
10.1021/acs.analchem.4c05555
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
We present a simplistic and absolute method for estimating the number concentration of nanoparticles. Macroscopic volumes of a nanoparticle dispersion (several μL) are dropped on a glass surface and the solvent is evaporated. The optical microscope scans the entire surface of the dried droplet (several mm2), micrographs are stitched together (several tens), and all nanoparticles are counted (several thousand per droplet) by using an artificial neural network. We call this method evaporated volume analysis (EVA) because nanoparticles are counted after droplet volume evaporation. As a model, the concentration of ∼60 nm Tm3+-doped photon-upconversion nanoparticles coated in carboxylated silica shells is estimated with a combined relative standard uncertainty of 2.7%. Two reference methods provided comparable concentration values. A wider applicability is tested by imaging ∼80 nm Nile red-doped polystyrene and ∼90 nm silver nanoparticles. Theoretical limits of EVA such as the limit of detection, limit of quantification, and optimal working range are discussed.
Department of Chemistry Faculty of Science Masaryk University Brno 602 00 Czech Republic
Institute of Analytical Chemistry of the Czech Academy of Sciences Brno 602 00 Czech Republic
Institute of Physics of Materials of the Czech Academy of Sciences Brno 616 00 Czech Republic
Zobrazit více v PubMed
Shang J.; Gao X. Nanoparticle Counting: Towards Accurate Determination of the Molar Concentration. Chem. Soc. Rev. 2014, 43 (21), 7267–7278. 10.1039/C4CS00128A. PubMed DOI PMC
Pashirova T. N.; Shaihutdinova Z. M.; Souto E. B.; Masson P.; Mironov V. F. Nanoparticle Concentration as an Important Parameter for Characterization of Dispersion and Its Applications in Biomedicine. Colloid J. 2023, 85 (5), 770–781. 10.1134/S1061933X23600720. DOI
Wang S.; Li L.; Jin S.; Li W.; Hang W.; Yan X. Rapid and Quantitative Measurement of Single Quantum Dots in a Sheath Flow Cuvette. Anal. Chem. 2017, 89 (18), 9857–9863. 10.1021/acs.analchem.7b01885. PubMed DOI
Song Y.; Zhang J.; Li D. Microfluidic and Nanofluidic Resistive Pulse Sensing: A Review. Micromachines 2017, 8 (7), 204.10.3390/mi8070204. PubMed DOI PMC
Laborda F.; Bolea E.; Jiménez-Lamana J. Single Particle Inductively Coupled Plasma Mass Spectrometry: A Powerful Tool for Nanoanalysis. Anal. Chem. 2014, 86 (5), 2270–2278. 10.1021/ac402980q. PubMed DOI
Gallego-Urrea J. A.; Tuoriniemi J.; Hassellöv M. Applications of Particle-Tracking Analysis to the Determination of Size Distributions and Concentrations of Nanoparticles in Environmental, Biological and Food Samples. TrAC Trends Anal. Chem. 2011, 30 (3), 473–483. 10.1016/j.trac.2011.01.005. DOI
Moerner W. E.; Fromm D. P. Methods of Single-Molecule Fluorescence Spectroscopy and Microscopy. Rev. Sci. Instrum. 2003, 74 (8), 3597–3619. 10.1063/1.1589587. DOI
Cui J.; Hibbs B.; Gunawan S. T.; Braunger J. A.; Chen X.; Richardson J. J.; Hanssen E.; Caruso F. Immobilized Particle Imaging for Quantification of Nano- and Microparticles. Langmuir 2016, 32 (14), 3532–3540. 10.1021/acs.langmuir.6b00229. PubMed DOI
Elsaesser A.; Barnes C. A.; McKerr G.; Salvati A.; Lynch I.; Dawson K. A.; Howard C. V. Quantification of Nanoparticle Uptake by Cells Using an Unbiased Sampling Method and Electron Microscopy. Nanomed. 2011, 6 (7), 1189–1198. 10.2217/nnm.11.70. PubMed DOI
Tai L.-A.; Kang Y.-T.; Chen Y.-C.; Wang Y.-C.; Wang Y.-J.; Wu Y.-T.; Liu K.-L.; Wang C.-Y.; Ko Y.-F.; Chen C.-Y.; Huang N.-C.; Chen J.-K.; Hsieh Y.-F.; Yew T.-R.; Yang C.-S. Quantitative Characterization of Nanoparticles in Blood by Transmission Electron Microscopy with a Window-Type Microchip Nanopipet. Anal. Chem. 2012, 84 (15), 6312–6316. 10.1021/ac301523n. PubMed DOI
Hlaváček A.; Křivánková J.; Brožková H.; Weisová J.; Pizúrová N.; Foret F. Absolute Counting Method with Multiplexing Capability for Estimating the Number Concentration of Nanoparticles Using Anisotropically Collapsed Gels. Anal. Chem. 2022, 94 (41), 14340–14348. 10.1021/acs.analchem.2c02989. PubMed DOI
Härmä H.; Soukka T.; Lövgren T. Europium Nanoparticles and Time-Resolved Fluorescence for Ultrasensitive Detection of Prostate-Specific Antigen. Clin. Chem. 2001, 47 (3), 561–568. 10.1093/clinchem/47.3.561. PubMed DOI
Stiborek M.; Jindřichová L.; Meliorisová S.; Bednařík A.; Prysiazhnyi V.; Kroupa J.; Houška P.; Adamová B.; Navrátilová J.; Kanický V.; Preisler J. Infrared Laser Desorption of Intact Nanoparticles for Digital Tissue Imaging. Anal. Chem. 2022, 94 (51), 18114–18120. 10.1021/acs.analchem.2c05216. PubMed DOI
Li H.; Buesen D.; Williams R.; Henig J.; Stapf S.; Mukherjee K.; Freier E.; Lubitz W.; Winkler M.; Happe T.; Plumeré N. Preventing the Coffee-Ring Effect and Aggregate Sedimentation by in Situ Gelation of Monodisperse Materials. Chem. Sci. 2018, 9 (39), 7596–7605. 10.1039/C8SC03302A. PubMed DOI PMC
Hlaváček A.; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of Photon-Upconversion Nanoparticles for Cancer Biomarker Detection and Imaging. Nat. Protoc. 2022, 17 (4), 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI
Lahtinen S.; Lyytikäinen A.; Päkkilä H.; Hömppi E.; Perälä N.; Lastusaari M.; Soukka T. Disintegration of Hexagonal NaYF4:Yb3+,Er3+ Upconverting Nanoparticles in Aqueous Media: The Role of Fluoride in Solubility Equilibrium. J. Phys. Chem. C 2017, 121 (1), 656–665. 10.1021/acs.jpcc.6b09301. DOI
Vo N. T.; Atwood R. C.; Drakopoulos M. Radial Lens Distortion Correction with Sub-Pixel Accuracy for X-Ray Micro-Tomography. Opt. Express 2015, 23 (25), 32859–32868. 10.1364/OE.23.032859. PubMed DOI
Schindelin J.; Arganda-Carreras I.; Frise E.; Kaynig V.; Longair M.; Pietzsch T.; Preibisch S.; Rueden C.; Saalfeld S.; Schmid B.; Tinevez J.-Y.; White D. J.; Hartenstein V.; Eliceiri K.; Tomancak P.; Cardona A. Fiji: An Open-Source Platform for Biological-Image Analysis. Nat. Methods 2012, 9 (7), 676–682. 10.1038/nmeth.2019. PubMed DOI PMC
Preibisch S.; Saalfeld S.; Tomancak P. Globally Optimal Stitching of Tiled 3D Microscopic Image Acquisitions. Bioinformatics 2009, 25 (11), 1463–1465. 10.1093/bioinformatics/btp184. PubMed DOI PMC
Möckl L.; Roy A. R.; Moerner W. E. Deep Learning in Single-Molecule Microscopy: Fundamentals, Caveats, and Recent Developments [Invited]. Biomed. Opt. Express 2020, 11 (3), 1633–1661. 10.1364/BOE.386361. PubMed DOI PMC
Torquato S.; Lu B.; Rubinstein J. Nearest-Neighbour Distribution Function for Systems on Interacting Particles. J. Phys. Math. Gen. 1990, 23 (3), L103.10.1088/0305-4470/23/3/005. DOI