Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
38870418
PubMed Central
PMC11209662
DOI
10.1021/acs.analchem.4c00837
Knihovny.cz E-resources
- MeSH
- Biomarkers * blood urine analysis MeSH
- Immunoassay methods MeSH
- Quantum Dots chemistry MeSH
- Humans MeSH
- Serum Albumin, Human analysis urine MeSH
- Limit of Detection * MeSH
- Nanoparticles * chemistry MeSH
- Prostate-Specific Antigen * blood analysis MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Biomarkers * MeSH
- Serum Albumin, Human MeSH
- Prostate-Specific Antigen * MeSH
Dot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference. First, the dot-blot immunoassay on a nitrocellulose membrane was optimized for the quantitative analysis of human serum albumin (HSA), resulting in a limit of detection (LOD) of 0.19 ng/mL and a signal-to-background ratio (S/B) of 722. Commercial quantum dots were used as a reference label, reaching the LOD of 4.32 ng/mL and the S/B of 3, clearly indicating the advantages of UCNPs. In addition, the potential of UCNP-based dot-blot for real sample analysis was confirmed by analyzing spiked urine samples, reaching the LOD of 0.24 ng/mL and recovery rates from 79 to 123%. Furthermore, we demonstrated the versatility and robustness of the assay by adapting it to the detection of two other clinically relevant biomarkers, prostate-specific antigen (PSA) and cardiac troponin (cTn), reaching the LODs in spiked serum of 9.4 pg/mL and 0.62 ng/mL for PSA and cTn, respectively. Finally, clinical samples of patients examined for prostate cancer were analyzed, achieving a strong correlation with the reference electrochemiluminescence immunoassay (recovery rates from 89 to 117%). The achieved results demonstrate that UCNPs are highly sensitive labels that enable the development of dot-blot immunoassays for quantitative analysis of low-abundance biomarkers.
See more in PubMed
Farka Z.; Juřík T.; Kovář D.; Trnková L.; Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem. Rev. 2017, 117 (15), 9973–10042. 10.1021/acs.chemrev.7b00037. PubMed DOI
Jeong S.; Park M.-J.; Song W.; Kim H.-S. Current Immunoassay Methods and Their Applications to Clinically Used Biomarkers of Breast Cancer. Clin. Biochem. 2020, 78, 43–57. 10.1016/j.clinbiochem.2020.01.009. PubMed DOI
Wauthier L.; Plebani M.; Favresse J. Interferences in Immunoassays: Review and Practical Algorithm. Clin. Chem. Lab. Med. 2022, 60 (6), 808–820. 10.1515/cclm-2021-1288. PubMed DOI
Wang X.; Niessner R.; Tang D.; Knopp D. Nanoparticle-Based Immunosensors and Immunoassays for Aflatoxins. Anal. Chim. Acta 2016, 912, 10–23. 10.1016/j.aca.2016.01.048. PubMed DOI
Cui X.; Liu M.; Li B. Homogeneous Fluorescence-Based Immunoassay via Inner Filter Effect of Gold Nanoparticles on Fluorescence of CdTe Quantum Dots. Analyst 2012, 137 (14), 3293.10.1039/c2an35328h. PubMed DOI
Lin D.; Li B.; Fu L.; Qi J.; Xia C.; Zhang Y.; Chen J.; Choo J.; Chen L. A Novel Polymer-Based Nitrocellulose Platform for Implementing a Multiplexed Microfluidic Paper-Based Enzyme-Linked Immunosorbent Assay. Microsyst. Nanoeng. 2022, 8 (1), 53.10.1038/s41378-022-00385-z. PubMed DOI PMC
Yahaya M. L.; Zakaria N. D.; Noordin R.; Razak K. A. The Effect of Nitrocellulose Membrane Pore Size of Lateral Flow Immunoassay on Sensitivity for Detection of Shigella Sp. in Milk Sample. Mater. Today Proc. 2019, 17, 878–883. 10.1016/j.matpr.2019.06.384. DOI
Madhusudana S. N.; Paul J. P. V.; Abhilash V. K.; Suja M. S. Rapid Diagnosis of Rabies in Humans and Animals by a Dot Blot Enzyme Immunoassay. Int. J. Infect. Dis. 2004, 8 (6), 339–345. 10.1016/j.ijid.2004.02.006. PubMed DOI
Sukumaran A.; Thomas T.; Thomas R.; Thomas R. E.; Paul J. K.; Vasudevan D. M. Development and Troubleshooting in Lateral Flow Immunochromatography Assays. Indian J. Clin. Biochem. 2021, 36 (2), 208–212. 10.1007/s12291-020-00887-5. PubMed DOI PMC
Xiang Y.; Zheng Y.; Liu S.; Liu G.; Li Z.; Dong W. Comparison of the Sensitivity of Western Blotting between PVDF and NC Membranes. Sci. Rep. 2021, 11 (1), 12022.10.1038/s41598-021-91521-8. PubMed DOI PMC
Kurien B.; Scofield R. Western Blotting. Methods 2006, 38 (4), 283–293. 10.1016/j.ymeth.2005.11.007. PubMed DOI
Zhang Y.; Khan A. K.; See D.; Ying J. Y. Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma. ACS Appl. Mater. Interfaces 2023, 15 (5), 6561–6571. 10.1021/acsami.2c21501. PubMed DOI
Rupprecht K. R.; Nair R. K.; Harwick L. C.; Grote J.; Beligere G. S.; Rege S. D.; Chen Y.-Y.; Lin Z.; Fishpaugh J. R. Development of a Dot-Blot Assay for Screening Monoclonal Antibodies to Low-Molecular-Mass Drugs. Anal. Biochem. 2010, 407 (2), 160–164. 10.1016/j.ab.2010.08.003. PubMed DOI
Safarpour H.; Pourhassan-Moghaddam M.; Spotin A.; Majdi H.; Barac A.; Yousefi M.; Ahmadpour E. A Novel Enhanced Dot Blot Immunoassay Using Colorimetric Biosensor for Detection of Toxoplasma Gondii Infection. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 10170810.1016/j.cimid.2021.101708. PubMed DOI
Sil B. K.; Jamiruddin M. R.; Haq M. A.; Khondoker M. U.; Jahan N.; Khandker S. S.; Ali T.; Oishee M. J.; Kaitsuka T.; Mie M.; Tomizawa K.; Kobatake E.; Haque M.; Adnan N. AuNP Coupled Rapid Flow-Through Dot-Blot Immuno-Assay for Enhanced Detection of SARS-CoV-2 Specific Nucleocapsid and Receptor Binding Domain IgG. Int. J. Nanomed. 2021, 16, 4739–4753. 10.2147/IJN.S313140. PubMed DOI PMC
Khamjing W.; Khongchareonporn N.; Rengpipat S. Detection by Using Monoclonal Antibodies of Yersinia Enterocolitica in Artificially-Contaminated Pork. Microbiol. Immunol. 2011, 55 (9), 605–615. 10.1111/j.1348-0421.2011.00363.x. PubMed DOI
Ghorbanizamani F.; Moulahoum H.; Zihnioglu F.; Evran S.; Cicek C.; Sertoz R.; Arda B.; Goksel T.; Turhan K.; Timur S. Quantitative Paper-Based Dot Blot Assay for Spike Protein Detection Using Fuchsine Dye-Loaded Polymersomes. Biosens. Bioelectron. 2021, 192, 11348410.1016/j.bios.2021.113484. PubMed DOI
Pinto L. R.; Bampi D.; Silva T. N. Z.; Edwards Molina J. P.; Kitajima E. W.; Rezende J. A. M.; Filho A. B. Dot-Blot Immunoassay for Detection of Tomato Chlorosis Virus and Reaction of Potato Genotypes to Virus Infection. Trop. Plant Pathol. 2021, 46 (2), 156–162. 10.1007/s40858-020-00379-0. DOI
Yu G.; Zhang W.; Zhang Y.; Lv J.; Wu S.; Sui X.; Zhang J.; Tang F. Developing a Routine Lab Test for Absolute Quantification of HER2 in FFPE Breast Cancer Tissues Using Quantitative Dot Blot (QDB) Method. Sci. Rep. 2020, 10 (1), 12502.10.1038/s41598-020-69471-4. PubMed DOI PMC
Celiker T.; Ghorbanizamani F.; Moulahoum H.; Guler Celik E.; Tok K.; Zihnioglu F.; Cicek C.; Sertoz R.; Arda B.; Goksel T.; Turhan K.; Timur S.; Yagci Y. Fluorescent Bioassay for SARS-CoV-2 Detection Using Polypyrene-g-Poly(ε-Caprolactone) Prepared by Simultaneous Photoinduced Step-Growth and Ring-Opening Polymerizations. Microchim. Acta 2022, 189 (5), 202.10.1007/s00604-022-05244-2. PubMed DOI PMC
Costa J. G.; Vilariño M. J. Semiquantitative Dot Blot with the GRA8 Antigen to Differentiate the Stages of Toxoplasmosis Infection. J. Microbiol. Methods 2018, 149, 9–13. 10.1016/j.mimet.2018.04.015. PubMed DOI
Farka Z.; Mickert M. J.; Pastucha M.; Mikušová Z.; Skládal P.; Gorris H. H. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew. Chem. Int. Ed. 2020, 59 (27), 10746–10773. 10.1002/anie.201913924. PubMed DOI PMC
Mata Calidonio J.; Gomez-Marquez J.; Hamad-Schifferli K. Nanomaterial and Interface Advances in Immunoassay Biosensors. J. Phys. Chem. C 2022, 126 (42), 17804–17815. 10.1021/acs.jpcc.2c05008. DOI
Wilhelm S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11 (11), 10644–10653. 10.1021/acsnano.7b07120. PubMed DOI
Zhang P.; Lu H.; Chen J.; Han H.; Ma W. Simple and Sensitive Detection of HBsAg by Using a Quantum Dots Nanobeads Based Dot-Blot Immunoassay. Theranostics 2014, 4 (3), 307–315. 10.7150/thno.8007. PubMed DOI PMC
Hao S.; Chen G.; Yang C. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles. Theranostics 2013, 3 (5), 331–345. 10.7150/thno.5305. PubMed DOI PMC
Jia F.; Li G.; Yang B.; Yu B.; Shen Y.; Cong H. Investigation of Rare Earth Upconversion Fluorescent Nanoparticles in Biomedical Field. Nanotechnol. Rev. 2019, 8 (1), 1–17. 10.1515/ntrev-2019-0001. DOI
Mettenbrink E. M.; Yang W.; Wilhelm S. Bioimaging with Upconversion Nanoparticles. Adv. Photonics Res. 2022, 3, 2200098.10.1002/adpr.202200098. PubMed DOI PMC
Hlaváček A.; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of Photon-Upconversion Nanoparticles for Cancer Biomarker Detection and Imaging. Nat. Protoc. 2022, 17 (4), 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI
Song C.; Zhang S.; Zhou Q.; Hai H.; Zhao D.; Hui Y. Upconversion Nanoparticles for Bioimaging. Nanotechnol. Rev. 2017, 6 (2), 233–242. 10.1515/ntrev-2016-0043. DOI
Brandmeier J. C.; Raiko K.; Farka Z.; Peltomaa R.; Mickert M. J.; Hlaváček A.; Skládal P.; Soukka T.; Gorris H. H. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv. Healthc. Mater. 2021, 10 (18), e210050610.1002/adhm.202100506. PubMed DOI PMC
Makhneva E.; Sklenárová D.; Brandmeier J. C.; Hlaváček A.; Gorris H. H.; Skládal P.; Farka Z. Influence of Label and Solid Support on the Performance of Heterogeneous Immunoassays. Anal. Chem. 2022, 94 (47), 16376–16383. 10.1021/acs.analchem.2c03543. PubMed DOI
Brandmeier J. C.; Jurga N.; Grzyb T.; Hlaváček A.; Obořilová R.; Skládal P.; Farka Z.; Gorris H. H. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2023, 95 (10), 4753–4759. 10.1021/acs.analchem.2c05670. PubMed DOI PMC
Shapoval O.; Brandmeier J. C.; Nahorniak M.; Oleksa V.; Makhneva E.; Gorris H. H.; Farka Z.; Horák D. PMVEMA-Coated Upconverting Nanoparticles for Upconversion-Linked Immunoassay of Cardiac Troponin. Talanta 2022, 244, 12340010.1016/j.talanta.2022.123400. PubMed DOI
Ding H.; Zhang W.; Wang S.; Li C.; Li W.; Liu J.; Yu F.; Tao Y.; Cheng S.; Xie H.; Chen Y. A Semi-Quantitative Upconversion Nanoparticle-Based Immunochromatographic Assay for SARS-CoV-2 Antigen Detection. Front. Microbiol. 2023, 14, 128968210.3389/fmicb.2023.1289682. PubMed DOI PMC
He W.; You M.; Li Z.; Cao L.; Xu F.; Li F.; Li A. Upconversion Nanoparticles-Based Lateral Flow Immunoassay for Point-of-Care Diagnosis of Periodontitis. Sens. Actuators B Chem. 2021, 334, 12967310.1016/j.snb.2021.129673. DOI
Misiak M.; Gawłowski M.; Kowalczyk A.; Skowicki M.; Prorok K.; Lipiński T. Novel UV-Activated Biofunctionalization of up-Converting Nanocrystals for Detection of Proteins. J. Nanostruct. Chem. 2022, 12 (1), 93–103. 10.1007/s40097-021-00404-x. DOI
Kim B.; Araujo R.; Howard M.; Magni R.; Liotta L. A.; Luchini A. Affinity Enrichment for Mass Spectrometry: Improving the Yield of Low Abundance Biomarkers. Expert Rev. Proteomics 2018, 15 (4), 353–366. 10.1080/14789450.2018.1450631. PubMed DOI PMC
Wang R. E.; Tian L.; Chang Y.-H. A Homogeneous Fluorescent Sensor for Human Serum Albumin. J. Pharm. Biomed. Anal. 2012, 63, 165–169. 10.1016/j.jpba.2011.12.035. PubMed DOI PMC
Thompson I. M.; Ankerst D. P. Prostate-Specific Antigen in the Early Detection of Prostate Cancer. Can. Med. Assoc. J. 2007, 176 (13), 1853–1858. 10.1503/cmaj.060955. PubMed DOI PMC
Duffy M. J. Biomarkers for Prostate Cancer: Prostate-Specific Antigen and Beyond. Clin. Chem. Lab. Med. 2020, 58 (3), 326–339. 10.1515/cclm-2019-0693. PubMed DOI
Naito S. Evaluation and Management of Prostate-Specific Antigen Recurrence After Radical Prostatectomy for Localized Prostate Cancer. Jpn. J. Clin. Oncol. 2005, 35 (7), 365–374. 10.1093/jjco/hyi113. PubMed DOI
Garg P.; Morris P.; Fazlanie A. L.; Vijayan S.; Dancso B.; Dastidar A. G.; Plein S.; Mueller C.; Haaf P. Cardiac Biomarkers of Acute Coronary Syndrome: From History to High-Sensitivity Cardiac Troponin. Intern. Emerg. Med. 2017, 12 (2), 147–155. 10.1007/s11739-017-1612-1. PubMed DOI PMC
Katrukha I. A.; Katrukha A. G. Myocardial Injury and the Release of Troponins I and T in the Blood of Patients. Clin. Chem. 2021, 67 (1), 124–130. 10.1093/clinchem/hvaa281. PubMed DOI
Surti P. V.; Kim M. W.; Phan L. M. T.; Kailasa S. K.; Mungray A. K.; Park J. P.; Park T. J. Progress on Dot-Blot Assay as a Promising Analytical Tool: Detection from Molecules to Cells. TrAC Trends Anal. Chem. 2022, 157, 11673610.1016/j.trac.2022.116736. DOI
Aitekenov S.; Gaipov A.; Bukasov R. Review: Detection and Quantification of Proteins in Human Urine. Talanta 2021, 223, 12171810.1016/j.talanta.2020.121718. PubMed DOI PMC
Barroso M. M. Quantum Dots in Cell Biology. J. Histochem. Cytochem. 2011, 59 (3), 237–251. 10.1369/0022155411398487. PubMed DOI PMC
Pastucha M.; Odstrčilíková E.; Hlaváček A.; Brandmeier J. C.; Vykoukal V.; Weisová J.; Gorris H. H.; Skládal P.; Farka Z. Upconversion-Linked Immunoassay for the Diagnosis of Honeybee Disease American Foulbrood. IEEE J. Sel. Top. Quantum Electron. 2021, 27 (5), 1–11. 10.1109/JSTQE.2021.3049689. DOI
Wild D.The Immunoassay Handbook - Theory and Applications of Ligand Binding, ELISA and Related Techniques, 4th ed.; Elsevier: Oxford, 2013.
Chen T.; Xie N.; Viglianti L.; Zhou Y.; Tan H.; Tang B. Z.; Tang Y. Quantitative Urinalysis Using Aggregation-Induced Emission Bioprobes for Monitoring Chronic Kidney Disease. Faraday Discuss. 2017, 196, 351–362. 10.1039/C6FD00153J. PubMed DOI
Matsuda K.; Hiratsuka N.; Kurihara Y.; Shiba K. Semiquantitative Analysis of Urinary Low Protein Levels Using Silver Dot Blot Assay. J. Clin. Lab. Anal. 2001, 15 (4), 171–174. 10.1002/jcla.1022. PubMed DOI PMC
Khramtsov P.; Kropaneva M.; Bochkova M.; Timganova V.; Zamorina S.; Rayev M. Solid-Phase Nuclear Magnetic Resonance Immunoassay for the Prostate-Specific Antigen by Using Protein-Coated Magnetic Nanoparticles. Microchim. Acta 2019, 186 (12), 768.10.1007/s00604-019-3925-4. PubMed DOI
Dorraj G. S.; Rassaee M. J.; Latifi A. M.; Pishgoo B.; Tavallaei M. Selection of DNA Aptamers against Human Cardiac Troponin I for Colorimetric Sensor Based Dot Blot Application. J. Biotechnol. 2015, 208, 80–86. 10.1016/j.jbiotec.2015.05.002. PubMed DOI
Guo H.; Zhang J.; Yang D.; Xiao P.; He N. Protein Array for Assist Diagnosis of Acute Myocardial Infarction. Colloids Surf. B 2005, 40 (3–4), 195–198. 10.1016/j.colsurfb.2004.10.010. PubMed DOI
Digital Immunoassay for Biomarker Detection Based on Single-Particle Laser Ablation ICP MS