• This record comes from PubMed

Upconversion Nanoparticle-Based Dot-Blot Immunoassay for Quantitative Biomarker Detection

. 2024 Jun 25 ; 96 (25) : 10237-10245. [epub] 20240613

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Dot-blot immunoassays are widely used for the user-friendly detection of clinical biomarkers. However, the majority of dot-blot assays have only limited sensitivity and are only used for qualitative or semiquantitative analysis. To overcome this limitation, we have employed labels based on photon-upconversion nanoparticles (UCNPs) that exhibit anti-Stokes luminescence and can be detected without optical background interference. First, the dot-blot immunoassay on a nitrocellulose membrane was optimized for the quantitative analysis of human serum albumin (HSA), resulting in a limit of detection (LOD) of 0.19 ng/mL and a signal-to-background ratio (S/B) of 722. Commercial quantum dots were used as a reference label, reaching the LOD of 4.32 ng/mL and the S/B of 3, clearly indicating the advantages of UCNPs. In addition, the potential of UCNP-based dot-blot for real sample analysis was confirmed by analyzing spiked urine samples, reaching the LOD of 0.24 ng/mL and recovery rates from 79 to 123%. Furthermore, we demonstrated the versatility and robustness of the assay by adapting it to the detection of two other clinically relevant biomarkers, prostate-specific antigen (PSA) and cardiac troponin (cTn), reaching the LODs in spiked serum of 9.4 pg/mL and 0.62 ng/mL for PSA and cTn, respectively. Finally, clinical samples of patients examined for prostate cancer were analyzed, achieving a strong correlation with the reference electrochemiluminescence immunoassay (recovery rates from 89 to 117%). The achieved results demonstrate that UCNPs are highly sensitive labels that enable the development of dot-blot immunoassays for quantitative analysis of low-abundance biomarkers.

See more in PubMed

Farka Z.; Juřík T.; Kovář D.; Trnková L.; Skládal P. Nanoparticle-Based Immunochemical Biosensors and Assays: Recent Advances and Challenges. Chem. Rev. 2017, 117 (15), 9973–10042. 10.1021/acs.chemrev.7b00037. PubMed DOI

Jeong S.; Park M.-J.; Song W.; Kim H.-S. Current Immunoassay Methods and Their Applications to Clinically Used Biomarkers of Breast Cancer. Clin. Biochem. 2020, 78, 43–57. 10.1016/j.clinbiochem.2020.01.009. PubMed DOI

Wauthier L.; Plebani M.; Favresse J. Interferences in Immunoassays: Review and Practical Algorithm. Clin. Chem. Lab. Med. 2022, 60 (6), 808–820. 10.1515/cclm-2021-1288. PubMed DOI

Wang X.; Niessner R.; Tang D.; Knopp D. Nanoparticle-Based Immunosensors and Immunoassays for Aflatoxins. Anal. Chim. Acta 2016, 912, 10–23. 10.1016/j.aca.2016.01.048. PubMed DOI

Cui X.; Liu M.; Li B. Homogeneous Fluorescence-Based Immunoassay via Inner Filter Effect of Gold Nanoparticles on Fluorescence of CdTe Quantum Dots. Analyst 2012, 137 (14), 3293.10.1039/c2an35328h. PubMed DOI

Lin D.; Li B.; Fu L.; Qi J.; Xia C.; Zhang Y.; Chen J.; Choo J.; Chen L. A Novel Polymer-Based Nitrocellulose Platform for Implementing a Multiplexed Microfluidic Paper-Based Enzyme-Linked Immunosorbent Assay. Microsyst. Nanoeng. 2022, 8 (1), 53.10.1038/s41378-022-00385-z. PubMed DOI PMC

Yahaya M. L.; Zakaria N. D.; Noordin R.; Razak K. A. The Effect of Nitrocellulose Membrane Pore Size of Lateral Flow Immunoassay on Sensitivity for Detection of Shigella Sp. in Milk Sample. Mater. Today Proc. 2019, 17, 878–883. 10.1016/j.matpr.2019.06.384. DOI

Madhusudana S. N.; Paul J. P. V.; Abhilash V. K.; Suja M. S. Rapid Diagnosis of Rabies in Humans and Animals by a Dot Blot Enzyme Immunoassay. Int. J. Infect. Dis. 2004, 8 (6), 339–345. 10.1016/j.ijid.2004.02.006. PubMed DOI

Sukumaran A.; Thomas T.; Thomas R.; Thomas R. E.; Paul J. K.; Vasudevan D. M. Development and Troubleshooting in Lateral Flow Immunochromatography Assays. Indian J. Clin. Biochem. 2021, 36 (2), 208–212. 10.1007/s12291-020-00887-5. PubMed DOI PMC

Xiang Y.; Zheng Y.; Liu S.; Liu G.; Li Z.; Dong W. Comparison of the Sensitivity of Western Blotting between PVDF and NC Membranes. Sci. Rep. 2021, 11 (1), 12022.10.1038/s41598-021-91521-8. PubMed DOI PMC

Kurien B.; Scofield R. Western Blotting. Methods 2006, 38 (4), 283–293. 10.1016/j.ymeth.2005.11.007. PubMed DOI

Zhang Y.; Khan A. K.; See D.; Ying J. Y. Enhancing Protein Adsorption for Improved Lateral Flow Assay on Cellulose Paper by Depleting Inert Additive Films Using Reactive Plasma. ACS Appl. Mater. Interfaces 2023, 15 (5), 6561–6571. 10.1021/acsami.2c21501. PubMed DOI

Rupprecht K. R.; Nair R. K.; Harwick L. C.; Grote J.; Beligere G. S.; Rege S. D.; Chen Y.-Y.; Lin Z.; Fishpaugh J. R. Development of a Dot-Blot Assay for Screening Monoclonal Antibodies to Low-Molecular-Mass Drugs. Anal. Biochem. 2010, 407 (2), 160–164. 10.1016/j.ab.2010.08.003. PubMed DOI

Safarpour H.; Pourhassan-Moghaddam M.; Spotin A.; Majdi H.; Barac A.; Yousefi M.; Ahmadpour E. A Novel Enhanced Dot Blot Immunoassay Using Colorimetric Biosensor for Detection of Toxoplasma Gondii Infection. Comp. Immunol. Microbiol. Infect. Dis. 2021, 79, 10170810.1016/j.cimid.2021.101708. PubMed DOI

Sil B. K.; Jamiruddin M. R.; Haq M. A.; Khondoker M. U.; Jahan N.; Khandker S. S.; Ali T.; Oishee M. J.; Kaitsuka T.; Mie M.; Tomizawa K.; Kobatake E.; Haque M.; Adnan N. AuNP Coupled Rapid Flow-Through Dot-Blot Immuno-Assay for Enhanced Detection of SARS-CoV-2 Specific Nucleocapsid and Receptor Binding Domain IgG. Int. J. Nanomed. 2021, 16, 4739–4753. 10.2147/IJN.S313140. PubMed DOI PMC

Khamjing W.; Khongchareonporn N.; Rengpipat S. Detection by Using Monoclonal Antibodies of Yersinia Enterocolitica in Artificially-Contaminated Pork. Microbiol. Immunol. 2011, 55 (9), 605–615. 10.1111/j.1348-0421.2011.00363.x. PubMed DOI

Ghorbanizamani F.; Moulahoum H.; Zihnioglu F.; Evran S.; Cicek C.; Sertoz R.; Arda B.; Goksel T.; Turhan K.; Timur S. Quantitative Paper-Based Dot Blot Assay for Spike Protein Detection Using Fuchsine Dye-Loaded Polymersomes. Biosens. Bioelectron. 2021, 192, 11348410.1016/j.bios.2021.113484. PubMed DOI

Pinto L. R.; Bampi D.; Silva T. N. Z.; Edwards Molina J. P.; Kitajima E. W.; Rezende J. A. M.; Filho A. B. Dot-Blot Immunoassay for Detection of Tomato Chlorosis Virus and Reaction of Potato Genotypes to Virus Infection. Trop. Plant Pathol. 2021, 46 (2), 156–162. 10.1007/s40858-020-00379-0. DOI

Yu G.; Zhang W.; Zhang Y.; Lv J.; Wu S.; Sui X.; Zhang J.; Tang F. Developing a Routine Lab Test for Absolute Quantification of HER2 in FFPE Breast Cancer Tissues Using Quantitative Dot Blot (QDB) Method. Sci. Rep. 2020, 10 (1), 12502.10.1038/s41598-020-69471-4. PubMed DOI PMC

Celiker T.; Ghorbanizamani F.; Moulahoum H.; Guler Celik E.; Tok K.; Zihnioglu F.; Cicek C.; Sertoz R.; Arda B.; Goksel T.; Turhan K.; Timur S.; Yagci Y. Fluorescent Bioassay for SARS-CoV-2 Detection Using Polypyrene-g-Poly(ε-Caprolactone) Prepared by Simultaneous Photoinduced Step-Growth and Ring-Opening Polymerizations. Microchim. Acta 2022, 189 (5), 202.10.1007/s00604-022-05244-2. PubMed DOI PMC

Costa J. G.; Vilariño M. J. Semiquantitative Dot Blot with the GRA8 Antigen to Differentiate the Stages of Toxoplasmosis Infection. J. Microbiol. Methods 2018, 149, 9–13. 10.1016/j.mimet.2018.04.015. PubMed DOI

Farka Z.; Mickert M. J.; Pastucha M.; Mikušová Z.; Skládal P.; Gorris H. H. Advances in Optical Single-Molecule Detection: En Route to Supersensitive Bioaffinity Assays. Angew. Chem. Int. Ed. 2020, 59 (27), 10746–10773. 10.1002/anie.201913924. PubMed DOI PMC

Mata Calidonio J.; Gomez-Marquez J.; Hamad-Schifferli K. Nanomaterial and Interface Advances in Immunoassay Biosensors. J. Phys. Chem. C 2022, 126 (42), 17804–17815. 10.1021/acs.jpcc.2c05008. DOI

Wilhelm S. Perspectives for Upconverting Nanoparticles. ACS Nano 2017, 11 (11), 10644–10653. 10.1021/acsnano.7b07120. PubMed DOI

Zhang P.; Lu H.; Chen J.; Han H.; Ma W. Simple and Sensitive Detection of HBsAg by Using a Quantum Dots Nanobeads Based Dot-Blot Immunoassay. Theranostics 2014, 4 (3), 307–315. 10.7150/thno.8007. PubMed DOI PMC

Hao S.; Chen G.; Yang C. Sensing Using Rare-Earth-Doped Upconversion Nanoparticles. Theranostics 2013, 3 (5), 331–345. 10.7150/thno.5305. PubMed DOI PMC

Jia F.; Li G.; Yang B.; Yu B.; Shen Y.; Cong H. Investigation of Rare Earth Upconversion Fluorescent Nanoparticles in Biomedical Field. Nanotechnol. Rev. 2019, 8 (1), 1–17. 10.1515/ntrev-2019-0001. DOI

Mettenbrink E. M.; Yang W.; Wilhelm S. Bioimaging with Upconversion Nanoparticles. Adv. Photonics Res. 2022, 3, 2200098.10.1002/adpr.202200098. PubMed DOI PMC

Hlaváček A.; Farka Z.; Mickert M. J.; Kostiv U.; Brandmeier J. C.; Horák D.; Skládal P.; Foret F.; Gorris H. H. Bioconjugates of Photon-Upconversion Nanoparticles for Cancer Biomarker Detection and Imaging. Nat. Protoc. 2022, 17 (4), 1028–1072. 10.1038/s41596-021-00670-7. PubMed DOI

Song C.; Zhang S.; Zhou Q.; Hai H.; Zhao D.; Hui Y. Upconversion Nanoparticles for Bioimaging. Nanotechnol. Rev. 2017, 6 (2), 233–242. 10.1515/ntrev-2016-0043. DOI

Brandmeier J. C.; Raiko K.; Farka Z.; Peltomaa R.; Mickert M. J.; Hlaváček A.; Skládal P.; Soukka T.; Gorris H. H. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv. Healthc. Mater. 2021, 10 (18), e210050610.1002/adhm.202100506. PubMed DOI PMC

Makhneva E.; Sklenárová D.; Brandmeier J. C.; Hlaváček A.; Gorris H. H.; Skládal P.; Farka Z. Influence of Label and Solid Support on the Performance of Heterogeneous Immunoassays. Anal. Chem. 2022, 94 (47), 16376–16383. 10.1021/acs.analchem.2c03543. PubMed DOI

Brandmeier J. C.; Jurga N.; Grzyb T.; Hlaváček A.; Obořilová R.; Skládal P.; Farka Z.; Gorris H. H. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2023, 95 (10), 4753–4759. 10.1021/acs.analchem.2c05670. PubMed DOI PMC

Shapoval O.; Brandmeier J. C.; Nahorniak M.; Oleksa V.; Makhneva E.; Gorris H. H.; Farka Z.; Horák D. PMVEMA-Coated Upconverting Nanoparticles for Upconversion-Linked Immunoassay of Cardiac Troponin. Talanta 2022, 244, 12340010.1016/j.talanta.2022.123400. PubMed DOI

Ding H.; Zhang W.; Wang S.; Li C.; Li W.; Liu J.; Yu F.; Tao Y.; Cheng S.; Xie H.; Chen Y. A Semi-Quantitative Upconversion Nanoparticle-Based Immunochromatographic Assay for SARS-CoV-2 Antigen Detection. Front. Microbiol. 2023, 14, 128968210.3389/fmicb.2023.1289682. PubMed DOI PMC

He W.; You M.; Li Z.; Cao L.; Xu F.; Li F.; Li A. Upconversion Nanoparticles-Based Lateral Flow Immunoassay for Point-of-Care Diagnosis of Periodontitis. Sens. Actuators B Chem. 2021, 334, 12967310.1016/j.snb.2021.129673. DOI

Misiak M.; Gawłowski M.; Kowalczyk A.; Skowicki M.; Prorok K.; Lipiński T. Novel UV-Activated Biofunctionalization of up-Converting Nanocrystals for Detection of Proteins. J. Nanostruct. Chem. 2022, 12 (1), 93–103. 10.1007/s40097-021-00404-x. DOI

Kim B.; Araujo R.; Howard M.; Magni R.; Liotta L. A.; Luchini A. Affinity Enrichment for Mass Spectrometry: Improving the Yield of Low Abundance Biomarkers. Expert Rev. Proteomics 2018, 15 (4), 353–366. 10.1080/14789450.2018.1450631. PubMed DOI PMC

Wang R. E.; Tian L.; Chang Y.-H. A Homogeneous Fluorescent Sensor for Human Serum Albumin. J. Pharm. Biomed. Anal. 2012, 63, 165–169. 10.1016/j.jpba.2011.12.035. PubMed DOI PMC

Thompson I. M.; Ankerst D. P. Prostate-Specific Antigen in the Early Detection of Prostate Cancer. Can. Med. Assoc. J. 2007, 176 (13), 1853–1858. 10.1503/cmaj.060955. PubMed DOI PMC

Duffy M. J. Biomarkers for Prostate Cancer: Prostate-Specific Antigen and Beyond. Clin. Chem. Lab. Med. 2020, 58 (3), 326–339. 10.1515/cclm-2019-0693. PubMed DOI

Naito S. Evaluation and Management of Prostate-Specific Antigen Recurrence After Radical Prostatectomy for Localized Prostate Cancer. Jpn. J. Clin. Oncol. 2005, 35 (7), 365–374. 10.1093/jjco/hyi113. PubMed DOI

Garg P.; Morris P.; Fazlanie A. L.; Vijayan S.; Dancso B.; Dastidar A. G.; Plein S.; Mueller C.; Haaf P. Cardiac Biomarkers of Acute Coronary Syndrome: From History to High-Sensitivity Cardiac Troponin. Intern. Emerg. Med. 2017, 12 (2), 147–155. 10.1007/s11739-017-1612-1. PubMed DOI PMC

Katrukha I. A.; Katrukha A. G. Myocardial Injury and the Release of Troponins I and T in the Blood of Patients. Clin. Chem. 2021, 67 (1), 124–130. 10.1093/clinchem/hvaa281. PubMed DOI

Surti P. V.; Kim M. W.; Phan L. M. T.; Kailasa S. K.; Mungray A. K.; Park J. P.; Park T. J. Progress on Dot-Blot Assay as a Promising Analytical Tool: Detection from Molecules to Cells. TrAC Trends Anal. Chem. 2022, 157, 11673610.1016/j.trac.2022.116736. DOI

Aitekenov S.; Gaipov A.; Bukasov R. Review: Detection and Quantification of Proteins in Human Urine. Talanta 2021, 223, 12171810.1016/j.talanta.2020.121718. PubMed DOI PMC

Barroso M. M. Quantum Dots in Cell Biology. J. Histochem. Cytochem. 2011, 59 (3), 237–251. 10.1369/0022155411398487. PubMed DOI PMC

Pastucha M.; Odstrčilíková E.; Hlaváček A.; Brandmeier J. C.; Vykoukal V.; Weisová J.; Gorris H. H.; Skládal P.; Farka Z. Upconversion-Linked Immunoassay for the Diagnosis of Honeybee Disease American Foulbrood. IEEE J. Sel. Top. Quantum Electron. 2021, 27 (5), 1–11. 10.1109/JSTQE.2021.3049689. DOI

Wild D.The Immunoassay Handbook - Theory and Applications of Ligand Binding, ELISA and Related Techniques, 4th ed.; Elsevier: Oxford, 2013.

Chen T.; Xie N.; Viglianti L.; Zhou Y.; Tan H.; Tang B. Z.; Tang Y. Quantitative Urinalysis Using Aggregation-Induced Emission Bioprobes for Monitoring Chronic Kidney Disease. Faraday Discuss. 2017, 196, 351–362. 10.1039/C6FD00153J. PubMed DOI

Matsuda K.; Hiratsuka N.; Kurihara Y.; Shiba K. Semiquantitative Analysis of Urinary Low Protein Levels Using Silver Dot Blot Assay. J. Clin. Lab. Anal. 2001, 15 (4), 171–174. 10.1002/jcla.1022. PubMed DOI PMC

Khramtsov P.; Kropaneva M.; Bochkova M.; Timganova V.; Zamorina S.; Rayev M. Solid-Phase Nuclear Magnetic Resonance Immunoassay for the Prostate-Specific Antigen by Using Protein-Coated Magnetic Nanoparticles. Microchim. Acta 2019, 186 (12), 768.10.1007/s00604-019-3925-4. PubMed DOI

Dorraj G. S.; Rassaee M. J.; Latifi A. M.; Pishgoo B.; Tavallaei M. Selection of DNA Aptamers against Human Cardiac Troponin I for Colorimetric Sensor Based Dot Blot Application. J. Biotechnol. 2015, 208, 80–86. 10.1016/j.jbiotec.2015.05.002. PubMed DOI

Guo H.; Zhang J.; Yang D.; Xiao P.; He N. Protein Array for Assist Diagnosis of Acute Myocardial Infarction. Colloids Surf. B 2005, 40 (3–4), 195–198. 10.1016/j.colsurfb.2004.10.010. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Digital Immunoassay for Biomarker Detection Based on Single-Particle Laser Ablation ICP MS

. 2025 Jul 08 ; 97 (26) : 13832-13839. [epub] 20250624

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...