Many Distinct Ways Lead to Drug Resistance in BRAF- and NRAS-Mutated Melanomas
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
League against cancer Prague
ProgressQ25
Univerzita Karlova v Praze
PubMed
34063141
PubMed Central
PMC8148104
DOI
10.3390/life11050424
PII: life11050424
Knihovny.cz E-resources
- Keywords
- BRAF, NRAS, drug resistance, melanoma, phenotype switching,
- Publication type
- Journal Article MeSH
- Review MeSH
Advanced melanoma is a relentless tumor with a high metastatic potential. The combat of melanoma by using the targeted therapy is impeded because several major driver mutations fuel its growth (predominantly BRAF and NRAS). Both these mutated oncogenes strongly activate the MAPK (MEK/ERK) pathway. Therefore, specific inhibitors of these oncoproteins or MAPK pathway components or their combination have been used for tumor eradication. After a good initial response, resistant cells develop almost universally and need the drug for further expansion. Multiple mechanisms, sometimes very distant from the MAPK pathway, are responsible for the development of resistance. Here, we review many of the mechanisms causing resistance and leading to the dismal final outcome of mutated BRAF and NRAS therapy. Very heterogeneous events lead to drug resistance. Due to this, each individual mechanism would be in fact needed to be determined for a personalized therapy to treat patients more efficiently and causally according to molecular findings. This procedure is practically impossible in the clinic. Other approaches are therefore needed, such as combined treatment with more drugs simultaneously from the beginning of the therapy. This could eradicate tumor cells more rapidly and greatly diminish the possibility of emerging mechanisms that allow the evolution of drug resistance.
See more in PubMed
Steingrimsson E., Copeland N.G., Jenkins N.A. Melanocytes and the Microphthalmia Transcription Factor Network. Annu. Rev. Genet. 2004;38:365–411. doi: 10.1146/annurev.genet.38.072902.092717. PubMed DOI
Meacham C.E., Morrison S.J. Tumour Heterogeneity and Cancer Cell Plasticity. Nature. 2013;501:328–337. doi: 10.1038/nature12624. PubMed DOI PMC
Bogenrieder T., Herlyn M. The Molecular Pathology of Cutaneous Melanoma. Cancer Biomarks. 2011;9:267–286. doi: 10.3233/CBM-2011-0164. PubMed DOI
Daud A., Bastian B.C. Beyond BRAF in Melanoma. Curr. Top. Microbiol. Immunol. 2012;355:99–117. PubMed
Belum V.R., Fischer A., Choi J.N., Lacouture M.E. Dermatological Adverse Events From BRAF Inhibitors: A Growing Problem. Curr. Oncol. Rep. 2013;15:249–259. doi: 10.1007/s11912-013-0308-6. PubMed DOI
Holderfield M., Deuker M.M., McCormick F., McMahon M. Targeting RAF Kinases for Cancer Therapy: BRAF-Mutated Melanoma and Beyond. Nat. Rev. Cancer. 2014;14:455–467. doi: 10.1038/nrc3760. PubMed DOI PMC
Raaijmakers M.I., Widmer D.S., Narechania A., Eichhoff O., Freiberger S.N., Wenzina J., Cheng P.F., Mihic-Probst D., Desalle R., Dummer R., et al. Co-Existence of BRAF and NRAS Driver Mutations in the Same Melanoma Cells Results in Heterogeneity of Targeted Therapy Resistance. Oncotarget. 2016;7:77163–77174. doi: 10.18632/oncotarget.12848. PubMed DOI PMC
Kong X., Kuilman T., Shahrabi A., Boshuizen J., Kemper K., Song J.Y., Niessen H.W.M., Rozeman E.A., Geukes Foppen M.H., Blank C.U., et al. Cancer Drug Addiction Is Relayed by an ERK2-Dependent Phenotype Switch. Nature. 2017;550:270–274. doi: 10.1038/nature24037. PubMed DOI PMC
Reddy B.Y., Miller D.M., Tsao H. Somatic Driver Mutations in Melanoma. Cancer. 2017;123:2104–2117. doi: 10.1002/cncr.30593. PubMed DOI
Bugaj L.J., Sabnis A.J., Mitchell A., Garbarino J.E., Toettcher J.E., Bivona T.G., Lim W.A. Cancer Mutations and Targeted Drugs Can Disrupt Dynamic Signal Encoding by the Ras-Erk Pathway. Science. 2018:361. doi: 10.1126/science.aao3048. PubMed DOI PMC
Proietti I., Skroza N., Bernardini N., Tolino E., Balduzzi V., Marchesiello A., Michelini S., Volpe S., Mambrin A., Mangino G., et al. Mechanisms of Acquired BRAF Inhibitor Resistance in Melanoma: A Systematic Review. Cancers. 2020;12:2801. doi: 10.3390/cancers12102801. PubMed DOI PMC
Patel H., Yacoub N., Mishra R., White A., Long Y., Alanazi S., Garrett J.T. Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers. 2020;12:1661. doi: 10.3390/cancers12020482. PubMed DOI PMC
Nassar K.W., Tan A.C. The Mutational Landscape of Mucosal Melanoma. Semin. Cancer Biol. 2020;61:139–148. doi: 10.1016/j.semcancer.2019.09.013. PubMed DOI PMC
Michaloglou C., Vredeveld L.C., Soengas M.S., Denoyelle C., Kuilman T., Van der Horst C.M., Majoor D.M., Shay J.W., Mooi W.J., Peeper D.S. BRAFE600-Associated Senescence-Like Cell Cycle Arrest of Human Naevi. Nature. 2005;436:720–724. doi: 10.1038/nature03890. PubMed DOI
Michaloglou C., Vredeveld L.C., Mooi W.J., Peeper D.S. BRAF(E600) in Benign and Malignant Human Tumours. Oncogene. 2008;27:877–895. doi: 10.1038/sj.onc.1210704. PubMed DOI
Salgia R., Kulkarni P. The Genetic/Non-Genetic Duality of Drug ‘Resistance’ in Cancer. Trends Cancer. 2018;4:110–118. doi: 10.1016/j.trecan.2018.01.001. PubMed DOI PMC
Khaliq M., Fallahi-Sichani M. Epigenetic Mechanisms of Escape From BRAF Oncogene Dependency. Cancers. 2019;11:1480. doi: 10.3390/cancers11101480. PubMed DOI PMC
Arozarena I., Wellbrock C. Phenotype Plasticity As Enabler of Melanoma Progression and Therapy Resistance. Nat. Rev. Cancer. 2019;19:377–391. doi: 10.1038/s41568-019-0154-4. PubMed DOI
Rossi A., Roberto M., Panebianco M., Botticelli A., Mazzuca F., Marchetti P. Drug Resistance of BRAF-Mutant Melanoma: Review of Up-to-Date Mechanisms of Action and Promising Targeted Agents. Eur. J. Pharmacol. 2019;862:172621. doi: 10.1016/j.ejphar.2019.172621. PubMed DOI
Kakadia S., Yarlagadda N., Awad R., Kundranda M., Niu J., Naraev B., Mina L., Dragovich T., Gimbel M., Mahmoud F. Mechanisms of Resistance to BRAF and MEK Inhibitors and Clinical Update of US Food and Drug Administration-Approved Targeted Therapy in Advanced Melanoma. Onco Targets. Ther. 2018;11:7095–7107. doi: 10.2147/OTT.S182721. PubMed DOI PMC
Chapman P.B., Hauschild A., Robert C., Haanen J.B., Ascierto P., Larkin J., Dummer R., Garbe C., Testori A., Maio M., et al. Improved Survival With Vemurafenib in Melanoma With BRAF V600E Mutation. N. Engl. J. Med. 2011;364:2507–2516. doi: 10.1056/NEJMoa1103782. PubMed DOI PMC
Sun C., Wang L., Huang S., Heynen G.J., Prahallad A., Robert C., Haanen J., Blank C., Wesseling J., Willems S.M., et al. Reversible and Adaptive Resistance to BRAF(V600E) Inhibition in Melanoma. Nature. 2014;508:118–122. doi: 10.1038/nature13121. PubMed DOI
Hong A., Moriceau G., Sun L., Lomeli S., Piva M., Damoiseaux R., Holmen S.L., Sharpless N.E., Hugo W., Lo R.S. Exploiting Drug Addiction Mechanisms to Select Against MAPKi-Resistant Melanoma. Cancer Discov. 2018;8:74–93. doi: 10.1158/2159-8290.CD-17-0682. PubMed DOI PMC
Obenauf A.C., Zou Y., Ji A.L., Vanharanta S., Shu W., Shi H., Kong X., Bosenberg M.C., Wiesner T., Rosen N., et al. Therapy-Induced Tumour Secretomes Promote Resistance and Tumour Progression. Nature. 2015;520:368–372. doi: 10.1038/nature14336. PubMed DOI PMC
Davies H., Bignell G.R., Cox C., Stephens P., Edkins S., Clegg S., Teague J., Woffendin H., Garnett M.J., Bottomley W., et al. Mutations of the BRAF Gene in Human Cancer. Nature. 2002;417:949–954. doi: 10.1038/nature00766. PubMed DOI
Yue J., Vendramin R., Liu F., Lopez O., Valencia M.G., Gomes Dos S.H., Gaidosh G., Beckedorff F., Blumenthal E., Speroni L., et al. Targeted Chemotherapy Overcomes Drug Resistance in Melanoma. Genes Dev. 2020;34:637–649. doi: 10.1101/gad.333864.119. PubMed DOI PMC
Fallahi-Sichani M., Becker V., Izar B., Baker G.J., Lin J.R., Boswell S.A., Shah P., Rotem A., Garraway L.A., Sorger P.K. Adaptive Resistance of Melanoma Cells to RAF Inhibition Via Reversible Induction of a Slowly Dividing De-Differentiated State. Mol. Syst. Biol. 2017;13:905. doi: 10.15252/msb.20166796. PubMed DOI PMC
Eskiocak B., McMillan E.A., Mendiratta S., Kollipara R.K., Zhang H., Humphries C.G., Wang C., Garcia-Rodriguez J., Ding M., Zaman A., et al. Biomarker Accessible and Chemically Addressable Mechanistic Subtypes of BRAF Melanoma. Cancer Discov. 2017;7:832–851. doi: 10.1158/2159-8290.CD-16-0955. PubMed DOI PMC
Savoia P., Fava P., Casoni F., Cremona O. Targeting the ERK Signaling Pathway in Melanoma. Int. J. Mol. Sci. 2019;20:1483. doi: 10.3390/ijms20061483. PubMed DOI PMC
Druillennec S., Pouponnot C., Eychene A. NRAS-Driven Melanoma: A RAF Can Hide Another. Mol. Cell. Oncol. 2017;4:e1344758. doi: 10.1080/23723556.2017.1344758. PubMed DOI PMC
Atefi M., Titz B., Tsoi J., Avramis E., Le A., Ng C., Lomova A., Lassen A., Friedman M., Chmielowski B., et al. CRAF R391W Is a Melanoma Driver Oncogene. Sci. Rep. 2016;6:27454. doi: 10.1038/srep27454. PubMed DOI PMC
Liu D., Liu X., Xing M. Activities of Multiple Cancer-Related Pathways Are Associated With BRAF Mutation and Predict the Resistance to BRAF/MEK Inhibitors in Melanoma Cells. Cell Cycle. 2014;13:208–219. doi: 10.4161/cc.26971. PubMed DOI PMC
Read J., Wadt K.A., Hayward N.K. Melanoma Genetics. J. Med. Genet. 2016;53:1–14. doi: 10.1136/jmedgenet-2015-103150. PubMed DOI
Davis E.J., Johnson D.B., Sosman J.A., Chandra S. Melanoma: What Do All the Mutations Mean? Cancer. 2018;124:3490–3499. doi: 10.1002/cncr.31345. PubMed DOI PMC
Almeida F.V., Douglass S.M., Fane M.E., Weeraratna A.T. Bad Company: Microenvironmentally Mediated Resistance to Targeted Therapy in Melanoma. Pigment Cell Melanoma Res. 2019;32:237–247. doi: 10.1111/pcmr.12736. PubMed DOI PMC
Kemper K., De Goeje P.L., Peeper D.S., Van Amerongen R. Phenotype Switching: Tumor Cell Plasticity As a Resistance Mechanism and Target for Therapy. Cancer Res. 2014;74:5937–5941. doi: 10.1158/0008-5472.CAN-14-1174. PubMed DOI
Vasan N., Baselga J., Hyman D.M. A View on Drug Resistance in Cancer. Nature. 2019;575:299–309. doi: 10.1038/s41586-019-1730-1. PubMed DOI PMC
Swayden M., Chhouri H., Anouar Y., Grumolato L. Tolerant/Persister Cancer Cells and the Path to Resistance to Targeted Therapy. Cells. 2020;9:2601. doi: 10.3390/cells9122601. PubMed DOI PMC
Poulikakos P.I., Persaud Y., Janakiraman M., Kong X., Ng C., Moriceau G., Shi H., Atefi M., Titz B., Gabay M.T., et al. RAF Inhibitor Resistance Is Mediated by Dimerization of Aberrantly Spliced BRAF(V600E) Nature. 2011;480:387–390. doi: 10.1038/nature10662. PubMed DOI PMC
Tian Y., Guo W. A Review of the Molecular Pathways Involved in Resistance to BRAF Inhibitors in Patients With Advanced-Stage Melanoma. Med. Sci. Monit. 2020;26:e920957. doi: 10.12659/MSM.920957. PubMed DOI PMC
Czarnecka A.M., Bartnik E., Fiedorowicz M., Rutkowski P. Targeted Therapy in Melanoma and Mechanisms of Resistance. Int. J. Mol. Sci. 2020;21:4576. doi: 10.3390/ijms21134576. PubMed DOI PMC
Kim A., Cohen M.S. The Discovery of Vemurafenib for the Treatment of BRAF-Mutated Metastatic Melanoma. Expert Opin. Drug Discov. 2016;11:907–916. doi: 10.1080/17460441.2016.1201057. PubMed DOI PMC
Kulkarni A., Al Hraishawi H., Simhadri S., Hirshfield K.M., Chen S., Pine S., Jeyamohan C., Sokol L., Ali S., Teo M.L., et al. BRAF Fusion As a Novel Mechanism of Acquired Resistance to Vemurafenib in BRAF(V600E) Mutant Melanoma. Clin. Cancer Res. 2017;23:5631–5638. doi: 10.1158/1078-0432.CCR-16-0758. PubMed DOI
Vido M.J., Le K., Hartsough E.J., Aplin A.E. BRAF Splice Variant Resistance to RAF Inhibitor Requires Enhanced MEK Association. Cell Rep. 2018;25:1501–1510. doi: 10.1016/j.celrep.2018.10.049. PubMed DOI PMC
Choi J., Landrette S.F., Wang T., Evans P., Bacchiocchi A., Bjornson R., Cheng E., Stiegler A.L., Gathiaka S., Acevedo O., et al. Identification of PLX4032-Resistance Mechanisms and Implications for Novel RAF Inhibitors. Pigment Cell Melanoma Res. 2014;27:253–262. doi: 10.1111/pcmr.12197. PubMed DOI PMC
Wagle N., Van Allen E.M., Treacy D.J., Frederick D.T., Cooper Z.A., Taylor-Weiner A., Rosenberg M., Goetz E.M., Sullivan R.J., Farlow D.N., et al. MAP Kinase Pathway Alterations in BRAF-Mutant Melanoma Patients With Acquired Resistance to Combined RAF/MEK Inhibition. Cancer Discov. 2014;4:61–68. doi: 10.1158/2159-8290.CD-13-0631. PubMed DOI PMC
Yuan J., Ng W.H., Tian Z., Yap J., Baccarini M., Chen Z., Hu J. Activating Mutations in MEK1 Enhance Homodimerization and Promote Tumorigenesis. Sci. Signal. 2018;11:eaar6795. doi: 10.1126/scisignal.aar6795. PubMed DOI
Morris E.J., Jha S., Restaino C.R., Dayananth P., Zhu H., Cooper A., Carr D., Deng Y., Jin W., Black S., et al. Discovery of a Novel ERK Inhibitor With Activity in Models of Acquired Resistance to BRAF and MEK Inhibitors. Cancer Discov. 2013;3:742–750. doi: 10.1158/2159-8290.CD-13-0070. PubMed DOI
Welsh S.J., Rizos H., Scolyer R.A., Long G.V. Resistance to Combination BRAF and MEK Inhibition in Metastatic Melanoma: Where to Next? Eur. J. Cancer. 2016;62:76–85. doi: 10.1016/j.ejca.2016.04.005. PubMed DOI
Jha S., Morris E.J., Hruza A., Mansueto M.S., Schroeder G.K., Arbanas J., McMasters D., Restaino C.R., Dayananth P., Black S., et al. Dissecting Therapeutic Resistance to ERK Inhibition. Mol. Cancer Ther. 2016;15:548–559. doi: 10.1158/1535-7163.MCT-15-0172. PubMed DOI
Ramsdale R., Jorissen R.N., Li F.Z., Al Obaidi S., Ward T., Sheppard K.E., Bukczynska P.E., Young R.J., Boyle S.E., Shackleton M., et al. The Transcription Cofactor C-JUN Mediates Phenotype Switching and BRAF Inhibitor Resistance in Melanoma. Sci. Signal. 2015;8:ra82. doi: 10.1126/scisignal.aab1111. PubMed DOI
Fallahi-Sichani M., Moerke N.J., Niepel M., Zhang T., Gray N.S., Sorger P.K. Systematic Analysis of BRAF(V600E) Melanomas Reveals a Role for JNK/c-Jun Pathway in Adaptive Resistance to Drug-Induced Apoptosis. Mol. Syst. Biol. 2015;11:797. doi: 10.15252/msb.20145877. PubMed DOI PMC
Titz B., Lomova A., Le A., Hugo W., Kong X., Ten Hoeve J., Friedman M., Shi H., Moriceau G., Song C., et al. JUN Dependency in Distinct Early and Late BRAF Inhibition Adaptation States of Melanoma. Cell Discov. 2016;2:16028. doi: 10.1038/celldisc.2016.28. PubMed DOI PMC
Liu L., Yue Q., Ma J., Liu Y., Zhao T., Guo W., Zhu G., Guo S., Wang S., Gao T., et al. POU4F1 Promotes the Resistance of Melanoma to BRAF Inhibitors Through MEK/ERK Pathway Activation and MITF Up-Regulation. Cell Death Dis. 2020;11:451. doi: 10.1038/s41419-020-2662-2. PubMed DOI PMC
Richard G., Dalle S., Monet M.A., Ligier M., Boespflug A., Pommier R.M., De la Fouchardière A., Perier-Muzet M., Depaepe L., Barnault R., et al. ZEB1-Mediated Melanoma Cell Plasticity Enhances Resistance to MAPK Inhibitors. EMBO Mol. Med. 2016;8:1143–1161. doi: 10.15252/emmm.201505971. PubMed DOI PMC
Chan X.Y., Singh A., Osman N., Piva T.J. Role Played by Signalling Pathways in Overcoming BRAF Inhibitor Resistance in Melanoma. Int. J. Mol. Sci. 2017;18:1527. doi: 10.3390/ijms18071527. PubMed DOI PMC
Deuker M.M., Durban V.M., Phillips W.A., McMahon M. PI3’-Kinase Inhibition Forestalls the Onset of MEK1/2 Inhibitor Resistance in BRAF-Mutated Melanoma. Cancer Discov. 2015;5:143–153. doi: 10.1158/2159-8290.CD-14-0856. PubMed DOI PMC
Caporali S., Alvino E., Lacal P.M., Levati L., Giurato G., Memoli D., Caprini E., Antonini Cappellini G.C., D’Atri S. Targeting the PI3K/AKT/MTOR Pathway Overcomes the Stimulating Effect of Dabrafenib on the Invasive Behavior of Melanoma Cells With Acquired Resistance to the BRAF Inhibitor. Int. J. Oncol. 2016;49:1164–1174. doi: 10.3892/ijo.2016.3594. PubMed DOI
Cipponi A., Goode D.L., Bedo J., McCabe M.J., Pajic M., Croucher D.R., Rajal A.G., Junankar S.R., Saunders D.N., Lobachevsky P., et al. MTOR Signaling Orchestrates Stress-Induced Mutagenesis, Facilitating Adaptive Evolution in Cancer. Science. 2020;368:1127–1131. doi: 10.1126/science.aau8768. PubMed DOI
Zuo Q., Liu J., Huang L., Qin Y., Hawley T., Seo C., Merlino G., Yu Y. AXL/AKT Axis Mediated-Resistance to BRAF Inhibitor Depends on PTEN Status in Melanoma. Oncogene. 2018;37:3275–3289. doi: 10.1038/s41388-018-0205-4. PubMed DOI PMC
Shi H., Hong A., Kong X., Koya R.C., Song C., Moriceau G., Hugo W., Yu C.C., Ng C., Chodon T., et al. A Novel AKT1 Mutant Amplifies an Adaptive Melanoma Response to BRAF Inhibition. Cancer Discov. 2014;4:69–79. doi: 10.1158/2159-8290.CD-13-0279. PubMed DOI PMC
Smalley K.S., Lioni M., Dalla P.M., Xiao M., Desai B., Egyhazi S., Hansson J., Wu H., King A.J., Van Belle P., et al. Increased Cyclin D1 Expression Can Mediate BRAF Inhibitor Resistance in BRAF V600E-Mutated Melanomas. Mol. Cancer Ther. 2008;7:2876–2883. doi: 10.1158/1535-7163.MCT-08-0431. PubMed DOI PMC
Azimi A., Caramuta S., Seashore-Ludlow B., Bostrom J., Robinson J.L., Edfors F., Tuominen R., Kemper K., Krijgsman O., Peeper D.S., et al. Targeting CDK2 Overcomes Melanoma Resistance Against BRAF and Hsp90 Inhibitors. Mol. Syst. Biol. 2018;14:e7858. doi: 10.15252/msb.20177858. PubMed DOI PMC
Janostiak R., Malvi P., Wajapeyee N. Anaplastic Lymphoma Kinase Confers Resistance to BRAF Kinase Inhibitors in Melanoma. Iscience. 2019;16:453–467. doi: 10.1016/j.isci.2019.06.001. PubMed DOI PMC
Tripathi R., Liu Z., Jain A., Lyon A., Meeks C., Richards D., Liu J., He D., Wang C., Nespi M., et al. Combating Acquired Resistance to MAPK Inhibitors in Melanoma by Targeting Abl1/2-Mediated Reactivation of MEK/ERK/MYC Signaling. Nat. Commun. 2020;11:5463. doi: 10.1038/s41467-020-19075-3. PubMed DOI PMC
Lu H., Liu S., Zhang G., Bin W., Zhu Y., Frederick D.T., Hu Y., Zhong W., Randell S., Sadek N., et al. PAK Signalling Drives Acquired Drug Resistance to MAPK Inhibitors in BRAF-Mutant Melanomas. Nature. 2017;550:133–136. doi: 10.1038/nature24040. PubMed DOI PMC
Chang X., Zhang T., Wang Q., Rathore M.G., Reddy K., Chen H., Shin S.H., Ma W.Y., Bode A.M., Dong Z. HI-511 Overcomes Melanoma Drug Resistance Via Targeting AURKB and BRAF V600E. Theranostics. 2020;10:9721–9740. doi: 10.7150/thno.44342. PubMed DOI PMC
Das I., Wilhelm M., Hoiom V., Franco M.R., Costa S.F., Hansson J., Tuominen R., Egyhazi B.S. Combining ERBB Family and MET Inhibitors Is an Effective Therapeutic Strategy in Cutaneous Malignant Melanoma Independent of BRAF/NRAS Mutation Status. Cell Death Dis. 2019;10:663. doi: 10.1038/s41419-019-1875-8. PubMed DOI PMC
Díaz-Martínez M., Benito-Jardón L., Alonso L., Koetz-Ploch L., Hernando E., Teixidó J. MiR-204-5p and MiR-211-5p Contribute to BRAF Inhibitor Resistance in Melanoma. Cancer Res. 2018;78:1017–1030. doi: 10.1158/0008-5472.CAN-17-1318. PubMed DOI PMC
Fattore L., Mancini R., Acunzo M., Romano G., Lagana A., Pisanu M.E., Malpicci D., Madonna G., Mallardo D., Capone M., et al. MiR-579-3p Controls Melanoma Progression and Resistance to Target Therapy. Proc. Natl. Acad. Sci. USA. 2016;113:E5005–E5013. doi: 10.1073/pnas.1607753113. PubMed DOI PMC
Nguyen M.T., Lin C.H., Liu S.M., Miyashita A., Ihn H., Lin H., Ng C.H., Tsai J.C., Chen M.H., Tsai M.S., et al. MiR-524-5p Reduces the Progression of the BRAF Inhibitor-Resistant Melanoma. Neoplasia. 2020;22:789–799. doi: 10.1016/j.neo.2020.10.009. PubMed DOI PMC
Nissan M.H., Pratilas C.A., Jones A.M., Ramirez R., Won H., Liu C., Tiwari S., Kong L., Hanrahan A.J., Yao Z., et al. Loss of NF1 in Cutaneous Melanoma Is Associated With RAS Activation and MEK Dependence. Cancer Res. 2014;74:2340–2350. doi: 10.1158/0008-5472.CAN-13-2625. PubMed DOI PMC
Haq R., Yokoyama S., Hawryluk E.B., Jonsson G.B., Frederick D.T., McHenry K., Porter D., Tran T.N., Love K.T., Langer R., et al. BCL2A1 Is a Lineage-Specific Antiapoptotic Melanoma Oncogene That Confers Resistance to BRAF Inhibition. Proc. Natl. Acad. Sci. USA. 2013;110:4321–4326. doi: 10.1073/pnas.1205575110. PubMed DOI PMC
Rapino F., Delaunay S., Rambow F., Zhou Z., Tharun L., De Tullio P., Sin O., Shostak K., Schmitz S., Piepers J., et al. Codon-Specific Translation Reprogramming Promotes Resistance to Targeted Therapy. Nature. 2018;558:605–609. doi: 10.1038/s41586-018-0243-7. PubMed DOI
Girard C.A., Lecacheur M., Ben Jouira R., Berestjuk I., Diazzi S., Prod’homme V., Mallavialle A., Larbret F., Gesson M., Schaub S., et al. A Feed-Forward Mechanosignaling Loop Confers Resistance to Therapies Targeting the MAPK Pathway in BRAF-Mutant Melanoma. Cancer Res. 2020;80:1927–1941. doi: 10.1158/0008-5472.CAN-19-2914. PubMed DOI
Diazzi S., Tartare-Deckert S., Deckert M. Bad Neighborhood: Fibrotic Stroma As a New Player in Melanoma Resistance to Targeted Therapies. Cancers. 2020;12:1364. doi: 10.3390/cancers12061364. PubMed DOI PMC
Vashisht Gopal Y.N., Gammon S., Prasad R., Knighton B., Pisaneschi F., Roszik J., Feng N., Johnson S., Pramanik S., Sudderth J., et al. A Novel Mitochondrial Inhibitor Blocks MAPK Pathway and Overcomes MAPK Inhibitor Resistance in Melanoma. Clin. Cancer Res. 2019;25:6429–6442. doi: 10.1158/1078-0432.CCR-19-0836. PubMed DOI PMC
Aloia A., Mullhaupt D., Chabbert C.D., Eberhart T., Flueckiger S., Vukolic A., Eichhoff O.M., Irmisch A., Alexander L.T., Scibona E., et al. A Fatty Acid Oxidation-Dependent Metabolic Shift Regulates the Adaptation of BRAF-Mutated Melanoma to MAPK Inhibitors. Clin. Cancer Res. 2019;25:6852–6867. doi: 10.1158/1078-0432.CCR-19-0253. PubMed DOI PMC
Smith M.P., Rowling E.J., Miskolczi Z., Ferguson J., Spoerri L., Haass N.K., Sloss O., McEntegart S., Arozarena I., Von Kriegsheim A., et al. Targeting Endothelin Receptor Signalling Overcomes Heterogeneity Driven Therapy Failure. EMBO Mol. Med. 2017;9:1011–1029. doi: 10.15252/emmm.201607156. PubMed DOI PMC
Burd C.E., Liu W., Huynh M.V., Waqas M.A., Gillahan J.E., Clark K.S., Fu K., Martin B.L., Jeck W.R., Souroullas G.P., et al. Mutation-Specific RAS Oncogenicity Explains NRAS Codon 61 Selection in Melanoma. Cancer Discov. 2014;4:1418–1429. doi: 10.1158/2159-8290.CD-14-0729. PubMed DOI PMC
Sarkisian S., Davar D. MEK Inhibitors for the Treatment of NRAS Mutant Melanoma. Drug Des. Dev. Ther. 2018;12:2553–2565. doi: 10.2147/DDDT.S131721. PubMed DOI PMC
Echevarria-Vargas I.M., Reyes-Uribe P.I., Guterres A.N., Yin X., Kossenkov A.V., Liu Q., Zhang G., Krepler C., Cheng C., Wei Z., et al. Co-Targeting BET and MEK As Salvage Therapy for MAPK and Checkpoint Inhibitor-Resistant Melanoma. EMBO Mol. Med. 2018;10:e8446. doi: 10.15252/emmm.201708446. PubMed DOI PMC
Delyon J., Lebbe C., Dumaz N. Targeted Therapies in Melanoma Beyond BRAF: Targeting NRAS-Mutated and KIT-Mutated Melanoma. Curr. Opin. Oncol. 2020;32:79–84. doi: 10.1097/CCO.0000000000000606. PubMed DOI
Yin C., Zhu B., Zhang T., Liu T., Chen S., Liu Y., Li X., Miao X., Li S., Mi X., et al. Pharmacological Targeting of STK19 Inhibits Oncogenic NRAS-Driven Melanomagenesis. Cell. 2019;176:1113–1127. doi: 10.1016/j.cell.2019.01.002. PubMed DOI
Matter A.V., Micaletto S., Urner-Bloch U., Dummer R., Goldinger S.M. Long-Term Response to Intermittent Binimetinib in Patients With NRAS-Mutant Melanoma. Oncologist. 2020;25:e1593–e1597. doi: 10.1634/theoncologist.2019-0656. PubMed DOI PMC
Rodríguez-Martínez M., Boissiére T., Noe G.M., Litchfield K., Mitter R., Walker J., Kjœr S., Ismail M., Downward J., Swanton C., et al. Evidence That STK19 Is Not an NRAS-Dependent Melanoma Driver. Cell. 2020;181:1395–1405. doi: 10.1016/j.cell.2020.04.014. PubMed DOI PMC
Tran B., Cohen M.S. The Discovery and Development of Binimetinib for the Treatment of Melanoma. Expert Opin. Drug Discov. 2020;15:745–754. doi: 10.1080/17460441.2020.1746265. PubMed DOI PMC
Malka-Mahieu H., Girault I., Rubington M., Leriche M., Welsch C., Kamsu-Kom N., Zhao Q., Desaubry L., Vagner S., Robert C. Synergistic Effects of EIF4A and MEK Inhibitors on Proliferation of NRAS-Mutant Melanoma Cell Lines. Cell Cycle. 2016;15:2405–2409. doi: 10.1080/15384101.2016.1208862. PubMed DOI PMC
Nagler A., Vredevoogd D.W., Alon M., Cheng P.F., Trabish S., Kalaora S., Arafeh R., Goldin V., Levesque M.P., Peeper D.S., et al. A Genome-Wide CRISPR Screen Identifies FBXO42 Involvement in Resistance Toward MEK Inhibition in NRAS-Mutant Melanoma. Pigment Cell Melanoma Res. 2020;33:334–344. doi: 10.1111/pcmr.12825. PubMed DOI PMC
Vu H.L., Aplin A.E. Targeting TBK1 Inhibits Migration and Resistance to MEK Inhibitors in Mutant NRAS Melanoma. Mol. Cancer Res. 2014;12:1509–1519. doi: 10.1158/1541-7786.MCR-14-0204. PubMed DOI PMC
Vu H.L., Aplin A.E. Targeting Mutant NRAS Signaling Pathways in Melanoma. Pharmacol. Res. 2016;107:111–116. doi: 10.1016/j.phrs.2016.03.007. PubMed DOI PMC
Romano G., Chen P.L., Song P., McQuade J.L., Liang R.J., Liu M., Roh W., Duose D.Y., Carapeto F.C.L., Li J., et al. A Preexisting Rare PIK3CA(E545K) Subpopulation Confers Clinical Resistance to MEK Plus CDK4/6 Inhibition in NRAS Melanoma and Is Dependent on S6K1 Signaling. Cancer Discov. 2018;8:556–567. doi: 10.1158/2159-8290.CD-17-0745. PubMed DOI PMC
Roesch A. Tumor Heterogeneity and Plasticity As Elusive Drivers for Resistance to MAPK Pathway Inhibition in Melanoma. Oncogene. 2015;34:2951–2957. doi: 10.1038/onc.2014.249. PubMed DOI
Rambow F., Marine J.C., Goding C.R. Melanoma Plasticity and Phenotypic Diversity: Therapeutic Barriers and Opportunities. Genes Dev. 2019;33:1295–1318. doi: 10.1101/gad.329771.119. PubMed DOI PMC
Ahmed F., Haass N.K. Microenvironment-Driven Dynamic Heterogeneity and Phenotypic Plasticity As a Mechanism of Melanoma Therapy Resistance. Front. Oncol. 2018;8:173. doi: 10.3389/fonc.2018.00173. PubMed DOI PMC
Falletta P., Sanchez-Del-Campo L., Chauhan J., Effern M., Kenyon A., Kershaw C.J., Siddaway R., Lisle R., Freter R., Daniels M.J., et al. Translation Reprogramming Is an Evolutionarily Conserved Driver of Phenotypic Plasticity and Therapeutic Resistance in Melanoma. Genes Dev. 2017;31:18–33. doi: 10.1101/gad.290940.116. PubMed DOI PMC
Avagliano A., Fiume G., Pelagalli A., Sanità G., Ruocco M.R., Montagnani S., Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front. Oncol. 2020;10:722. doi: 10.3389/fonc.2020.00722. PubMed DOI PMC
Menon D.R., Das S., Krepler C., Vultur A., Rinner B., Schauer S., Kashofer K., Wagner K., Zhang G., Rad E.B., et al. A Stress-Induced Early Innate Response Causes Multidrug Tolerance in Melanoma. Oncogene. 2015;34:4545. doi: 10.1038/onc.2014.432. PubMed DOI
O’Connell M.P., Marchbank K., Webster M.R., Valiga A.A., Kaur A., Vultur A., Li L., Herlyn M., Villanueva J., Liu Q., et al. Hypoxia Induces Phenotypic Plasticity and Therapy Resistance in Melanoma Via the Tyrosine Kinase Receptors ROR1 and ROR2. Cancer Discov. 2013;3:1378–1393. doi: 10.1158/2159-8290.CD-13-0005. PubMed DOI PMC
Roesch A., Paschen A., Landsberg J., Helfrich I., Becker J.C., Schadendorf D. Phenotypic Tumour Cell Plasticity As a Resistance Mechanism and Therapeutic Target in Melanoma. Eur. J. Cancer. 2016;59:109–112. doi: 10.1016/j.ejca.2016.02.023. PubMed DOI
Solit D.B., Garraway L.A., Pratilas C.A., Sawai A., Getz G., Basso A., Ye Q., Lobo J.M., She Y., Osman I., et al. BRAF Mutation Predicts Sensitivity to MEK Inhibition. Nature. 2006;439:358–362. doi: 10.1038/nature04304. PubMed DOI PMC
Das T.M., Salangsang F., Landman A.S., Sellers W.R., Pryer N.K., Levesque M.P., Dummer R., McMahon M., Stuart D.D. Modelling Vemurafenib Resistance in Melanoma Reveals a Strategy to Forestall Drug Resistance. Nature. 2013;494:251–255. PubMed PMC
Johannessen C.M., Johnson L.A., Piccioni F., Townes A., Frederick D.T., Donahue M.K., Narayan R., Flaherty K.T., Wargo J.A., Root D.E., et al. A Melanocyte Lineage Program Confers Resistance to MAP Kinase Pathway Inhibition. Nature. 2013;504:138–142. doi: 10.1038/nature12688. PubMed DOI PMC
Vlčková K., Réda J., Ondrušová L., Krayem M., Ghanem G., Vachtenheim J. GLI Inhibitor GANT61 Kills Melanoma Cells and Acts in Synergy With Obatoclax. Int. J. Oncol. 2016;49:953–960. doi: 10.3892/ijo.2016.3596. PubMed DOI