Bright photon upconversion in LiYbF4:Tm3+@LiYF4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37336153
PubMed Central
PMC10257885
DOI
10.1016/j.jcis.2023.06.034
PII: S0021-9797(23)01057-3
Knihovny.cz E-zdroje
- Klíčová slova
- Covid-19 diagnosis, NIR to UV upconverting nanoparticles, Reactive oxygen species, Singlet oxygen,
- MeSH
- COVID-19 * diagnóza MeSH
- imunoanalýza MeSH
- lidé MeSH
- nanočástice * MeSH
- SARS-CoV-2 MeSH
- singletový kyslík MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- singletový kyslík MeSH
Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.
Zobrazit více v PubMed
Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004;104:139–173. doi: 10.1021/cr020357g. PubMed DOI
Grzyb T., Kamiński P., Przybylska D., Tymiński A., Sanz-Rodríguez F., Haro Gonzalez P. Manipulation of up-conversion emission in NaYF4 core@shell nanoparticles doped by Er3+, Tm3+, or Yb3+ ions by excitation wavelength-three ions-plenty of possibilities. Nanoscale. 2021;13:7322–7333. doi: 10.1039/d0nr07136f. PubMed DOI
Qin X., Xu J., Wu Y., Liu X. Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Cent. Sci. 2019;5:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC
Przybylska D., Grzyb T. Tailoring structure, morphology and up-conversion properties of CaF2:Yb3+, Er3+ nanoparticles by the route of synthesis. J. Mater. Sci. 2020;55:14166–14178. doi: 10.1007/s10853-020-05049-9. DOI
Shi F., Zhao Y. Sub-10 nm and monodisperse β-NaYF4:Yb Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence. J. Mater. Chem. C Mater. 2014;2:2198–2203. doi: 10.1039/c3tc32303j. DOI
Sun T., Chen B., Guo Y., Zhu Q., Zhao J., Li Y., Chen X., Wu Y., Gao Y., Jin L., Chu S.T., Wang F. Ultralarge anti-Stokes lasing through tandem upconversion. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-28701-1. PubMed DOI PMC
Cheng T., Marin R., Skripka A., Vetrone F. Small and Bright Lithium-Based Upconverting Nanoparticles. J. Am. Chem. Soc. 2018;140:12890–12899. doi: 10.1021/jacs.8b07086. PubMed DOI
Jiang B., Hu Y., Ren L., Zhou H., Shi L., Zhang X. Four- and five-photon upconversion lasing from rare earth elements under continuous-wave pump and room temperature. Nanophotonics. 2022;11:4315–4322. doi: 10.1515/nanoph-2022-0360. DOI
Huang H., Li H., Wang Z., Wang P., Zheng Z., Liu Y., Dai Y., Li Y., Huang B. Efficient near-infrared photocatalysts based on NaYF4:Yb3+, Tm3+@NaYF4:Yb3+, Nd3+@TiO2 core@shell nanoparticles. Chem. Eng. J. 2019;361:1089–1097. doi: 10.1016/j.cej.2018.12.174. DOI
Wiesholler L.M., Genslein C., Schroter A., Hirsch T. Plasmonic Enhancement of NIR to UV Upconversion by a Nanoengineered Interface Consisting of NaYF4:Yb, Tm Nanoparticles and a Gold Nanotriangle Array for Optical Detection of Vitamin B12 in Serum. Anal. Chem. 2018;90:14247–14254. doi: 10.1021/acs.analchem.8b03279. PubMed DOI
Kostiv U., Farka Z., Mickert M.J., Gorris H.H., Velychkivska N., Pop-Georgievski O., Pastucha M., Odstrčilíková E., Skládal P., Horák D. Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules. 2020;21:4502–4513. doi: 10.1021/acs.biomac.0c00459. PubMed DOI
Kostiv U., Kučka J., Lobaz V., Kotov N., Janoušková O., Šlouf M., Krajnik B., Podhorodecki A., Francová P., Šefc L., Jirák D., Horák D. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-77112-z. PubMed DOI PMC
L.P. Ravaro, M.S. Arai, L.J.Q. Maia, M. Reza Dousti, P.H.D.O. Santiago, J. Ellena, A.S.S. De Camargo, Multifunctional Platform Based on a Copper(I) Complex and NaYF4:Tm3+,Yb3+ Upconverting Nanoparticles Immobilized into a Polystyrene Matrix: Downshifting and Upconversion Oxygen Sensing, ACS Appl Mater Interfaces. 14 (2022) 47902–47912. Doi:10.1021/acsami.2c14579. PubMed
Rojas-Gutierrez P.A., Bhuckory S., Mingoes C., Hildebrandt N., Dewolf C., Capobianco J.A. A Route to Triggered Delivery via Photocontrol of Lipid Bilayer Properties Using Lanthanide Upconversion Nanoparticles. ACS Appl Nano Mater. 2018;1:5345–5354. doi: 10.1021/acsanm.8b01396. DOI
Qiu H., Tan M., Ohulchanskyy T.Y., Lovell J.F., Chen G. Recent progress in upconversion photodynamic therapy. Nanomaterials. 2018;8:1–18. doi: 10.3390/nano8050344. PubMed DOI PMC
Wang C., Cheng L., Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 2013;3:317–330. doi: 10.7150/thno.5284. PubMed DOI PMC
Qian H.S., Guo H.C., Ho P.C.L., Mahendran R., Zhang Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small. 2009;5:2285–2290. doi: 10.1002/smll.200900692. PubMed DOI
Correia J.H., Rodrigues J.A., Pimenta S., Dong T., Yang Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13:1–16. doi: 10.3390/pharmaceutics13091332. PubMed DOI PMC
Tanielian C., Schweitzer C., Mechin R., Wolff C. Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radic. Biol. Med. 2001;30:208–212. doi: 10.1016/S0891-5849(00)00460-3. PubMed DOI
Bosschaart N., Edelman G.J., Aalders M.C.G., Van Leeuwen T.G., Faber D.J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med. Sci. 2014;29:453–479. doi: 10.1007/s10103-013-1446-7. PubMed DOI PMC
Sordillo L.A., Pu Y., Pratavieira S., Budansky Y., Alfano R.R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 2014;19 doi: 10.1117/1.JBO.19.5.056004. PubMed DOI
Zhang Y., Shen Y., Liu M., Han Y., Mo X., Jiang R., Lei Z., Liu Z., Shi F., Qin W. Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm β-NaYbF4: 0 .5% Tm nanoparticles via Fe3+ doping. CrstEngComm. 2017;19:1304–1310. doi: 10.1039/c6ce02568d. DOI
Liu J., Rijckaert H., Zeng M., Haustraete K., Laforce B., Vincze L., van Driessche I., Kaczmarek A.M., van Deun R. Simultaneously Excited Downshifting/Upconversion Luminescence from Lanthanide-Doped Core/Shell Fluoride Nanoparticles for Multimode Anticounterfeiting. Adv. Funct. Mater. 2018;28:1–10. doi: 10.1002/adfm.201707365. DOI
Jurga N., Przybylska D., Kamiński P., Grzyb T. Improvement of ligand-free modification strategy to obtain water-stable up-converting nanoparticles with bright emission and high reaction yield. Sci. Rep. 2021;11:1–10. doi: 10.1038/s41598-021-98240-0. PubMed DOI PMC
Nadort A., Zhao J., Goldys E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale. 2016;8:13099–13130. doi: 10.1039/c5nr08477f. PubMed DOI
Shi F., Wang J., Zhai X., Zhao D., Qin W. Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrstEngComm. 2011;13:3782. doi: 10.1039/c1ce05092c. DOI
Zhang Y.Y., Yang L.W., Xu C.F., Zhong J.X., Sun C.Q. Sensitized deep-ultraviolet up-conversion emissions of Gd3+ via Tm3+ and Yb3+ in hexagonal NaYF4 nanorods. Appl. Phys. B. 2010;98:243–247. doi: 10.1007/s00340-009-3827-y. DOI
Jin L.M., Chen X., Siu C.K., Wang F., Yu S.F. Enhancing Multiphoton Upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of Laser Cavity. ACS Nano. 2017;11:843–849. doi: 10.1021/acsnano.6b07322. PubMed DOI
Zhou B., Tang B., Zhang C., Qin C., Gu Z., Ma Y., Zhai T., Yao J. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-020-14879-9. PubMed DOI PMC
Zhang X., Wang M., Ding J., Gao D., Shi Y., Song X. The novel upconversion properties of LiYbF4: Er microcrystals compared to the Na counterpart. CrstEngComm. 2012;14:8357–8360. doi: 10.1039/c2ce26159f. DOI
Zou Q., Huang P., Zheng W., You W., Li R., Tu D., Xu J., Chen X. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale. 2017;9:6521–6528. doi: 10.1039/c7nr02124k. PubMed DOI
M. v. DaCosta, S. Doughan, Y. Han, U.J. Krull, Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review, Anal Chim Acta. 832 (2014) 1–33. Doi:10.1016/j.aca.2014.04.030. PubMed
Skripka A., Cheng T., Jones C.M.S., Marin R., Marques-Hueso J., Vetrone F. Spectral characterization of LiYbF4 upconverting nanoparticles. Nanoscale. 2020;12:17545–17554. doi: 10.1039/d0nr04357e. PubMed DOI
Wang J., Wang F., Xu J., Wang Y., Liu Y., Chen X., Chen H., Liu X. Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning. C. R. Chim. 2010;13:731–736. doi: 10.1016/j.crci.2010.03.021. DOI
Rojas-Gutierrez P.A., DeWolf C., Capobianco J.A. Formation of a Supported Lipid Bilayer on Faceted LiYF4:Tm3+/Yb3+ Upconversion Nanoparticles. Part. Part. Syst. Char. 2016;33:865–870. doi: 10.1002/ppsc.201600218. DOI
Hong A.R., Kim S.Y., Cho S.H., Lee K., Jang H.S. Facile synthesis of multicolor tunable ultrasmall LiYF4:Yb, Tm, Er/LiGdF4 core/shell upconversion nanophosphors with sub-10 nm size. Dyes Pigm. 2017;139:831–838. doi: 10.1016/j.dyepig.2016.12.048. DOI
Zheng W., Huang P., Gong Z., Tu D., Xu J., Zou Q., Li R., You W., Bünzli J.C.G., Chen X. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-018-05947-2. PubMed DOI PMC
Meijer M.S., Rojas-Gutierrez P.A., Busko D., Howard I.A., Frenzel F., Würth C., Resch-Genger U., Richards B.S., Turshatov A., Capobianco J.A., Bonnet S., Richards B.S., Resch-Genger U., Capobianco J.A., Würth C., Howard I.A., Rojas-Gutierrez P.A., Bonnet S., Meijer M.S., Busko D. Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+, Tm3+ upconverting nanoparticles. PCCP. 2018;20:22556–22562. doi: 10.1039/c8cp03935f. PubMed DOI
Shin J., Kyhm J.-H., Hong A.-R., Song J.D., Lee K., Ko H., Jang H.S. Multicolor Tunable Upconversion Luminescence from Sensitized Seed-Mediated Grown LiGdF4:Yb, Tm-Based Core/Triple-Shell Nanophosphors for Transparent Displays. Chem. Mater. 2018;30:8457–8464. doi: 10.1021/acs.chemmater.8b02497. DOI
Maurizio S.L., Tessitore G., Mandl G.A., Capobianco J.A. Luminescence dynamics and enhancement of the UV and visible emissions of Tm3+ in LiYF4:Yb3+, Tm3+ upconverting nanoparticles. Nanoscale Adv. 2019;1:4492–4500. doi: 10.1039/c9na00556k. PubMed DOI PMC
Chien H.W., Yang C.H., Shih Y.T., Wang T.L. Upconversion nanoparticles encapsulated with molecularly imprinted amphiphilic copolymer as a fluorescent probe for specific biorecognition. Polymers (Basel). 2021;13 doi: 10.3390/polym13203522. PubMed DOI PMC
Purohit B., Jeanneau E., Guyot Y., Amans D., Mahler B., Joubert M.F., Dujardin C., Ledoux G., Mishra S. Incorporation of Upconverting LiYF4:Yb3+, Tm3+ Nanoparticles with High Quantum Yield in TiO2 Metallogels for Near Infrared-Driven Photocatalytic Dye Degradation. ACS Appl Nano Mater. 2022 doi: 10.1021/acsanm.2c04240. DOI
Brandmeier J.C., Jurga N., Grzyb T., Hlaváček A., Obořilová R., Skládal P., Farka Z., Gorris H.H. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2023;95:4753–4759. doi: 10.1021/acs.analchem.2c05670. PubMed DOI PMC
Brandmeier J.C., Raiko K., Farka Z., Peltomaa R., Mickert M.J., Hlaváček A., Skládal P., Soukka T., Gorris H.H. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv. Healthc. Mater. 2021;10 doi: 10.1002/adhm.202100506. PubMed DOI
Mickert M.J., Farka Z., Kostiv U., Hlaváček A., Horák D., Skládal P., Gorris H.H. Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2019;91:9435–9441. doi: 10.1021/acs.analchem.9b02872. PubMed DOI
Farka Z., Mickert M.J., Hlaváček A., Skládal P., Gorris H.H. Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal. Chem. 2017;89:11825–11830. doi: 10.1021/acs.analchem.7b03542. PubMed DOI
Yan C., Zhao H., Perepichka D.F., Rosei F. Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small. 2016:3888–3907. doi: 10.1002/smll.201601565. PubMed DOI
Chen B., Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020;7:1067–1081. doi: 10.1039/c9qi01358j. DOI
Homann C., Krukewitt L., Frenzel F., Grauel B., Würth C., Resch-Genger U., Haase M. NaYF4:Yb, Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2018;57:8765–8769. doi: 10.1002/anie.201803083. PubMed DOI
Li Z., Zhang Y. Multi-color Core-Shell Structured Upconversion Fluorescent Nanoparticles (supporting information) Adv. Mater. 2008
Boyer J.C., Vetrone F., Cuccia L.A., Capobianco J.A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006;128:7444–7445. doi: 10.1021/ja061848b. PubMed DOI
Shi F., Wang J., Zhang D., Qin G., Qin W. Greatly enhanced size-tunable ultraviolet upconversion luminescence of monodisperse β-NaYF4:Yb, Tm nanocrystals. J. Mater. Chem. 2011 doi: 10.1039/c1jm11480h. DOI
Xiao Y., Kuang X., Yeung Y., Ju M. Investigation of the Structure and Luminescence Mechanism of Tm3+-Doped LiYF4: New Theoretical Perspectives. Inorg. Chem. 2020;59:1211–1217. doi: 10.1021/acs.inorgchem.9b02935. PubMed DOI
Pandozzi F., Vetrone F., Boyer J.-C.-C., Naccache R., Capobianco J.A., Speghini A., Bettinelli M. A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B. 2005;109:17400–17405. doi: 10.1021/jp052192w. PubMed DOI
Pedroni M., Piccinelli F., Passuello T., Polizzi S., Ueda J., Haro-González P., Martinez Maestro L., Jaque D., García-Solé J., Bettinelli M., Speghini A. Water (H2O and D2O) Dispersible NIR-to-NIR Upconverting Yb3+/Tm3+ Doped MF2 (M = Ca, Sr) Colloids: Influence of the Host Crystal. Cryst. Growth Des. 2013;13:4906–4913. doi: 10.1021/cg401077v. DOI
Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI
Liu H., Carter P.J.H., Laan A.C., Eelkema R., Denkova A.G. Singlet Oxygen Sensor Green is not a Suitable Probe for 1O2 in the Presence of Ionizing Radiation. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-44880-2. PubMed DOI PMC
Hlaváček A., Farka Z., Mickert M.J., Kostiv U., Brandmeier J.C., Horák D., Skládal P., Foret F., Gorris H.H. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat. Protoc. 2022;17:1028–1072. doi: 10.1038/s41596-021-00670-7. PubMed DOI