Bright photon upconversion in LiYbF4:Tm3+@LiYF4 nanoparticles and their application for singlet oxygen generation and in immunoassay for SARS-CoV-2 nucleoprotein

. 2023 Nov ; 649 () : 49-57. [epub] 20230611

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37336153
Odkazy

PubMed 37336153
PubMed Central PMC10257885
DOI 10.1016/j.jcis.2023.06.034
PII: S0021-9797(23)01057-3
Knihovny.cz E-zdroje

Photon upconversion is an intensively investigated phenomenon in the materials sciences due to its unique applications, mainly in biomedicine for disease prevention and treatment. This study reports the synthesis and properties of tetragonal LiYbF4:Tm3+@LiYF4 core@shell nanoparticles (NPs) and their applications. The NPs had sizes ranging from 18.5 to 23.7 nm. As a result of the energy transfer between Yb3+ and Tm3+ ions, the synthesized NPs show intense emission in the ultraviolet (UV) range up to 347 nm under 975 nm excitation. The bright emission in the UV range allows for singlet oxygen generation in the presence of hematoporphyrin on the surface of NPs. Our studies show that irradiation with a 975 nm laser of the functionalized NPs allows for the production of amounts of singlet oxygen easily detectable by Singlet Oxygen Sensor Green. The high emission intensity of NPs at 800 nm allowed the application of the synthesized NPs in an upconversion-linked immunosorbent assay (ULISA) for highly sensitive detection of the nucleoprotein from SARS-CoV-2, the causative agent of Covid-19. This article proves that LiYbF4:Tm3+@LiYF4 core@shell nanoparticles can be perfect alternatives for the most commonly studied upconverting NPs based on the NaYF4 host compound and are good candidates for biomedical applications.

Zobrazit více v PubMed

Auzel F. Upconversion and Anti-Stokes Processes with f and d Ions in Solids. Chem. Rev. 2004;104:139–173. doi: 10.1021/cr020357g. PubMed DOI

Grzyb T., Kamiński P., Przybylska D., Tymiński A., Sanz-Rodríguez F., Haro Gonzalez P. Manipulation of up-conversion emission in NaYF4 core@shell nanoparticles doped by Er3+, Tm3+, or Yb3+ ions by excitation wavelength-three ions-plenty of possibilities. Nanoscale. 2021;13:7322–7333. doi: 10.1039/d0nr07136f. PubMed DOI

Qin X., Xu J., Wu Y., Liu X. Energy-Transfer Editing in Lanthanide-Activated Upconversion Nanocrystals: A Toolbox for Emerging Applications. ACS Cent. Sci. 2019;5:29–42. doi: 10.1021/acscentsci.8b00827. PubMed DOI PMC

Przybylska D., Grzyb T. Tailoring structure, morphology and up-conversion properties of CaF2:Yb3+, Er3+ nanoparticles by the route of synthesis. J. Mater. Sci. 2020;55:14166–14178. doi: 10.1007/s10853-020-05049-9. DOI

Shi F., Zhao Y. Sub-10 nm and monodisperse β-NaYF4:Yb Tm, Gd nanocrystals with intense ultraviolet upconversion luminescence. J. Mater. Chem. C Mater. 2014;2:2198–2203. doi: 10.1039/c3tc32303j. DOI

Sun T., Chen B., Guo Y., Zhu Q., Zhao J., Li Y., Chen X., Wu Y., Gao Y., Jin L., Chu S.T., Wang F. Ultralarge anti-Stokes lasing through tandem upconversion. Nat. Commun. 2022;13 doi: 10.1038/s41467-022-28701-1. PubMed DOI PMC

Cheng T., Marin R., Skripka A., Vetrone F. Small and Bright Lithium-Based Upconverting Nanoparticles. J. Am. Chem. Soc. 2018;140:12890–12899. doi: 10.1021/jacs.8b07086. PubMed DOI

Jiang B., Hu Y., Ren L., Zhou H., Shi L., Zhang X. Four- and five-photon upconversion lasing from rare earth elements under continuous-wave pump and room temperature. Nanophotonics. 2022;11:4315–4322. doi: 10.1515/nanoph-2022-0360. DOI

Huang H., Li H., Wang Z., Wang P., Zheng Z., Liu Y., Dai Y., Li Y., Huang B. Efficient near-infrared photocatalysts based on NaYF4:Yb3+, Tm3+@NaYF4:Yb3+, Nd3+@TiO2 core@shell nanoparticles. Chem. Eng. J. 2019;361:1089–1097. doi: 10.1016/j.cej.2018.12.174. DOI

Wiesholler L.M., Genslein C., Schroter A., Hirsch T. Plasmonic Enhancement of NIR to UV Upconversion by a Nanoengineered Interface Consisting of NaYF4:Yb, Tm Nanoparticles and a Gold Nanotriangle Array for Optical Detection of Vitamin B12 in Serum. Anal. Chem. 2018;90:14247–14254. doi: 10.1021/acs.analchem.8b03279. PubMed DOI

Kostiv U., Farka Z., Mickert M.J., Gorris H.H., Velychkivska N., Pop-Georgievski O., Pastucha M., Odstrčilíková E., Skládal P., Horák D. Versatile Bioconjugation Strategies of PEG-Modified Upconversion Nanoparticles for Bioanalytical Applications. Biomacromolecules. 2020;21:4502–4513. doi: 10.1021/acs.biomac.0c00459. PubMed DOI

Kostiv U., Kučka J., Lobaz V., Kotov N., Janoušková O., Šlouf M., Krajnik B., Podhorodecki A., Francová P., Šefc L., Jirák D., Horák D. Highly colloidally stable trimodal 125I-radiolabeled PEG-neridronate-coated upconversion/magnetic bioimaging nanoprobes. Sci. Rep. 2020;10:1–14. doi: 10.1038/s41598-020-77112-z. PubMed DOI PMC

L.P. Ravaro, M.S. Arai, L.J.Q. Maia, M. Reza Dousti, P.H.D.O. Santiago, J. Ellena, A.S.S. De Camargo, Multifunctional Platform Based on a Copper(I) Complex and NaYF4:Tm3+,Yb3+ Upconverting Nanoparticles Immobilized into a Polystyrene Matrix: Downshifting and Upconversion Oxygen Sensing, ACS Appl Mater Interfaces. 14 (2022) 47902–47912. Doi:10.1021/acsami.2c14579. PubMed

Rojas-Gutierrez P.A., Bhuckory S., Mingoes C., Hildebrandt N., Dewolf C., Capobianco J.A. A Route to Triggered Delivery via Photocontrol of Lipid Bilayer Properties Using Lanthanide Upconversion Nanoparticles. ACS Appl Nano Mater. 2018;1:5345–5354. doi: 10.1021/acsanm.8b01396. DOI

Qiu H., Tan M., Ohulchanskyy T.Y., Lovell J.F., Chen G. Recent progress in upconversion photodynamic therapy. Nanomaterials. 2018;8:1–18. doi: 10.3390/nano8050344. PubMed DOI PMC

Wang C., Cheng L., Liu Z. Upconversion nanoparticles for photodynamic therapy and other cancer therapeutics. Theranostics. 2013;3:317–330. doi: 10.7150/thno.5284. PubMed DOI PMC

Qian H.S., Guo H.C., Ho P.C.L., Mahendran R., Zhang Y. Mesoporous-silica-coated up-conversion fluorescent nanoparticles for photodynamic therapy. Small. 2009;5:2285–2290. doi: 10.1002/smll.200900692. PubMed DOI

Correia J.H., Rodrigues J.A., Pimenta S., Dong T., Yang Z. Photodynamic therapy review: Principles, photosensitizers, applications, and future directions. Pharmaceutics. 2021;13:1–16. doi: 10.3390/pharmaceutics13091332. PubMed DOI PMC

Tanielian C., Schweitzer C., Mechin R., Wolff C. Quantum yield of singlet oxygen production by monomeric and aggregated forms of hematoporphyrin derivative. Free Radic. Biol. Med. 2001;30:208–212. doi: 10.1016/S0891-5849(00)00460-3. PubMed DOI

Bosschaart N., Edelman G.J., Aalders M.C.G., Van Leeuwen T.G., Faber D.J. A literature review and novel theoretical approach on the optical properties of whole blood. Lasers Med. Sci. 2014;29:453–479. doi: 10.1007/s10103-013-1446-7. PubMed DOI PMC

Sordillo L.A., Pu Y., Pratavieira S., Budansky Y., Alfano R.R. Deep optical imaging of tissue using the second and third near-infrared spectral windows. J. Biomed. Opt. 2014;19 doi: 10.1117/1.JBO.19.5.056004. PubMed DOI

Zhang Y., Shen Y., Liu M., Han Y., Mo X., Jiang R., Lei Z., Liu Z., Shi F., Qin W. Enhanced high-order ultraviolet upconversion luminescence in sub-20 nm β-NaYbF4: 0 .5% Tm nanoparticles via Fe3+ doping. CrstEngComm. 2017;19:1304–1310. doi: 10.1039/c6ce02568d. DOI

Liu J., Rijckaert H., Zeng M., Haustraete K., Laforce B., Vincze L., van Driessche I., Kaczmarek A.M., van Deun R. Simultaneously Excited Downshifting/Upconversion Luminescence from Lanthanide-Doped Core/Shell Fluoride Nanoparticles for Multimode Anticounterfeiting. Adv. Funct. Mater. 2018;28:1–10. doi: 10.1002/adfm.201707365. DOI

Jurga N., Przybylska D., Kamiński P., Grzyb T. Improvement of ligand-free modification strategy to obtain water-stable up-converting nanoparticles with bright emission and high reaction yield. Sci. Rep. 2021;11:1–10. doi: 10.1038/s41598-021-98240-0. PubMed DOI PMC

Nadort A., Zhao J., Goldys E.M. Lanthanide upconversion luminescence at the nanoscale: Fundamentals and optical properties. Nanoscale. 2016;8:13099–13130. doi: 10.1039/c5nr08477f. PubMed DOI

Shi F., Wang J., Zhai X., Zhao D., Qin W. Facile synthesis of β-NaLuF4:Yb/Tm hexagonal nanoplates with intense ultraviolet upconversion luminescence. CrstEngComm. 2011;13:3782. doi: 10.1039/c1ce05092c. DOI

Zhang Y.Y., Yang L.W., Xu C.F., Zhong J.X., Sun C.Q. Sensitized deep-ultraviolet up-conversion emissions of Gd3+ via Tm3+ and Yb3+ in hexagonal NaYF4 nanorods. Appl. Phys. B. 2010;98:243–247. doi: 10.1007/s00340-009-3827-y. DOI

Jin L.M., Chen X., Siu C.K., Wang F., Yu S.F. Enhancing Multiphoton Upconversion from NaYF4:Yb/Tm@NaYF4 Core-Shell Nanoparticles via the Use of Laser Cavity. ACS Nano. 2017;11:843–849. doi: 10.1021/acsnano.6b07322. PubMed DOI

Zhou B., Tang B., Zhang C., Qin C., Gu Z., Ma Y., Zhai T., Yao J. Enhancing multiphoton upconversion through interfacial energy transfer in multilayered nanoparticles. Nat. Commun. 2020;11:1–9. doi: 10.1038/s41467-020-14879-9. PubMed DOI PMC

Zhang X., Wang M., Ding J., Gao D., Shi Y., Song X. The novel upconversion properties of LiYbF4: Er microcrystals compared to the Na counterpart. CrstEngComm. 2012;14:8357–8360. doi: 10.1039/c2ce26159f. DOI

Zou Q., Huang P., Zheng W., You W., Li R., Tu D., Xu J., Chen X. Cooperative and non-cooperative sensitization upconversion in lanthanide-doped LiYbF4 nanoparticles. Nanoscale. 2017;9:6521–6528. doi: 10.1039/c7nr02124k. PubMed DOI

M. v. DaCosta, S. Doughan, Y. Han, U.J. Krull, Lanthanide upconversion nanoparticles and applications in bioassays and bioimaging: A review, Anal Chim Acta. 832 (2014) 1–33. Doi:10.1016/j.aca.2014.04.030. PubMed

Skripka A., Cheng T., Jones C.M.S., Marin R., Marques-Hueso J., Vetrone F. Spectral characterization of LiYbF4 upconverting nanoparticles. Nanoscale. 2020;12:17545–17554. doi: 10.1039/d0nr04357e. PubMed DOI

Wang J., Wang F., Xu J., Wang Y., Liu Y., Chen X., Chen H., Liu X. Lanthanide-doped LiYF4 nanoparticles: Synthesis and multicolor upconversion tuning. C. R. Chim. 2010;13:731–736. doi: 10.1016/j.crci.2010.03.021. DOI

Rojas-Gutierrez P.A., DeWolf C., Capobianco J.A. Formation of a Supported Lipid Bilayer on Faceted LiYF4:Tm3+/Yb3+ Upconversion Nanoparticles. Part. Part. Syst. Char. 2016;33:865–870. doi: 10.1002/ppsc.201600218. DOI

Hong A.R., Kim S.Y., Cho S.H., Lee K., Jang H.S. Facile synthesis of multicolor tunable ultrasmall LiYF4:Yb, Tm, Er/LiGdF4 core/shell upconversion nanophosphors with sub-10 nm size. Dyes Pigm. 2017;139:831–838. doi: 10.1016/j.dyepig.2016.12.048. DOI

Zheng W., Huang P., Gong Z., Tu D., Xu J., Zou Q., Li R., You W., Bünzli J.C.G., Chen X. Near-infrared-triggered photon upconversion tuning in all-inorganic cesium lead halide perovskite quantum dots. Nat. Commun. 2018;9:1–9. doi: 10.1038/s41467-018-05947-2. PubMed DOI PMC

Meijer M.S., Rojas-Gutierrez P.A., Busko D., Howard I.A., Frenzel F., Würth C., Resch-Genger U., Richards B.S., Turshatov A., Capobianco J.A., Bonnet S., Richards B.S., Resch-Genger U., Capobianco J.A., Würth C., Howard I.A., Rojas-Gutierrez P.A., Bonnet S., Meijer M.S., Busko D. Absolute upconversion quantum yields of blue-emitting LiYF4:Yb3+, Tm3+ upconverting nanoparticles. PCCP. 2018;20:22556–22562. doi: 10.1039/c8cp03935f. PubMed DOI

Shin J., Kyhm J.-H., Hong A.-R., Song J.D., Lee K., Ko H., Jang H.S. Multicolor Tunable Upconversion Luminescence from Sensitized Seed-Mediated Grown LiGdF4:Yb, Tm-Based Core/Triple-Shell Nanophosphors for Transparent Displays. Chem. Mater. 2018;30:8457–8464. doi: 10.1021/acs.chemmater.8b02497. DOI

Maurizio S.L., Tessitore G., Mandl G.A., Capobianco J.A. Luminescence dynamics and enhancement of the UV and visible emissions of Tm3+ in LiYF4:Yb3+, Tm3+ upconverting nanoparticles. Nanoscale Adv. 2019;1:4492–4500. doi: 10.1039/c9na00556k. PubMed DOI PMC

Chien H.W., Yang C.H., Shih Y.T., Wang T.L. Upconversion nanoparticles encapsulated with molecularly imprinted amphiphilic copolymer as a fluorescent probe for specific biorecognition. Polymers (Basel). 2021;13 doi: 10.3390/polym13203522. PubMed DOI PMC

Purohit B., Jeanneau E., Guyot Y., Amans D., Mahler B., Joubert M.F., Dujardin C., Ledoux G., Mishra S. Incorporation of Upconverting LiYF4:Yb3+, Tm3+ Nanoparticles with High Quantum Yield in TiO2 Metallogels for Near Infrared-Driven Photocatalytic Dye Degradation. ACS Appl Nano Mater. 2022 doi: 10.1021/acsanm.2c04240. DOI

Brandmeier J.C., Jurga N., Grzyb T., Hlaváček A., Obořilová R., Skládal P., Farka Z., Gorris H.H. Digital and Analog Detection of SARS-CoV-2 Nucleocapsid Protein via an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2023;95:4753–4759. doi: 10.1021/acs.analchem.2c05670. PubMed DOI PMC

Brandmeier J.C., Raiko K., Farka Z., Peltomaa R., Mickert M.J., Hlaváček A., Skládal P., Soukka T., Gorris H.H. Effect of Particle Size and Surface Chemistry of Photon-Upconversion Nanoparticles on Analog and Digital Immunoassays for Cardiac Troponin. Adv. Healthc. Mater. 2021;10 doi: 10.1002/adhm.202100506. PubMed DOI

Mickert M.J., Farka Z., Kostiv U., Hlaváček A., Horák D., Skládal P., Gorris H.H. Measurement of Sub-femtomolar Concentrations of Prostate-Specific Antigen through Single-Molecule Counting with an Upconversion-Linked Immunosorbent Assay. Anal. Chem. 2019;91:9435–9441. doi: 10.1021/acs.analchem.9b02872. PubMed DOI

Farka Z., Mickert M.J., Hlaváček A., Skládal P., Gorris H.H. Single Molecule Upconversion-Linked Immunosorbent Assay with Extended Dynamic Range for the Sensitive Detection of Diagnostic Biomarkers. Anal. Chem. 2017;89:11825–11830. doi: 10.1021/acs.analchem.7b03542. PubMed DOI

Yan C., Zhao H., Perepichka D.F., Rosei F. Lanthanide Ion Doped Upconverting Nanoparticles: Synthesis, Structure and Properties. Small. 2016:3888–3907. doi: 10.1002/smll.201601565. PubMed DOI

Chen B., Wang F. Recent advances in the synthesis and application of Yb-based fluoride upconversion nanoparticles. Inorg. Chem. Front. 2020;7:1067–1081. doi: 10.1039/c9qi01358j. DOI

Homann C., Krukewitt L., Frenzel F., Grauel B., Würth C., Resch-Genger U., Haase M. NaYF4:Yb, Er/NaYF4 Core/Shell Nanocrystals with High Upconversion Luminescence Quantum Yield. Angew. Chem. Int. Ed. 2018;57:8765–8769. doi: 10.1002/anie.201803083. PubMed DOI

Li Z., Zhang Y. Multi-color Core-Shell Structured Upconversion Fluorescent Nanoparticles (supporting information) Adv. Mater. 2008

Boyer J.C., Vetrone F., Cuccia L.A., Capobianco J.A. Synthesis of colloidal upconverting NaYF4 nanocrystals doped with Er3+, Yb3+ and Tm3+, Yb3+ via thermal decomposition of lanthanide trifluoroacetate precursors. J. Am. Chem. Soc. 2006;128:7444–7445. doi: 10.1021/ja061848b. PubMed DOI

Shi F., Wang J., Zhang D., Qin G., Qin W. Greatly enhanced size-tunable ultraviolet upconversion luminescence of monodisperse β-NaYF4:Yb, Tm nanocrystals. J. Mater. Chem. 2011 doi: 10.1039/c1jm11480h. DOI

Xiao Y., Kuang X., Yeung Y., Ju M. Investigation of the Structure and Luminescence Mechanism of Tm3+-Doped LiYF4: New Theoretical Perspectives. Inorg. Chem. 2020;59:1211–1217. doi: 10.1021/acs.inorgchem.9b02935. PubMed DOI

Pandozzi F., Vetrone F., Boyer J.-C.-C., Naccache R., Capobianco J.A., Speghini A., Bettinelli M. A spectroscopic analysis of blue and ultraviolet upconverted emissions from Gd3Ga5O12:Tm3+, Yb3+ nanocrystals. J. Phys. Chem. B. 2005;109:17400–17405. doi: 10.1021/jp052192w. PubMed DOI

Pedroni M., Piccinelli F., Passuello T., Polizzi S., Ueda J., Haro-González P., Martinez Maestro L., Jaque D., García-Solé J., Bettinelli M., Speghini A. Water (H2O and D2O) Dispersible NIR-to-NIR Upconverting Yb3+/Tm3+ Doped MF2 (M = Ca, Sr) Colloids: Influence of the Host Crystal. Cryst. Growth Des. 2013;13:4906–4913. doi: 10.1021/cg401077v. DOI

Sies H., Jones D.P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents. Nat. Rev. Mol. Cell Biol. 2020;21:363–383. doi: 10.1038/s41580-020-0230-3. PubMed DOI

Liu H., Carter P.J.H., Laan A.C., Eelkema R., Denkova A.G. Singlet Oxygen Sensor Green is not a Suitable Probe for 1O2 in the Presence of Ionizing Radiation. Sci. Rep. 2019;9:1–9. doi: 10.1038/s41598-019-44880-2. PubMed DOI PMC

Hlaváček A., Farka Z., Mickert M.J., Kostiv U., Brandmeier J.C., Horák D., Skládal P., Foret F., Gorris H.H. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat. Protoc. 2022;17:1028–1072. doi: 10.1038/s41596-021-00670-7. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...