Magnetic microbead-based upconversion immunoassay with laser-induced breakdown spectroscopy readout for the detection of prostate-specific antigen
Jazyk angličtina Země Rakousko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Brno Ph.D. Talent Scholarship
Brno City Municipality
Brno Ph.D. Talent Scholarship
Brno City Municipality
CEITEC VUT-J-23-8207
Brno University of Technology
CEITEC VUT-J-23-8207
Brno University of Technology
FSI-S-23-8389
Brno University of Technology
22-27580S
Grantová Agentura České Republiky
22-27580S
Grantová Agentura České Republiky
22-27580S
Grantová Agentura České Republiky
22-27580S
Grantová Agentura České Republiky
22-27580S
Grantová Agentura České Republiky
PubMed
39379735
DOI
10.1007/s00604-024-06743-0
PII: 10.1007/s00604-024-06743-0
Knihovny.cz E-zdroje
- Klíčová slova
- Double-pulse LIBS, Magnetic microparticle, Photon-upconversion nanoparticle, Prostate-specific antigen, Tag-LIBS,
- MeSH
- imunoanalýza metody MeSH
- lasery * MeSH
- lidé MeSH
- limita detekce * MeSH
- mikrosféry MeSH
- prostatický specifický antigen * analýza imunologie krev MeSH
- spektrální analýza metody MeSH
- ytrium chemie účinky záření MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- prostatický specifický antigen * MeSH
- ytrium MeSH
Laser-induced breakdown spectroscopy (LIBS) is a promising technique for the readout of immunochemical assays utilizing indirect detection of labels (Tag-LIBS), typically based on nanoparticles. We have previously demonstrated that Tag-LIBS immunoassay employing yttrium-based photon-upconversion nanoparticles (UCNPs) can reach sensitivity similar to commonly used enzyme and fluorescence immunoassays. In this study, we report on further increasing the sensitivity of UCNP-based Tag-LIBS immunoassay by employing magnetic microbeads (MBs) as the solid phase in the determination of cancer biomarker prostate-specific antigen. Due to the possibility of analyte preconcentration, MBs enabled achieving a limit of detection (LOD) of 4.0 pg·mL-1, representing two orders of magnitude improvement compared with equivalent microtiter plate-based assay (LOD of 460 pg·mL-1). In addition, utilizing MBs opens up the possibility of an internal standardization of the LIBS readout by employing iron spectral lines, which improves the assay robustness by compensating for LIBS signal fluctuations and bead-bound immunocomplexes lost throughout the washing steps. Finally, the practical applicability of the technique was confirmed by the successful analysis of clinical samples, showing a strong correlation with the standard electrochemiluminescence immunoassay. Overall, MB-based Tag-LIBS was confirmed as a promising immunoassay approach, combining fast readout, multiplexing possibilities, and high sensitivity approaching upconversion luminescence scanning while avoiding the requirement of luminescence properties of labels.
Zobrazit více v PubMed
Legnaioli S, Campanella B, Poggialini F et al (2020) Industrial applications of laser-induced breakdown spectroscopy: a review. Anal Methods 12:1014–1029. https://doi.org/10.1039/C9AY02728A DOI
Díaz D, Hahn DW, Molina A (2017) Quantification of gold and silver in minerals by laser-induced breakdown spectroscopy. Spectrochim Acta B 136:106–115. https://doi.org/10.1016/j.sab.2017.08.008 DOI
Legnaioli S, Campanella B, Pagnotta S et al (2019) Determination of ash content of coal by laser-induced breakdown spectroscopy. Spectrochim Acta B 155:123–126. https://doi.org/10.1016/j.sab.2019.03.012 DOI
Hudson SW, Craparo J, De Saro R, Apelian D (2017) Applications of laser-induced breakdown spectroscopy (LIBS) in molten metal processing. Metall Mater Trans B 48:2731–2742. https://doi.org/10.1007/s11663-017-1032-7 DOI
Huber N, Viskup R, Linsmeyer T, et al (2010) Detection of heavy metals in waste polymers by laser-induced breakdown spectroscopy: a comparison of UV and IR lasers as ablation source. In: Berghmans F, Mignani AG, van Hoof CA (eds). p 77260G. https://doi.org/10.1117/12.855048
Burger M, Finney LA, Garrett L et al (2021) Laser ablation spectrometry for studies of uranium plasmas, reactor monitoring, and spent fuel safety. Spectrochim Acta B 179:106095. https://doi.org/10.1016/j.sab.2021.106095 DOI
Singh VK, Rai AK (2011) Prospects for laser-induced breakdown spectroscopy for biomedical applications: a review. Lasers Med Sci 26:673–687. https://doi.org/10.1007/s10103-011-0921-2 PubMed DOI
Gaudiuso R, Melikechi N, Abdel-Salam ZA et al (2019) Laser-induced breakdown spectroscopy for human and animal health: a review. Spectrochim Acta B 152:123–148. https://doi.org/10.1016/j.sab.2018.11.006 DOI
Limbeck A, Brunnbauer L, Lohninger H et al (2021) Methodology and applications of elemental mapping by laser induced breakdown spectroscopy. Anal Chim Acta 1147:72–98. https://doi.org/10.1016/j.aca.2020.12.054 PubMed DOI
Singh VK, Kumar V, Sharma J (2015) Importance of laser-induced breakdown spectroscopy for hard tissues (bone, teeth) and other calcified tissue materials. Lasers Med Sci 30:1763–1778. https://doi.org/10.1007/s10103-014-1549-9 PubMed DOI
Winnand P, Ooms M, Heitzer M et al (2023) Real-time detection of bone-invasive oral cancer with laser-induced breakdown spectroscopy: a proof-of-principle study. Oral Oncol 138:106308. https://doi.org/10.1016/j.oraloncology.2023.106308 PubMed DOI
Rohde M, Mehari F, Klämpfl F et al (2017) The differentiation of oral soft- and hard tissues using laser induced breakdown spectroscopy – a prospect for tissue specific laser surgery. J Biophotonics 10:1250–1261. https://doi.org/10.1002/jbio.201600153 PubMed DOI
Gaudiuso R, Ewusi-Annan E, Melikechi N et al (2018) Using LIBS to diagnose melanoma in biomedical fluids deposited on solid substrates: limits of direct spectral analysis and capability of machine learning. Spectrochim Acta B 146:106–114. https://doi.org/10.1016/j.sab.2018.05.010 DOI
Moncayo S, Trichard F, Busser B et al (2017) Multi-elemental imaging of paraffin-embedded human samples by laser-induced breakdown spectroscopy. Spectrochim Acta B 133:40–44. https://doi.org/10.1016/j.sab.2017.04.013 DOI
Török S, Limbeck A, Döme B, Bonta M (2017) Tandem LA-LIBS coupled to ICP-MS for comprehensive analysis of tumor samples. Spectroscopy 32:42–46
Kiss K, Šindelářová A, Krbal L et al (2021) Imaging margins of skin tumors using laser-induced breakdown spectroscopy and machine learning. J Anal At Spectrom 36:909–916. https://doi.org/10.1039/D0JA00469C DOI
Hashimoto T, Ohori M, Shimodaira K et al (2018) Prostate-specific antigen screening impacts on biochemical recurrence in patients with clinically localized prostate cancer. Int J Urol 25:561–567. https://doi.org/10.1111/iju.13563 PubMed DOI
Cabarkapa S, Perera M, McGrath S, Lawrentschuk N (2016) Prostate cancer screening with prostate-specific antigen: a guide to the guidelines. Prostate Int 4:125–129. https://doi.org/10.1016/j.prnil.2016.09.002 PubMed DOI PMC
Freedland SJ, Moul JW (2007) Prostate specific antigen recurrence after definitive therapy. J Urol 177:1985–1991. https://doi.org/10.1016/j.juro.2007.01.137 PubMed DOI
Makhneva E, Sklenárová D, Brandmeier JC et al (2022) Influence of label and solid support on the performance of heterogeneous immunoassays. Anal Chem 94:16376–16383. https://doi.org/10.1021/acs.analchem.2c03543 PubMed DOI
Mani V, Chikkaveeraiah BV, Patel V et al (2009) Ultrasensitive immunosensor for cancer biomarker proteins using gold nanoparticle film electrodes and multienzyme-particle amplification. ACS Nano 3:585–594. https://doi.org/10.1021/nn800863w PubMed DOI PMC
Sarkar P, Ghosh D, Bhattacharyay D et al (2008) Electrochemical immunoassay for free prostate specific antigen (f-PSA) using magnetic beads. Electroanalysis 20:1414–1420. https://doi.org/10.1002/elan.200804194 DOI
Zhou B, Zhang J, Lv Z et al (2017) Simultaneous determination of free and total prostate-specific antigen by a magnetic particle-based time-resolved fluoroimmunoassay. J Clin Lab Anal 31:e22137. https://doi.org/10.1002/jcla.22137 PubMed DOI PMC
Feng Z, Zhi S, Guo L et al (2019) An integrated magnetic microfluidic chip for rapid immunodetection of the prostate specific antigen using immunomagnetic beads. Microchim Acta 186:252. https://doi.org/10.1007/s00604-019-3349-1 DOI
Sklenárová D, Hlaváček A, Křivánková J et al (2024) Single-molecule microfluidic assay for prostate-specific antigen based on magnetic beads and upconversion nanoparticles. Lab Chip 24:3536–3545. https://doi.org/10.1039/D4LC00346B PubMed DOI
Markushin Y, Sivakumar P, Connolly D, Melikechi N (2015) Tag-femtosecond laser-induced breakdown spectroscopy for the sensitive detection of cancer antigen 125 in blood plasma. Anal Bioanal Chem 407:1849–1855. https://doi.org/10.1007/s00216-014-8433-0 PubMed DOI
Pořízka P, Vytisková K, Obořilová R et al (2021) Laser-induced breakdown spectroscopy as a readout method for immunocytochemistry with upconversion nanoparticles. Microchim Acta 188:147. https://doi.org/10.1007/s00604-021-04816-y DOI
Pořízka P, Modlitbová P, Melikechi N, Kaiser J (2023) Laser-ablation spectroscopy for imaging of tumor markers and nanoparticle labels. In: Optical spectroscopy and imaging for cancer diagnostics: fundamentals, progress, and challenges. pp 181–206. https://doi.org/10.1142/9789811258961_0007
Safi A, Landis JE, Adler HG et al (2024) Enhancing biomarker detection sensitivity through tag-laser induced breakdown spectroscopy with NELIBS. Talanta 271:125723. https://doi.org/10.1016/j.talanta.2024.125723 PubMed DOI
Melikechi N, Markushin Y (2022) Tag-laser-induced breakdown spectroscopy with Si, Ti, and Fe micro-particles and analysis of leptin in a phosphate buffer solution. Spectrochim Acta B 188:106357. https://doi.org/10.1016/j.sab.2022.106357 DOI
Konečná M, Novotný K, Křížková S et al (2014) Identification of quantum dots labeled metallothionein by fast scanning laser-induced breakdown spectroscopy. Spectrochim Acta B 101:220–225. https://doi.org/10.1016/j.sab.2014.08.037 DOI
Modlitbová P, Farka Z, Pastucha M et al (2019) Laser-induced breakdown spectroscopy as a novel readout method for nanoparticle-based immunoassays. Microchim Acta 186:1–10. https://doi.org/10.1007/s00604-019-3742-9 DOI
Kostiv U, Farka Z, Mickert MJ et al (2020) Versatile bioconjugation strategies of PEG-modified upconversion nanoparticles for bioanalytical applications. Biomacromol 21:4502–4513. https://doi.org/10.1021/acs.biomac.0c00459 DOI
Farka Z, Vytisková K, Makhneva E et al (2024) Comparison of single and double pulse laser-induced breakdown spectroscopy for the detection of biomolecules tagged with photon-upconversion nanoparticles. Anal Chim Acta 1299:342418. https://doi.org/10.1016/j.aca.2024.342418 PubMed DOI
Babushok VI, DeLucia FC, Gottfried JL et al (2006) Double pulse laser ablation and plasma: laser induced breakdown spectroscopy signal enhancement. Spectrochim Acta B 61:999–1014. https://doi.org/10.1016/j.sab.2006.09.003 DOI
Diwakar PK, Harilal SS, Freeman JR, Hassanein A (2013) Role of laser pre-pulse wavelength and inter-pulse delay on signal enhancement in collinear double-pulse laser-induced breakdown spectroscopy. Spectrochim Acta B 87:65–73. https://doi.org/10.1016/j.sab.2013.05.015 DOI
Brandmeier JC, Jurga N, Grzyb T et al (2023) Digital and analog detection of SARS-CoV-2 nucleocapsid protein via an upconversion-linked immunosorbent assay. Anal Chem 95:4753–4759. https://doi.org/10.1021/acs.analchem.2c05670 PubMed DOI PMC
Yaroshchyk P, Eberhardt J (2014) Automatic correction of continuum background in laser-induced breakdown spectroscopy using a model-free algorithm. Spectrochim Acta B 99:138–149. https://doi.org/10.1016/j.sab.2014.06.020 DOI
Babos DV, Barros AI, Nóbrega JA, Pereira-Filho ER (2019) Calibration strategies to overcome matrix effects in laser-induced breakdown spectroscopy: direct calcium and phosphorus determination in solid mineral supplements. Spectrochim Acta B 155:90–98. https://doi.org/10.1016/j.sab.2019.03.010 DOI
Sun X, Lei C, Guo L, Zhou Y (2016) Sandwich immunoassay for the prostate specific antigen using a micro-fluxgate and magnetic bead labels. Microchim Acta 183:2385–2393. https://doi.org/10.1007/s00604-016-1889-1 DOI
Gao Z, Xu M, Hou L et al (2013) Magnetic bead-based reverse colorimetric immunoassay strategy for sensing biomolecules. Anal Chem 85:6945–6952. https://doi.org/10.1021/ac401433p PubMed DOI
Gao RK, Lv ZY, Mao YS et al (2019) SERS-based pump-free microfluidic chip for highly sensitive immunoassay of prostate-specific antigen biomarkers. ACS Sens 4:938–943. https://doi.org/10.1021/acssensors.9b00039 PubMed DOI
Kim Y, Gonzales J, Zheng Y (2021) Sensitivity-enhancing strategies in optical biosensing. Small 17:2004988. https://doi.org/10.1002/smll.202004988 DOI
Jin B, Zhang C, Ma C et al (2024) Innovative strategies and approaches for enhancing performance in optical probe-based biosensors for point-of-care testing. TrAC, Trends Anal Chem 176:117775. https://doi.org/10.1016/j.trac.2024.117775 DOI