Carbapenemase-Producing Gram-Negative Bacteria from American Crows in the United States
Jazyk angličtina Země Spojené státy americké Médium electronic-print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33139274
PubMed Central
PMC7927846
DOI
10.1128/aac.00586-20
PII: AAC.00586-20
Knihovny.cz E-zdroje
- Klíčová slova
- IMI, IMP-27, KPC, Providencia rettgeri, carbapenemase, wild birds,
- MeSH
- antibakteriální látky farmakologie MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika MeSH
- Enterobacter MeSH
- infekce bakteriemi rodu Klebsiella * MeSH
- Klebsiella pneumoniae genetika MeSH
- mikrobiální testy citlivosti MeSH
- plazmidy genetika MeSH
- Providencia MeSH
- vrány * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Spojené státy americké MeSH
- Názvy látek
- antibakteriální látky MeSH
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- carbapenemase MeSH Prohlížeč
Wild corvids were examined for the presence of carbapenemase-producing Gram-negative bacteria in the United States. A total of 13 isolates were detected among 590 fecal samples of American crow; 11 Providencia rettgeri isolates harboring blaIMP-27 on the chromosome as a class 2 integron gene cassette within the Tn7 transposon, 1 Klebsiella pneumoniae ST258 isolate carrying blaKPC-2 on a pKpQIL-like plasmid as a part of Tn4401a, and 1 Enterobacter bugandensis isolate with blaIMI-1 located within EcloIMEX-2.
Biomedical Center Faculty of Medicine Charles University Pilsen Czech Republic
CEITEC VFU University of Veterinary and Pharmaceutical Sciences Brno Brno Czech Republic
Department of Virology Veterinary Research Institute Brno Czech Republic
RECETOX Faculty of Science Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Nordmann P, Poirel L. 2019. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis 69:S521–S528. doi:10.1093/cid/ciz824. PubMed DOI PMC
Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A. 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 24:1241–1250. doi:10.1016/j.cmi.2018.04.004. PubMed DOI
Logan LK, Weinstein RA. 2017. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 215:S28–S36. doi:10.1093/infdis/jiw282. PubMed DOI PMC
Jamborova I, Dolejska M, Zurek L, Townsend AK, Clark AB, Ellis JC, Papousek I, Cizek A, Literak I. 2017. Plasmid-mediated resistance to cephalosporins and quinolones in Escherichia coli from American crows in the USA. Environ Microbiol 19:2025–2036. doi:10.1111/1462-2920.13722. PubMed DOI
Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123. doi:10.1016/j.diagmicrobio.2010.12.002. PubMed DOI
Aubron C, Poirel L, Ash RJ, Nordmann P. 2005. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis 11:260–264. doi:10.3201/eid1102.030684. PubMed DOI PMC
Rotova V, Papagiannitsis CC, Skalova A, Chudejova K, Hrabak J. 2017. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J Microbiol Methods 137:30–33. doi:10.1016/j.mimet.2017.04.003. PubMed DOI
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:ix–xv. doi:10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC
Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC
Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC
Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14. PubMed DOI PMC
Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. doi:10.1128/JCM.06094-11. PubMed DOI PMC
Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. doi:10.1093/bioinformatics/btr039. PubMed DOI PMC
Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI
Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi:10.1093/bioinformatics/btv421. PubMed DOI PMC
Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC
Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC
Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M. 2018. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404. doi:10.1101/gr.232397.117. PubMed DOI PMC
Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71:63–70. doi:10.1093/jac/dkv306. PubMed DOI PMC
Paskova V, Medvecky M, Skalova A, Chudejova K, Bitar I, Jakubu V, Bergerova T, Zemlickova H, Papagiannitsis CC, Hrabak J. 2018. Characterization of NDM-encoding plasmids from Enterobacteriaceae recovered from Czech hospitals. Front Microbiol 9:1549. doi:10.3389/fmicb.2018.01549. PubMed DOI PMC
Dixon N, Fowler RC, Yoshizumi A, Horiyama T, Ishii Y, Harrison L, Geyer CN, Moland ES, Thomson K, Hanson D. 2016. IMP-27, a unique metallo-β- lactamase identified in geographically distinct isolates of Proteus mirabilis. Antimicrob Agents Chemother 60:6418–6421. doi:10.1128/AAC.02945-15. PubMed DOI PMC
Potter RF, Wallace MA, McMullen AR, Prusa J, Stallings CL, Burnham CAD, Dantas G. 2018. blaIMP-27 on transferable plasmids in Proteus mirabilis and Providencia rettgeri. Clin Microbiol Infect 24:1019.e5–1019.e8. doi:10.1016/j.cmi.2018.02.018. PubMed DOI PMC
Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, Wittum TE. 2017. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 61:e01298-16. doi:10.1128/AAC.01298-16. PubMed DOI PMC
Clinical and Laboratory Standards Institute. 2017. Performance standards for antimicrobial susceptibility testing—27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.
Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088-17. doi:10.1128/CMR.00088-17. PubMed DOI PMC
Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. 2014. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686–696. doi:10.1016/j.tim.2014.09.003. PubMed DOI PMC
Naas T, Cuzon G, Truong H-V, Nordmann P. 2012. Role of ISKpn7 and deletions in blaKPC gene expression. Antimicrob Agents Chemother 56:4753–4759. doi:10.1128/AAC.00334-12. PubMed DOI PMC
DeLeo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, Chavda KD, Jacobs MR, Mathema B, Olsen RJ, Bonomo RA, Musser JM, Kreiswirth BN. 2014. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A 111:4988–4993. doi:10.1073/pnas.1321364111. PubMed DOI PMC
Boyd DA, Mataseje LF, Davidson R, Delport JA, Fuller J, Hoang L, Lefebvre B, Levett PN, Roscoe DL, Willey BM, Mulvey MR. 2017. Enterobacter cloacae complex isolates harboring blaNMC-A or blaIMI-type class A carbapenemase genes on novel chromosomal integrative elements and plasmids. Antimicrob Agents Chemother 61:e02578-16. doi:10.1128/AAC.02578-16. PubMed DOI PMC
Antonelli A, D'Andrea MM, Di Pilato V, Viaggi B, Torricelli F, Rossolini GM. 2015. Characterization of a novel putative Xer-dependent integrative mobile element carrying the blaNMC-A carbapenemase gene, inserted into the chromosome of members of the Enterobacter cloacae complex. Antimicrob Agents Chemother 59:6620–6624. doi:10.1128/AAC.01452-15. PubMed DOI PMC
Koh TH, Rahman NBA, Teo JWP, La M-V, Periaswamy B, Chen SL. 2017. Putative integrative mobile elements that exploit the Xer recombination machinery carrying blaIMI-type carbapenemase genes in Enterobacter cloacae complex isolates in Singapore. Antimicrob Agents Chemother 62:e01542-17. doi:10.1128/AAC.01542-17. PubMed DOI PMC
Miltgen G, Bonnin RA, Avril C, Benoit-Cattin T, Martak D, Leclaire A, Traversier N, Roquebert B, Jaffar-Bandjee MC, Lugagne N, Filleul L, Subiros M, de Montera A-M, Cholley P, Thouverez M, Dortet L, Bertrand X, Naas T, Hocquet D, Belmonte O. 2018. Outbreak of IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean). Int J Antimicrob Agents 52:416–420. doi:10.1016/j.ijantimicag.2018.05.015. PubMed DOI
Brouwer MSM, Rapallini M, Geurts Y, Harders F, Bossers A, Mevius DJ, Wit B, Veldman KT. 2018. Enterobacter cloacae complex isolated from shrimps from Vietnam carrying blaIMI-1 resistant to carbapenems but not cephalosporins. Antimicrob Agents Chemother 62:e00398-18. doi:10.1128/AAC.00398-18. PubMed DOI PMC
Sugawara Y, Hagiya H, Akeda Y, Aye MM, Win HPM, Sakamoto N, Shanmugakani RK, Takeuchi D, Nishi I, Ueda A, Htun MM, Tomono K, Hamada S. 2019. Dissemination of carbapenemase-producing Enterobacteriaceae harbouring blaNDM or blaIMI in local market foods of Yangon, Myanmar. Sci Rep 9:14455. doi:10.1038/s41598-019-51002-5. PubMed DOI PMC