Carbapenemase-Producing Gram-Negative Bacteria from American Crows in the United States

. 2020 Dec 16 ; 65 (1) : . [epub] 20201216

Jazyk angličtina Země Spojené státy americké Médium electronic-print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid33139274

Wild corvids were examined for the presence of carbapenemase-producing Gram-negative bacteria in the United States. A total of 13 isolates were detected among 590 fecal samples of American crow; 11 Providencia rettgeri isolates harboring blaIMP-27 on the chromosome as a class 2 integron gene cassette within the Tn7 transposon, 1 Klebsiella pneumoniae ST258 isolate carrying blaKPC-2 on a pKpQIL-like plasmid as a part of Tn4401a, and 1 Enterobacter bugandensis isolate with blaIMI-1 located within EcloIMEX-2.

Zobrazit více v PubMed

Nordmann P, Poirel L. 2019. Epidemiology and diagnostics of carbapenem resistance in Gram-negative bacteria. Clin Infect Dis 69:S521–S528. doi:10.1093/cid/ciz824. PubMed DOI PMC

Köck R, Daniels-Haardt I, Becker K, Mellmann A, Friedrich AW, Mevius D, Schwarz S, Jurke A. 2018. Carbapenem-resistant Enterobacteriaceae in wildlife, food-producing, and companion animals: a systematic review. Clin Microbiol Infect 24:1241–1250. doi:10.1016/j.cmi.2018.04.004. PubMed DOI

Logan LK, Weinstein RA. 2017. The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 215:S28–S36. doi:10.1093/infdis/jiw282. PubMed DOI PMC

Jamborova I, Dolejska M, Zurek L, Townsend AK, Clark AB, Ellis JC, Papousek I, Cizek A, Literak I. 2017. Plasmid-mediated resistance to cephalosporins and quinolones in Escherichia coli from American crows in the USA. Environ Microbiol 19:2025–2036. doi:10.1111/1462-2920.13722. PubMed DOI

Poirel L, Walsh TR, Cuvillier V, Nordmann P. 2011. Multiplex PCR for detection of acquired carbapenemase genes. Diagn Microbiol Infect Dis 70:119–123. doi:10.1016/j.diagmicrobio.2010.12.002. PubMed DOI

Aubron C, Poirel L, Ash RJ, Nordmann P. 2005. Carbapenemase-producing Enterobacteriaceae, U.S. rivers. Emerg Infect Dis 11:260–264. doi:10.3201/eid1102.030684. PubMed DOI PMC

Rotova V, Papagiannitsis CC, Skalova A, Chudejova K, Hrabak J. 2017. Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J Microbiol Methods 137:30–33. doi:10.1016/j.mimet.2017.04.003. PubMed DOI

European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID). 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin Microbiol Infect 9:ix–xv. doi:10.1046/j.1469-0691.2003.00790.x. PubMed DOI

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics 30:2114–2120. doi:10.1093/bioinformatics/btu170. PubMed DOI PMC

Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Prjibelski AD, Pyshkin AV, Sirotkin AV, Vyahhi N, Tesler G, Alekseyev MA, Pevzner PA. 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19:455–477. doi:10.1089/cmb.2012.0021. PubMed DOI PMC

Zankari E, Hasman H, Cosentino S, Vestergaard M, Rasmussen S, Lund O, Aarestrup FM, Larsen MV. 2012. Identification of acquired antimicrobial resistance genes. J Antimicrob Chemother 67:2640–2644. doi:10.1093/jac/dks261. PubMed DOI PMC

Carattoli A, Zankari E, García-Fernández A, Voldby Larsen M, Lund O, Villa L, Møller Aarestrup F, Hasman H. 2014. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother 58:3895–3903. doi:10.1128/AAC.02412-14. PubMed DOI PMC

Larsen MV, Cosentino S, Rasmussen S, Friis C, Hasman H, Marvig RL, Jelsbak L, Sicheritz-Pontén T, Ussery DW, Aarestrup FM, Lund O. 2012. Multilocus sequence typing of total-genome-sequenced bacteria. J Clin Microbiol 50:1355–1361. doi:10.1128/JCM.06094-11. PubMed DOI PMC

Sullivan MJ, Petty NK, Beatson SA. 2011. Easyfig: a genome comparison visualizer. Bioinformatics 27:1009–1010. doi:10.1093/bioinformatics/btr039. PubMed DOI PMC

Seemann T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30:2068–2069. doi:10.1093/bioinformatics/btu153. PubMed DOI

Page AJ, Cummins CA, Hunt M, Wong VK, Reuter S, Holden MTG, Fookes M, Falush D, Keane JA, Parkhill J. 2015. Roary: rapid large-scale prokaryote pan genome analysis. Bioinformatics 31:3691–3693. doi:10.1093/bioinformatics/btv421. PubMed DOI PMC

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30:1312–1313. doi:10.1093/bioinformatics/btu033. PubMed DOI PMC

Letunic I, Bork P. 2019. Interactive Tree Of Life (iTOL) v4: recent updates and new developments. Nucleic Acids Res 47:W256–W259. doi:10.1093/nar/gkz239. PubMed DOI PMC

Zhou Z, Alikhan N-F, Sergeant MJ, Luhmann N, Vaz C, Francisco AP, Carriço JA, Achtman M. 2018. GrapeTree: visualization of core genomic relationships among 100,000 bacterial pathogens. Genome Res 28:1395–1404. doi:10.1101/gr.232397.117. PubMed DOI PMC

Dolejska M, Masarikova M, Dobiasova H, Jamborova I, Karpiskova R, Havlicek M, Carlile N, Priddel D, Cizek A, Literak I. 2016. High prevalence of Salmonella and IMP-4-producing Enterobacteriaceae in the silver gull on Five Islands, Australia. J Antimicrob Chemother 71:63–70. doi:10.1093/jac/dkv306. PubMed DOI PMC

Paskova V, Medvecky M, Skalova A, Chudejova K, Bitar I, Jakubu V, Bergerova T, Zemlickova H, Papagiannitsis CC, Hrabak J. 2018. Characterization of NDM-encoding plasmids from Enterobacteriaceae recovered from Czech hospitals. Front Microbiol 9:1549. doi:10.3389/fmicb.2018.01549. PubMed DOI PMC

Dixon N, Fowler RC, Yoshizumi A, Horiyama T, Ishii Y, Harrison L, Geyer CN, Moland ES, Thomson K, Hanson D. 2016. IMP-27, a unique metallo-β- lactamase identified in geographically distinct isolates of Proteus mirabilis. Antimicrob Agents Chemother 60:6418–6421. doi:10.1128/AAC.02945-15. PubMed DOI PMC

Potter RF, Wallace MA, McMullen AR, Prusa J, Stallings CL, Burnham CAD, Dantas G. 2018. blaIMP-27 on transferable plasmids in Proteus mirabilis and Providencia rettgeri. Clin Microbiol Infect 24:1019.e5–1019.e8. doi:10.1016/j.cmi.2018.02.018. PubMed DOI PMC

Mollenkopf DF, Stull JW, Mathys DA, Bowman AS, Feicht SM, Grooters SV, Daniels JB, Wittum TE. 2017. Carbapenemase-producing Enterobacteriaceae recovered from the environment of a swine farrow-to-finish operation in the United States. Antimicrob Agents Chemother 61:e01298-16. doi:10.1128/AAC.01298-16. PubMed DOI PMC

Clinical and Laboratory Standards Institute. 2017. Performance standards for antimicrobial susceptibility testing—27th ed. CLSI supplement M100. Clinical and Laboratory Standards Institute, Wayne, PA.

Partridge SR, Kwong SM, Firth N, Jensen SO. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin Microbiol Rev 31:e00088-17. doi:10.1128/CMR.00088-17. PubMed DOI PMC

Chen L, Mathema B, Chavda KD, DeLeo FR, Bonomo RA, Kreiswirth BN. 2014. Carbapenemase-producing Klebsiella pneumoniae: molecular and genetic decoding. Trends Microbiol 22:686–696. doi:10.1016/j.tim.2014.09.003. PubMed DOI PMC

Naas T, Cuzon G, Truong H-V, Nordmann P. 2012. Role of ISKpn7 and deletions in blaKPC gene expression. Antimicrob Agents Chemother 56:4753–4759. doi:10.1128/AAC.00334-12. PubMed DOI PMC

DeLeo FR, Chen L, Porcella SF, Martens CA, Kobayashi SD, Porter AR, Chavda KD, Jacobs MR, Mathema B, Olsen RJ, Bonomo RA, Musser JM, Kreiswirth BN. 2014. Molecular dissection of the evolution of carbapenem-resistant multilocus sequence type 258 Klebsiella pneumoniae. Proc Natl Acad Sci U S A 111:4988–4993. doi:10.1073/pnas.1321364111. PubMed DOI PMC

Boyd DA, Mataseje LF, Davidson R, Delport JA, Fuller J, Hoang L, Lefebvre B, Levett PN, Roscoe DL, Willey BM, Mulvey MR. 2017. Enterobacter cloacae complex isolates harboring blaNMC-A or blaIMI-type class A carbapenemase genes on novel chromosomal integrative elements and plasmids. Antimicrob Agents Chemother 61:e02578-16. doi:10.1128/AAC.02578-16. PubMed DOI PMC

Antonelli A, D'Andrea MM, Di Pilato V, Viaggi B, Torricelli F, Rossolini GM. 2015. Characterization of a novel putative Xer-dependent integrative mobile element carrying the blaNMC-A carbapenemase gene, inserted into the chromosome of members of the Enterobacter cloacae complex. Antimicrob Agents Chemother 59:6620–6624. doi:10.1128/AAC.01452-15. PubMed DOI PMC

Koh TH, Rahman NBA, Teo JWP, La M-V, Periaswamy B, Chen SL. 2017. Putative integrative mobile elements that exploit the Xer recombination machinery carrying blaIMI-type carbapenemase genes in Enterobacter cloacae complex isolates in Singapore. Antimicrob Agents Chemother 62:e01542-17. doi:10.1128/AAC.01542-17. PubMed DOI PMC

Miltgen G, Bonnin RA, Avril C, Benoit-Cattin T, Martak D, Leclaire A, Traversier N, Roquebert B, Jaffar-Bandjee MC, Lugagne N, Filleul L, Subiros M, de Montera A-M, Cholley P, Thouverez M, Dortet L, Bertrand X, Naas T, Hocquet D, Belmonte O. 2018. Outbreak of IMI-1 carbapenemase-producing colistin-resistant Enterobacter cloacae on the French island of Mayotte (Indian Ocean). Int J Antimicrob Agents 52:416–420. doi:10.1016/j.ijantimicag.2018.05.015. PubMed DOI

Brouwer MSM, Rapallini M, Geurts Y, Harders F, Bossers A, Mevius DJ, Wit B, Veldman KT. 2018. Enterobacter cloacae complex isolated from shrimps from Vietnam carrying blaIMI-1 resistant to carbapenems but not cephalosporins. Antimicrob Agents Chemother 62:e00398-18. doi:10.1128/AAC.00398-18. PubMed DOI PMC

Sugawara Y, Hagiya H, Akeda Y, Aye MM, Win HPM, Sakamoto N, Shanmugakani RK, Takeuchi D, Nishi I, Ueda A, Htun MM, Tomono K, Hamada S. 2019. Dissemination of carbapenemase-producing Enterobacteriaceae harbouring blaNDM or blaIMI in local market foods of Yangon, Myanmar. Sci Rep 9:14455. doi:10.1038/s41598-019-51002-5. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...