Characterization of NDM-Encoding Plasmids From Enterobacteriaceae Recovered From Czech Hospitals
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
30042758
PubMed Central
PMC6048247
DOI
10.3389/fmicb.2018.01549
Knihovny.cz E-zdroje
- Klíčová slova
- Enterobacter xiangfangensis, IncX3, NDM, ST182, metallo-β-lactamases,
- Publikační typ
- časopisecké články MeSH
The aim of the present study was to characterize sporadic cases and an outbreak of NDM-like-producing Enterobacteriaceae recovered from hospital settings, in Czechia. During 2016, 18 Entrobacteriaceae isolates including 10 Enterobacter cloacae complex (9 E. xiangfangensis and 1 E. asburiae), 4 Escherichia coli, 1 Kluyvera intermedia, 1 Klebsiella pneumoniae, 1 Klebsiella oxytoca, and 1 Raoultella ornithinolytica that produced NDM-like carbapenemases were isolated from 15 patients. Three of the patients were colonized or infected by two different NDM-like producers. Moreover, an NDM-4-producing isolate of E. cloacae complex, isolated in 2012, was studied for comparative purposes. All isolates of E. cloacae complex, except the E. asburiae, recovered from the same hospital, were assigned to ST182. Additionally, two E. coli belonged to ST167, while the remaining isolates were not clonally related. Thirteen isolates carried blaNDM-4, while six isolates carried blaNDM-1 (n = 3) or blaNDM-5 (n = 3). Almost all isolates carried blaNDM-like-carrying plasmids being positive for the IncX3 allele, except ST58 E. coli and ST14 K. pneumoniae isolates producing NDM-1. Analysis of plasmid sequences revealed that all IncX3 blaNDM-like-carrying plasmids exhibited a high similarity to each other and to previously described plasmids, like pNDM-QD28, reported from worldwide. However, NDM-4-encoding plasmids differed from other IncX3 plasmids by the insertion of a Tn3-like transposon. On the other hand, the ST58 E. coli and ST14 K. pneumoniae isolates carried two novel NDM-1-encoding plasmids, pKpn-35963cz, and pEsco-36073cz. Plasmid pKpn-35963cz that was an IncFIB(K) molecule contained an acquired sequence, encoding NDM-1 metallo-β-lactamase (MβL), which exhibited high similarity to the mosaic region of pS-3002cz from an ST11 K. pneumoniae from Czechia. Finally, pEsco-36073cz was a multireplicon A/C2+R NDM-1-encoding plasmid. Similar to other type 1 A/C2 plasmids, the blaNDM-1 gene was located within the ARI-A resistance island. These findings underlined that IncX3 plasmids have played a major role in the dissemination of blaNDM-like genes in Czech hospitals. In combination with further evolvement of NDM-like-encoding MDR plasmids through reshuffling, NDM-like producers pose an important public threat.
Faculty of Medicine Biomedical Center Charles University Plzen Czechia
Faculty of Science National Centre for Biomolecular Research Masaryk University Brno Czechia
National Reference Laboratory for Antibiotics National Institute of Public Health Prague Czechia
Zobrazit více v PubMed
Bankevich A., Nurk S., Antipov D., Gurevich A. A., Dvorkin M., Kulikov A. S., et al. . (2012). SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comp. Biol. 19,455–477. 10.1089/cmb.2012.0021 PubMed DOI PMC
Barton B. M., Harding G. P., Zuccarelli A. J. (1995). A general method for detecting and sizing large plasmids. Anal. Biochem. 226, 235–240. 10.1006/abio.1995.1220 PubMed DOI
Bocanegra-Ibarias P., Garza-González E., Morfín-Otero R., Barrios H., Villarreal-Treviño L., Rodríguez-Noriega E., et al. . (2017). Molecular and microbiological report of a hospital outbreak of NDM-1-carrying Enterobacteriaceae in Mexico. PLoS ONE 12:e0179651. 10.1371/journal.pone.0179651 PubMed DOI PMC
Bolger A. M., Lohse M., Usadel B. (2014). Trimmomatic: a flexible trimmer for illumina sequence data. Bioinformatics 30, 2114–2120. 10.1093/bioinformatics/btu170 PubMed DOI PMC
Carattoli A., Bertini A., Villa L., Falbo V., Hopkins K. L., Threlfall E. J. (2005). Identification of plasmids by PCR-based replicon typing. J. Microbiol. Methods 63, 219–228. 10.1016/j.mimet.2005.03.018 PubMed DOI
Cohen S. N., Chang A. C. Y., Hsu L. (1972). Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U.S.A. 69, 2110–2114. 10.1073/pnas.69.8.2110 PubMed DOI PMC
Conlan S., Thomas P. J., Deming C., Park M., Lau A. F., Dekker J. P., et al. . (2014). Single-molecule sequencing to track plasmid diversity of hospital-associated carbapenemase-producing Enterobacteriaceae. Sci. Transl. Med. 6:254ra126. 10.1126/scitranslmed.3009845 PubMed DOI PMC
Coque T. M., Novais A., Carattoli A., Poirel L., Pitout J., Peixe L., et al. . (2008). Dissemination of clonally related Escherichia coli strains expressing extended-spectrum β-lactamase CTX-M-15. Emerging Infect. Dis. 14, 195–200. 10.3201/eid1402.070350 PubMed DOI PMC
Darling A. E., Mau B., Perna N. T. (2010). Progressivemauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS ONE 5:e11147. 10.1371/journal.pone.0011147 PubMed DOI PMC
Diancourt L., Passet V., Verhoef J., Grimont P. A., Brisse S. (2005). Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J. Clin. Microbiol. 43, 4178–4182. 10.1128/JCM.43.8.4178-4182.2005 PubMed DOI PMC
Doi Y., Potoski B. A., Adams-Haduch J. M., Sidjabat H. E., Pasculle A. W., Paterson D. L. (2008). Simple disk-based method for detection of Klebsiella pneumoniae carbapenemase-type beta-lactamase by use of a boronic acid compound. J. Clin. Microbiol. 46, 4083–4086. 10.1128/JCM.01408-08 PubMed DOI PMC
Ellington M. J., Kistler J., Livermore D. M., Woodford N. (2007). Multiplex PCR for rapid detection of genes encoding acquired metallo-β-lactamases. J. Antimicrob. Chemother. 59, 321–322. 10.1093/jac/dkl481 PubMed DOI
EUCAST (2003). European Committee on Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID), (2003). Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 9, ix–xv. 10.1046/j.1469-0691.2003.00790.x PubMed DOI
EUCAST (European Committee on Antimicrobial Susceptibility Testing) (2012). EUCAST Guidelines for Detection of Resistance Mechanism and Specific Resistances of Clinical and/or Epidemiological Importance. Växjö: European Committee on Antimicrobial Susceptibility Testing. Available online at: http://www.eucast.org/fileadmin/src/media/PDFs/EUCAST_files/Consultation/EUCAST_guidelines_detection_of_resistance_mechanisms_121222.pdf
García-Fernández A., Fortini D., Veldman K., Mevius D., Carattoli A. (2009). Characterization of plasmids harbouring qnrS1, qnrB2 and qnrB19 genes in Salmonella. J. Antimicrob. Chemother. 63, 274–281. 10.1093/jac/dkn470 PubMed DOI
Glupczynski Y., Huang T. D., Bouchahrouf W., Rezende de Castro R., Bauraing C., Gérard M., et al. . (2012). Rapid emergence and spread of OXA-48-producing carbapenem-resistant Enterobacteriaceae isolates in Belgian hospitals. Int. J. Antimicrob. Agents 39, 168–172. 10.1016/j.ijantimicag.2011.10.005 PubMed DOI
Gu C. T., Li C. Y., Yang L. J., Huo G. C. (2014). Enterobacter xiangfangensis sp. nov., isolated from Chinese traditional sourdough, and reclassification of Enterobacter sacchari Zhu et al. 2013 as Kosakonia sacchari comb. nov. Int. J. Syst. Evol. Microbiol. 64, 2650–2656. 10.1099/ijs.0.064709-0 PubMed DOI
Gurevich A., Saveliev V., Vyahhi N., Tesler G. (2013). QUAST: quality assessment tool for genome assemblies. Bioinformatics 29, 1072–1075. 10.1093/bioinformatics/btt086 PubMed DOI PMC
Hancock S. J., Phan M. D., Peters K. M., Forde B. M., Chong T. M., Yin W. F., et al. . (2017). Identification of IncA/C plasmid replication and maintenance genes and development of a plasmid multilocus sequence typing scheme. Antimicrob. Agents Chemother. 61, e01740–e01816. 10.1128/AAC.01740-16 PubMed DOI PMC
Harmer C. J., Hall R. M. (2015). The A to Z of A/C plasmids. Plasmid 80, 63–82. 10.1016/j.plasmid.2015.04.003 PubMed DOI
Herzog K. A., Schneditz G., Leitner E., Feierl G., Hoffmann K. M., Zollner-Schwetz I., et al. . (2014). Genotypes of Klebsiella oxytoca isolates from patients with nosocomial pneumonia are distinct from those of isolates from patients with antibiotic-associated hemorrhagic colitis. J. Clin. Microbiol. 52, 1607–1616. 10.1128/JCM.03373-13 PubMed DOI PMC
Hoffmann H., Roggenkamp A. (2003). Population genetics of the nomenspecies Enterobacter cloacae. Appl. Environ. Microbiol. 69, 5306–5318. 10.1128/AEM.69.9.5306-5318.2003 PubMed DOI PMC
Hornsey M., Phee L., Wareham D. W. (2011). A novel variant, NDM-5, of the New Delhi metallo-β-lactamase in a multidrug-resistant Escherichia coli ST648 isolate recovered from a patient in the United Kingdom. Antimicrob. Agents Chemother. 55, 5952–5954. 10.1128/AAC.05108-11 PubMed DOI PMC
Hrabak J., Stolbová M., Studentová V., Fridrichová M., Chudacková E., Zemlickova H. (2012). NDM-1 producing Acinetobacter baumannii isolated from a patient repatriated to the Czech Republic from Egypt, July 2011. Euro Surveill. 17:20085. PubMed
Izdebski R., Fiett J., Urbanowicz P., Baraniak A., Derde L. P., Bonten M. J., et al. . (2015). Phylogenetic lineages, clones and β-lactamases in an international collection of Klebsiella oxytoca isolates non-susceptible to expanded-spectrum cephalosporins. J. Antimicrob. Chemother. 70, 3230–3237. 10.1093/jac/dkv273 PubMed DOI
Johnson T. J., Bielak E. M., Fortini D., Hansen L. H., Hasman H., Debroy C., et al. . (2012). Expansion of the IncX plasmid family for improved identification and typing of novel plasmids in drug-resistant Enterobacteriaceae. Plasmid 68, 43–50. 10.1016/j.plasmid.2012.03.001 PubMed DOI
Koboldt D. C., Zhang Q., Larson D. E., Shen D., McLellan M. D., Lin L., et al. . (2012). VarScan 2: somatic mutation and copy number alteration discovery in cancer by exome sequencing. Genome Res. 22, 568–576. 10.1101/gr.129684.111 PubMed DOI PMC
Krishnaraju M., Kamatchi C., Jha A. K., Devasena N., Vennila R., Sumathi G., et al. . (2015). Complete sequencing of an IncX3 plasmid carrying blaNDM−5 allele reveals an early stage in the dissemination of the blaNDM gene. Indian J. Med. Microbiol. 33, 30–38. 10.4103/0255-0857.148373 PubMed DOI
Lee K., Lim Y. S., Yong D., Yum J. H., Chong Y. (2003). Evaluation of the Hodge test and the imipenem-EDTA double-disk synergy test for differentiating metallo-β-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J. Clin. Microbiol. 41, 4623–4629. 10.1128/JCM.41.10.4623-4629.2003 PubMed DOI PMC
Li H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. ArXiv. e-Prints 1303, 3997.
Li H., Handsaker B., Wysoker A., Fennell T., Ruan J., Homer N., et al. . (2009). The sequence alignment/map format and SAMtools. Bioinformatics 25, 2078–2079. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Marchler-Bauer A., Bo Y., Han L., He J., Lanczycki C. J., Lu S., et al. . (2017). CDD/SPARCLE: functional classification of proteins via subfamily domain architectures. Nucl. Acids Res. 45, D200–D203. 10.1093/nar/gkw1129 PubMed DOI PMC
Marchler-Bauer A., Bryant S. H. (2004). CD-Search: protein domain annotations on the fly. Nucleic Acids Res. 32, W327–W331. 10.1093/nar/gkh454 PubMed DOI PMC
Mikheenko A., Valin G., Prjibelski A., Saveliev V., Gurevich A. (2016). Icarus: visualizer for de novo assembly evaluation. Bioinformatics 32, 3321–3323. 10.1093/bioinformatics/btw379 PubMed DOI
Milne I., Stephen G., Bayer M., Cock P. J. A., Pritchard L., Cardle L., et al. . (2013). Using Tablet for visual exploration of second-generation sequencing data. Brief. Bioinformatics 14, 193–202. 10.1093/bib/bbs012 PubMed DOI
Miyoshi-Akiyama T., Hayakawa K., Ohmagari N., Shimojima M., Kirikae T. (2013). Multilocus sequence typing (MLST) for characterization of Enterobacter cloacae. PLoS ONE 8:e66358. 10.1371/journal.pone.0066358 PubMed DOI PMC
Naas T., Cuzon G., Villegas M. V., Lartigue M. F., Quinn J. P., Nordmann P. (2008). Genetic structure at the origin of acquisition of the beta-lactamase blaKPC gene. Antimicrob. Agents Chemother. 52, 1257–1263. 10.1128/AAC.01451-07 PubMed DOI PMC
Nordmann P., Boulanger A. E., Poirel L. (2012). NDM-4 metallo-β-lactamase with increased carbapenemase activity from Escherichia coli. Antimicrob. Agents Chemother. 56, 2184–2186. 10.1128/AAC.05961-11 PubMed DOI PMC
Nordmann P., Poirel L., Walsh T. R., Livermore D. M. (2011). The emerging NDM carbapenemases. Trends Microbiol. 19, 588–595. 10.1016/j.tim.2011.09.005 PubMed DOI
Pál T., Ghazawi A., Darwish D., Villa L., Carattoli A., Hashmey R., et al. . (2017). Characterization of NDM-7 carbapenemase-producing Escherichia coli isolates in the Arabian Peninsula. Microb. Drug Resist. 23, 871–878. 10.1089/mdr.2016.0216 PubMed DOI
Pałucha A., Mikiewicz B., Hryniewicz W., Gniadkowski M. (1999). Concurrent outbreaks of extended-spectrum beta-lactamase-producing organisms of the family Enterobacteriaceae in a Warsaw hospital. J. Antimicrob. Chemother. 44, 489–499. 10.1093/jac/44.4.489 PubMed DOI
Papagiannitsis C. C., Dolejska M., Izdebski R., Giakkoupi P., Skalova A., Chudejova K., et al. . (2016). Characterisation of IncA/C2 plasmids carrying an In416-like integron with the blaVIM−19 gene from Klebsiella pneumoniae ST383 of Greek origin. Int. J. Antimicrob. Agents 47, 158–162. 10.1016/j.ijantimicag.2015.12.001 PubMed DOI
Papagiannitsis C. C., Miriagou V., Giakkoupi P., Tzouvelekis L. S., Vatopoulos A. C. (2013a). Characterization of pKP1780, a novel IncR plasmid from the emerging Klebsiella pneumoniae ST147, encoding the VIM-1 metallo-β-lactamase. J. Antimicrob. Chemother. 68, 2259–2262. 10.1093/jac/dkt196 PubMed DOI
Papagiannitsis C. C., Studentova V., Chudackova E., Bergerova T., Hrabak J., Radej J., et al. . (2013b). Identification of a New Delhi metallo-β-lactamase-4 (NDM-4)-producing Enterobacter cloacae from a Czech patient previously hospitalized in Sri Lanka. Folia Microbiol. 58, 547–549. 10.1007/s12223-013-0247-5 PubMed DOI
Papagiannitsis C. C., Studentova V., Jakubu V., Spanelova P., Urbaskova P., Zemlickova H., et al. . (2015). High prevalence of ST131 among CTX-M-producing Escherichia coli from community-acquired infections, in the Czech Republic. Microb. Drug Resist. 21, 74–84. 10.1089/mdr.2014.0070 PubMed DOI
Pavan M. E., Franco R. J., Rodriguez J. M., Gadaleta P., Abbott S. L., Janda J. M., et al. . (2005). Phylogenetic relationships of the genus Kluyvera: transfer of Enterobacter intermedius Izard et al. 1980 to the genus Kluyvera as Kluyvera intermedia comb. nov. and reclassification of Kluyvera cochleae as a later synonym of K. intermedia. Int. J. Syst. Evol. Microbiol. 55, 437–442. 10.1099/ijs.0.63071-0 PubMed DOI
Pérez-Pérez F. J., Hanson N. D. (2002). Detection of plasmid-mediated AmpC beta-lactamase genes in clinical isolates by using multiplex PCR. J. Clin. Microbiol. 40, 2153–2162. 10.1128/JCM.40.6.2153-2162.2002 PubMed DOI PMC
Poirel L., Heritier C., Tolun V., Nordmann P. (2004). Emergence of oxacillinase-mediated resistance to imipenem in Klebsiella pneumoniae. Antimicrob. Agents Chemother. 48, 15–22. 10.1128/AAC.48.1.15-22.2004 PubMed DOI PMC
Rotova V., Papagiannitsis C. C., Skalova A., Chudejova K., Hrabak J. (2017). Comparison of imipenem and meropenem antibiotics for the MALDI-TOF MS detection of carbapenemase activity. J. Microbiol. Methods 137, 30–33. 10.1016/j.mimet.2017.04.003 PubMed DOI
Seemann T. (2014). Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069. 10.1093/bioinformatics/btu153 PubMed DOI
Studentova V., Dobiasova H., Hedlova D., Dolejska M., Papagiannitsis C. C., Hrabak J. (2015). Complete nucleotide sequences of two NDM-1-encoding plasmids from the same sequence type 11 Klebsiella pneumoniae strain. Antimicrob. Agents Chemother. 59, 1325–1328. 10.1128/AAC.04095-14 PubMed DOI PMC
Torres-González P., Bobadilla-Del Valle M., Tovar-Calderón E., Leal-Vega F., Hernández-Cruz A., Martínez-Gamboa A., et al. . (2015). Outbreak caused by Enterobacteriaceae harboring NDM-1 metallo-β-lactamase carried in an IncFII plasmid in a tertiary care hospital in Mexico City. Antimicrob. Agents Chemother. 59, 7080–7083. 10.1128/AAC.00055-15 PubMed DOI PMC
Vatopoulos A. C., Philippon A., Tzouvelekis L. S., Komninou Z., Legakis N. J. (1990). Prevalence of a transferable SHV-5 type beta-lactamase in clinical isolates of Klebsiella pneumoniae and Escherichia coli in Greece. J. Antimicrob. Chemother. 26, 635–648. 10.1093/jac/26.5.635 PubMed DOI
Villa L., Guerra B., Schmoger S., Fischer J., Helmuth R., Zong Z., et al. (2015). IncA/C plasmid carrying blaNDM−1, blaCMY−16, and fosA3 in a Salmonella enterica serovar corvallis strain isolated from a migratory wild bird in Germany. Antimicrob. Agents Chemother. 59, 6597–6600. 10.1128/AAC.00944-15 PubMed DOI PMC
Wirth T., Falush D., Lan R., Colles F., Mensa P., Wieler L. H., et al. . (2006). Sex and virulence in Escherichia coli: an evolutionary perspective. Mol. Microbiol. 60, 1136–1151. 10.1111/j.1365-2958.2006.05172.x PubMed DOI PMC
Woodford N., Fagan E. J., Ellington M. J. (2006). Multiplex PCR for rapid detection of genes encoding CTX-M extended-spectrum (beta)-lactamases. J. Antimicrob. Chemother. 57, 154–155. 10.1093/jac/dki412 PubMed DOI
Woodford N., Turton J. F., Livermore D. M. (2011). Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol. Rev. 35, 736–755. 10.1111/j.1574-6976.2011.00268.x PubMed DOI
Yang P., Xie Y., Feng P., Zong Z. (2014). blaNDM−5 carried by an IncX3 plasmid in Escherichia coli sequence type 167. Antimicrob. Agents Chemother. 58, 7548–7552. 10.1128/AAC.03911-14 PubMed DOI PMC
Yong D., Toleman M. A., Giske C. G., Cho H. S., Sundman K., Lee K., et al. (2009). Characterization of a new metallo-β-lactamase gene, blaNDM−1, and a novel erythromycin esterase gene carried on a unique genetic structure in Klebsiella pneumoniae sequence type 14 from India. Antimicrob. Agents Chemother. 53, 5046–5054. 10.1128/AAC.00774-09 PubMed DOI PMC
Zankari E., Hasman H., Cosentino S., Vestergaard M., Rasmussen S., Lund O., et al. . (2012). Identification of acquired antimicrobial resistance genes. J. Antimicrob. Chemother. 67, 2640–2644. 10.1093/jac/dks261 PubMed DOI PMC
Zhang L. P., Xue W. C., Meng D. Y. (2016). First report of New Delhi metallo-β-lactamase 5 (NDM-5)-producing Escherichia coli from blood cultures of three leukemia patients. Int. J. Infect. Dis. 42, 45–46. 10.1016/j.ijid.2015.10.006 PubMed DOI
Zhou Y., Liang Y., Lynch K., Dennis J. J., Wishart D. S. (2011). PHAST: a fast phage search tool. Nucleic Acids Res. 39, W347–W352. 10.1093/nar/gkr485 PubMed DOI PMC
Zhu Y. Q., Zhao J. Y., Xu C., Zhao H., Jia N., Li Y. N. (2016). Identification of an NDM-5-producing Escherichia coli sequence type 167 in a neonatal patient in China. Sci. Rep. 6:29934. 10.1038/srep29934 PubMed DOI PMC
Carbapenemase-Producing Gram-Negative Bacteria from American Crows in the United States