Histidine kinase inhibitors impair shoot regeneration in Arabidopsis thaliana via cytokinin signaling and SAM patterning determinants
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
36684719
PubMed Central
PMC9847488
DOI
10.3389/fpls.2022.894208
Knihovny.cz E-zdroje
- Klíčová slova
- cytokinin signaling, kinase inhibitors, organogenesis, phosphoproteomics, shoot regeneration,
- Publikační typ
- časopisecké články MeSH
Reversible protein phosphorylation is a post-translational modification involved in virtually all plant processes, as it mediates protein activity and signal transduction. Here, we probe dynamic protein phosphorylation during de novo shoot organogenesis in Arabidopsis thaliana. We find that application of three kinase inhibitors in various time intervals has different effects on root explants. Short exposures to the putative histidine (His) kinase inhibitor TCSA during the initial days on shoot induction medium (SIM) are detrimental for regeneration in seven natural accessions. Investigation of cytokinin signaling mutants, as well as reporter lines for hormone responses and shoot markers, suggests that TCSA impedes cytokinin signal transduction via AHK3, AHK4, AHP3, and AHP5. A mass spectrometry-based phosphoproteome analysis further reveals profound deregulation of Ser/Thr/Tyr phosphoproteins regulating protein modification, transcription, vesicle trafficking, organ morphogenesis, and cation transport. Among TCSA-responsive factors are prior candidates with a role in shoot apical meristem patterning, such as AGO1, BAM1, PLL5, FIP37, TOP1ALPHA, and RBR1, as well as proteins involved in polar auxin transport (e.g., PIN1) and brassinosteroid signaling (e.g., BIN2). Putative novel regeneration determinants regulated by TCSA include RD2, AT1G52780, PVA11, and AVT1C, while NAIP2, OPS, ARR1, QKY, and aquaporins exhibit differential phospholevels on control SIM. LC-MS/MS data are available via ProteomeXchange with identifier PXD030754.
Biotechnology Research and Development Institute Can Tho University Can Tho Vietnam
Center for Plant Systems Biology VIB Ghent Belgium
Lab of Plant Growth Analysis Ghent University Global Campus Incheon South Korea
Zobrazit více v PubMed
Acheampong A. K., Shanks C., Cheng C. Y., Eric Schaller G., Dagdas Y., Kieber J. J. (2020). EXO70D isoforms mediate selective autophagic degradation of type-A ARR proteins to regulate cytokinin sensitivity. Proc. Natl. Acad. Sci. U. S. A. 117, 27034–27043. doi: 10.1073/PNAS.2013161117, PMID: PubMed DOI PMC
Albert E. V., Kavai-ool U. N., Ezhova T. A. (2015). Pleiotropic effect of the fas5 mutation on the shoot development of Arabidopsis thaliana. Russ. J. Dev. Biol. 461, 10–18. doi: 10.1134/S1062360415010038 PubMed DOI
Ashburner M., Ball C. A., Blake J. A., Botstein D., Butler H., Cherry J. M., et al. . (2000). Gene ontology: tool for the unification of biology. The gene ontology consortium. Nat. Genet. 25, 25–29. doi: 10.1038/75556, PMID: PubMed DOI PMC
Avraham S., Tung C.-W., Ilic K., Jaiswal P., Kellogg E. A., McCouch S., et al. . (2008). The plant ontology database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucleic Acids Res. 36, D449–D454. doi: 10.1093/nar/gkm908, PMID: PubMed DOI PMC
Barbez E., Kubeš M., Rolčík J., Béziat C., Pěnčík A., Wang B., et al. . (2012). A novel putative auxin carrier family regulates intracellular auxin homeostasis in plants. Nature 485, 119–122. doi: 10.1038/nature11001, PMID: PubMed DOI
Barbosa I. C. R., Hammes U. Z., Schwechheimer C. (2018). Activation and polarity control of PIN-FORMED Auxin transporters by phosphorylation. Trends Plant Sci. 23, 523–538. doi: 10.1016/J.TPLANTS.2018.03.009, PMID: PubMed DOI
Bell E. M., Lin W. C., Husbands A. Y., Yu L., Jaganatha V., Jablonska B., et al. . (2012). Arabidopsis lateral organ boundaries negatively regulates brassinosteroid accumulation to limit growth in organ boundaries. Proc. Natl. Acad. Sci. U. S. A. 109, 21146–21151. doi: 10.1073/pnas.1210789109, PMID: PubMed DOI PMC
Bentem S., Anrather D., Dohnal I., Roitinger E., Csaszar E., Joore J., et al. . (2008). Site-specific phosphorylation profiling of Arabidopsis proteins by mass spectrometry and peptide Chip analysis. J. Proteome Res. 7, 2458–2470. doi: 10.1021/PR8000173, PMID: PubMed DOI
Bindea G., Galon J., Mlecnik B. (2013). CluePedia Cytoscape plugin: pathway insights using integrated experimental and in silico data. Bioinformatics 29, 661–663. doi: 10.1093/bioinformatics/btt019, PMID: PubMed DOI PMC
Bindea G., Mlecnik B., Hackl H., Charoentong P., Tosolini M., Kirilovsky A., et al. . (2009). Clue GO: a Cytoscape plug-in to decipher functionally grouped gene ontology and pathway annotation networks. Bioinformatics 25, 1091–1093. doi: 10.1093/bioinformatics/btp101, PMID: PubMed DOI PMC
Blackwell H. E., Zhao Y. (2003). Chemical genetic approaches to plant biology. Plant Physiol. 133, 448–455. doi: 10.1104/pp.103.031138, PMID: PubMed DOI PMC
Bustillo-Avendaño E., Ibáñez S., Sanz O., Barros J. A. S., Gude I., Perianez-Rodriguez J., et al. . (2018). Regulation of hormonal control, cell reprogramming, and patterning during de novo root organogenesis. Plant Physiol. 176, 1709–1727. doi: 10.1104/pp.17.00980, PMID: PubMed DOI PMC
Cerny M., Dycka F., Bobál’Ová J., Brzobohaty B. (2011). Early cytokinin response proteins and phosphoproteins of Arabidopsis thaliana identified by proteome and phosphoproteome profiling. J. Exp. Bot. 62, 921–937. doi: 10.1093/jxb/erq322, PMID: PubMed DOI PMC
Chang W., Guo Y., Zhang H., Liu X., Guo L. (2020). Same actor in different stages: genes in shoot apical meristem maintenance and floral meristem determinacy in Arabidopsis. Front. Ecol. Evol. 8:89. doi: 10.3389/FEVO.2020.00089 DOI
Chatfield S. P., Raizada M. N. (2008). Ethylene and shoot regeneration: hookless1 modulates de novo shoot organogenesis in Arabidopsis thaliana. Plant Cell Rep. 27, 655–666. doi: 10.1007/s00299-007-0496-3, PMID: PubMed DOI
Chen Y. M., Ferrar T. S., Lohmeir-Vogel E., Morrice N., Mizuno Y., Berenger B., et al. . (2006). The PII signal transduction protein of Arabidopsis thaliana forms an arginine-regulated complex with plastid N-acetyl glutamate kinase. J. Biol. Chem. 281, 5726–5733. doi: 10.1074/JBC.M510945200, PMID: PubMed DOI
Cheon J., Park S. Y., Schulz B., Choe S. (2010). Arabidopsis brassinosteroid biosynthetic mutant dwarf7−1 exhibits slower rates of cell division and shoot induction. BMC Plant Biol. 10:270. doi: 10.1186/1471-2229-10-270, PMID: PubMed DOI PMC
Chevalier D., Batoux M., Fulton L., Pfister K., Yadav R. K., Schellenberg M., et al. . (2005). STRUBBELIG defines a receptor kinase-mediated signaling pathway regulating organ development in Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 102, 9074–9079. doi: 10.1073/pnas.0503526102, PMID: PubMed DOI PMC
Chitteti B. R., Peng Z. (2007). Proteome and phosphoproteome dynamic change during cell dedifferentiation in Arabidopsis. Proteomics 7, 1473–1500. doi: 10.1002/pmic.200600871, PMID: PubMed DOI
Cho M., Lee Z.-W., Cho H.-T. (2012). ATP-binding cassette B4, an Auxin-efflux transporter, stably associates with the plasma membrane and shows distinctive intracellular trafficking from That of PIN-FORMED proteins. Plant Physiol. 159, 642–654. doi: 10.1104/PP.112.196139, PMID: PubMed DOI PMC
Cho H., Ryu H., Rho S., Hill K., Smith S., Audenaert D., et al. . (2013, 2013). A secreted peptide acts on BIN2-mediated phosphorylation of ARFs to potentiate auxin response during lateral root development. Nat. Cell Biol. 161, 66–76. doi: 10.1038/ncb2893 PubMed DOI
Cox J., Mann M. (2008). MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat. Biotechnol. 26, 1367–1372. doi: 10.1038/nbt.1511, PMID: PubMed DOI
Dautel R., Wu X. N., Heunemann M., Schulze W. X., Harter K. (2016). The Sensor Histidine kinases AHK2 and AHK3 proceed into multiple serine/threonine/tyrosine phosphorylation pathways in Arabidopsis thaliana. Mol. Plant 9, 182–186. doi: 10.1016/j.molp.2015.10.002, PMID: PubMed DOI
De Rybel B., Audenaert D., Vert G., Rozhon W., Mayerhofer J., Peelman F., et al. . (2009). Chemical inhibition of a subset of Arabidopsis thaliana GSK3-like kinases activates Brassinosteroid signaling. Chem. Biol. 16, 594–604. doi: 10.1016/j.chembiol.2009.04.008, PMID: PubMed DOI PMC
De Smet I., Vassileva V., De Rybel B., Levesque M. P., Grunewald W., Van Damme D., et al. . (2008). Receptor-like kinase ACR4 restricts formative cell divisions in the Arabidopsis root. Science 322, 594–597. doi: 10.1126/science.1160158 PubMed DOI
Deng K., Dong P., Wang W., Feng L., Xiong F., Wang K., et al. . (2017). The TOR pathway is involved in adventitious root formation in arabidopsis and potato. Front. Plant Sci. 8:784. doi: 10.3389/fpls.2017.00784, PMID: PubMed DOI PMC
Deng K., Yu L., Zheng X., Zhang K., Wang W., Dong P., et al. . (2016). Target of rapamycin is a key player for auxin signaling transduction in Arabidopsis. Front. Plant Sci. 7:291. doi: 10.3389/fpls.2016.00291, PMID: PubMed DOI PMC
Desikan R., Horák J., Chaban C., Mira-Rodado V., Witthöft J., Elgass K., et al. . (2008). The histidine kinase AHK5 integrates endogenous and environmental signals in Arabidopsis guard cells. PLoS One 3:e2491. doi: 10.1371/journal.pone.0002491, PMID: PubMed DOI PMC
DeYoung B. J., Bickle K. L., Schrage K. J., Muskett P., Patel K., Clark S. E. (2006). The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. Plant J. 45, 1–16. doi: 10.1111/j.1365-313X.2005.02592.x, PMID: PubMed DOI
DeYoung B. J., Clark S. E. (2008). BAM receptors regulate stem cell specification and organ development Through complex interactions With CLAVATA signaling. Genetics 180, 895–904. doi: 10.1534/GENETICS.108.091108, PMID: PubMed DOI PMC
Dhonukshe P., Aniento F., Hwang I., Robinson D. G., Mravec J., Stierhof Y. D., et al. . (2007). Clathrin-mediated constitutive endocytosis of PIN Auxin efflux carriers in Arabidopsis. Curr. Biol. 17, 520–527. doi: 10.1016/j.cub.2007.01.052, PMID: PubMed DOI
Du F., Gong W., Boscá S., Tucker M., Vaucheret H., Laux T. (2020). Dose-dependent AGO1-mediated inhibition of the miRNA165/166 pathway modulates stem cell maintenance in Arabidopsis shoot apical meristem. Plant Commun. 1:100002. doi: 10.1016/J.XPLC.2019.100002, PMID: PubMed DOI PMC
Espinosa-Ruiz A., Martinez C., De Lucas M., Fabregas N., Bosch N., Cano-Delgado A. I., et al. . (2017). TOPLESS mediates brassinosteroid control of shoot boundaries and root meristem development in Arabidopsis thaliana. Development 144, 1619–1628. doi: 10.1242/dev.143214, PMID: PubMed DOI
Fendrych M., Leung J., Friml J. (2016). Tir1/AFB-aux/IAA auxin perception mediates rapid cell wall acidification and growth of Arabidopsis hypocotyls. Elife 5:e19048. doi: 10.7554/ELIFE.19048 PubMed DOI PMC
Fuglsang A. T., Guo Y., Cuin T. A., Qiu Q., Song C., Kristiansen K. A., et al. . (2007). Arabidopsis protein kinase PKS5 inhibits the plasma membrane H+-ATPase by preventing interaction with 14-3-3 protein. Plant Cell 19, 1617–1634. doi: 10.1105/TPC.105.035626, PMID: PubMed DOI PMC
Fuglsang A. T., Visconti S., Drumm K., Jahn T., Stensballe A., Mattei B., et al. . (1999). Binding of 14-3-3 protein to the plasma membrane H+-ATPase AHA2 involves the three C-terminal residues Tyr946-Thr-Val and requires phosphorylation of Thr947. J. Biol. Chem. 274, 36774–36780. doi: 10.1074/JBC.274.51.36774, PMID: PubMed DOI
Fulton L., Batoux M., Vaddepalli P., Yadav R. K., Busch W., Andersen S. U., et al. . (2009). DETORQUEO, QUIRKY, and ZERZAUST represent novel components involved in organ development mediated by the receptor-like kinase STRUBBELIG in Arabidopsis thaliana. PLoS Genet. 5:e1000355. doi: 10.1371/journal.pgen.1000355, PMID: PubMed DOI PMC
Gan X., Stegle O., Behr J., Steffen J. G., Drewe P., Hildebrand K. L., et al. . (2011). Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature, 419–423. doi: 10.1038/nature10414, PMID: PubMed DOI PMC
Gendron J. M., Liu J. S., Fan M., Bai M. Y., Wenkel S., Springer P. S., et al. . (2012). Brassinosteroids regulate organ boundary formation in the shoot apical meristem of Arabidopsis. Proc. Natl. Acad. Sci. U. S. A. 109, 21152–21157. doi: 10.1073/pnas.1210799110, PMID: PubMed DOI PMC
González-García M. P., Vilarrasa-Blasi J., Zhiponova M., Divol F., Mora-García S., Russinova E., et al. . (2011). Brassinosteroids control meristem size by promoting cell cycle progression in Arabidopsis roots. Development 138, 849–859. doi: 10.1242/dev.057331, PMID: PubMed DOI
Graf P., Dolzblasz A., Würschum T., Lenhard M., Pfreundt U., Laux T. (2010). MGOUN1 encodes an Arabidopsis type IB DNA topoisomerase required in stem cell regulation and to maintain developmentally regulated gene silencing. Plant Cell 22, 716–728. doi: 10.1105/TPC.109.068296, PMID: PubMed DOI PMC
Groen A. J., Sancho-Andrés G., Breckels L. M., Gatto L., Aniento F., Lilley K. S. (2014). Identification of trans-Golgi network proteins in Arabidopsis thaliana root tissue. J. Proteome Res. 13, 763–776. doi: 10.1021/PR4008464, PMID: PubMed DOI PMC
Gu Z., Eils R., Schlesner M. (2016). Complex heatmaps reveal patterns and correlations in multidimensional genomic data. Bioinformatics 32, 2847–2849. doi: 10.1093/BIOINFORMATICS/BTW313, PMID: PubMed DOI
Hager A., Debus G., Edel H. G., Stransky H., Serrano R. (1991). Auxin induces exocytosis and the rapid synthesis of a high-turnover pool of plasma-membrane H+-ATPase. Planta 185, 527–537. doi: 10.1007/BF00202963, PMID: PubMed DOI
Haruta M., Burch H. L., Nelson R. B., Barrett-Wilt G., Kline K. G., Mohsin S. B., et al. . (2010). Molecular characterization of mutant Arabidopsis plants with reduced plasma membrane proton pump activity. J. Biol. Chem. 285, 17918–17929. doi: 10.1074/JBC.M110.101733, PMID: PubMed DOI PMC
Haruta M., Sussman M. R. (2012). The effect of a genetically reduced plasma membrane Protonmotive force on vegetative growth of Arabidopsis. Plant Physiol. 158, 1158–1171. doi: 10.1104/PP.111.189167, PMID: PubMed DOI PMC
He J.-X., Gendron J. M., Yang Y., Li J., Wang Z.-Y. (2002). The GSK3-like kinase BIN2 phosphorylates and destabilizes BZR1, a positive regulator of the brassinosteroid signaling pathway in Arabidopsis. Proc. Natl. Acad. Sci. 99, 10185–10190. doi: 10.1073/PNAS.152342599, PMID: PubMed DOI PMC
Heerah S., Molinari R., Guerrier S., Marshall-Colon A. (2021). Granger-causal testing for irregularly sampled time series with application to nitrogen signalling in Arabidopsis. Bioinformatics 37, 2450–2460. doi: 10.1093/BIOINFORMATICS/BTAB126, PMID: PubMed DOI PMC
Heyl A., Ramireddy E., Brenner W. G., Riefler M., Allemeersch J., Schmülling T. (2008). The transcriptional repressor ARR1-SRDX suppresses pleiotropic cytokinin activities in Arabidopsis. Plant Physiol. 147, 1380–1395. doi: 10.1104/pp.107.115436, PMID: PubMed DOI PMC
Hicks G. R., Raikhel N. V. (2012). Small molecules present large opportunities in plant biology. Annu. Rev. Plant Biol. 63, 261–282. doi: 10.1146/annurev-arplant-042811-105456, PMID: PubMed DOI
Hicks G. R., Raikhel N. V. (2014). Plant chemical biology: are we meeting the promise? Front. Plant Sci. 5:455. doi: 10.3389/fpls.2014.00455, PMID: PubMed DOI PMC
Higuchi M., Pischke M. S., Mähönen A. P., Miyawaki K., Hashimoto Y., Seki M., et al. . (2004). In planta functions of the Arabidopsis cytokinin receptor family. Proc. Natl. Acad. Sci. U. S. A. 101, 8821–8826. doi: 10.1073/pnas.0402887101, PMID: PubMed DOI PMC
Hsieh M.-H., Lam H.-M., Loo F. J., Coruzzi G. (1998). A PII-like protein in Arabidopsis: putative role in nitrogen sensing. Proc. Natl. Acad. Sci. 95, 13965–13970. doi: 10.1073/PNAS.95.23.13965, PMID: PubMed DOI PMC
Hsu J.-L., Wang L.-Y., Wang S.-Y., Lin C.-H., Ho K.-C., Shi F.-K., et al. . (2009). Functional phosphoproteomic profiling of phosphorylation sites in membrane fractions of salt-stressed Arabidopsis thaliana. Proteome Sci. 7, 1–16. doi: 10.1186/1477-5956-7-42, PMID: PubMed DOI PMC
Huang X., Hou L., Meng J., You H., Li Z., Gong Z., et al. . (2018). The antagonistic action of Abscisic acid and Cytokinin signaling mediates drought stress response in Arabidopsis. Mol. Plant 11, 970–982. doi: 10.1016/J.MOLP.2018.05.001, PMID: PubMed DOI
Huang R., Shu S., Liu M., Wang C., Jiang B., Jiang J., et al. . (2019a). Nuclear Prohibitin3 maintains genome integrity and cell proliferation in the root meristem through Minichromosome maintenance 2. Plant Physiol. 179, 1669–1691. doi: 10.1104/PP.18.01463, PMID: PubMed DOI PMC
Huang R., Zheng R., He J., Zhou Z., Wang J., Xiong Y., et al. . (2019b). Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc. Natl. Acad. Sci. U. S. A. 116, 21285–21290. doi: 10.1073/pnas.1910916116, PMID: PubMed DOI PMC
Hwang I., Chen H. C., Sheen J. (2002). Two-component signal transduction pathways in Arabidopsis. Plant Physiol. 129, 500–515. doi: 10.1104/pp.005504, PMID: PubMed DOI PMC
Ikeuchi M., Favero D. S., Sakamoto Y., Iwase A., Coleman D., Rymen B., et al. . (2019). Molecular mechanisms of plant regeneration. Annu. Rev. Plant Biol. 70, 377–406. doi: 10.1146/annurev-arplant-050718-100434 PubMed DOI
Ikeuchi M., Ogawa Y., Iwase A., Sugimoto K. (2016). Plant regeneration: cellular origins and molecular mechanisms. Development 143, 1442–1451. doi: 10.1242/dev.134668, PMID: PubMed DOI
Jeon J., Kim J. (2013). Arabidopsis response regulator1 and Arabidopsis histidine phosphotransfer protein2 (AHP2), AHP3, and AHP5 function in cold signaling. Plant Physiol. 161, 408–424. doi: 10.1104/pp.112.207621, PMID: PubMed DOI PMC
Jeon J., Kim N. Y., Kim S., Kang N. Y., Novák O., Ku S. J., et al. . (2010). A subset of cytokinin two-component signaling system plays a role in cold temperature stress response in Arabidopsis. J. Biol. Chem. 285, 23371–23386. doi: 10.1074/jbc.M109.096644, PMID: PubMed DOI PMC
Jia W., Li B., Li S., Liang Y., Wu X., Ma M., et al. . (2016). Mitogen-activated protein kinase Cascade MKK7-MPK6 plays important roles in plant development and regulates shoot branching by phosphorylating PIN1 in Arabidopsis. PLoS Biol. 14:e1002550. doi: 10.1371/JOURNAL.PBIO.1002550, PMID: PubMed DOI PMC
Kakimoto T. (1996). CKI1, a Histidine kinase homolog implicated in Cytokinin signal transduction. Science 274, 982–985. doi: 10.1126/SCIENCE.274.5289.982 PubMed DOI
Kanehisa M., Goto S. (2000). KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 28, 27–30. doi: 10.1093/nar/28.1.27, PMID: PubMed DOI PMC
Kidner C. A., Martienssen R. A. (2005). The role of ARGONAUTE1 (AGO1) in meristem formation and identity. Dev. Biol. 280, 504–517. doi: 10.1016/J.YDBIO.2005.01.031, PMID: PubMed DOI
Kieber J. J., Schaller G. E. (2018). Cytokinin signaling in plant development. Development 145:dev149344. doi: 10.1242/dev.149344 PubMed DOI
Kim T. W., Michniewicz M., Bergmann D. C., Wang Z. Y. (2012). Brassinosteroid regulates stomatal development by GSK3-mediated inhibition of a MAPK pathway. Nature 482, 419–422. doi: 10.1038/nature10794, PMID: PubMed DOI PMC
Kim E.-J., Youn J.-H., Park C.-H., Kim T.-W., Guan S., Xu S., et al. . (2016). Oligomerization between BSU1 Family Members Potentiates Brassinosteroid Signaling in Arabidopsis. Mol. Plant 9, 178–181. doi: 10.1016/j.molp.2015.09.012, PMID: PubMed DOI PMC
Kinoshita T., Shimazaki K. (1999). Blue light activates the plasma membrane H(+)-ATPase by phosphorylation of the C-terminus in stomatal guard cells. EMBO J. 18, 5548–5558. doi: 10.1093/EMBOJ/18.20.5548, PMID: PubMed DOI PMC
Kitakura S., Vanneste S., Robert S., Löfke C., Teichmann T., Tanaka H., et al. . (2011). Clathrin mediates endocytosis and polar distribution of PIN auxin transporters in Arabidopsis. Plant Cell 23, 1920–1931. doi: 10.1105/tpc.111.083030, PMID: PubMed DOI PMC
Kurepa J., Li Y., Perry S. E., Smalle J. A. (2014a). Ectopic expression of the phosphomimic mutant version of Arabidopsis response regulator 1 promotes a constitutive cytokinin response phenotype. BMC Plant Biol. 14:28. doi: 10.1186/1471-2229-14-28, PMID: PubMed DOI PMC
Kurepa J., Li Y., Smalle J. A. (2014b). Cytokinin signaling stabilizes the response activator ARR1. Plant J. 78, 157–168. doi: 10.1111/TPJ.12458, PMID: PubMed DOI
Lardon R., Geelen D. (2020). Natural variation in plant Pluripotency and regeneration. Plan. Theory 9:1261. doi: 10.3390/plants9101261, PMID: PubMed DOI PMC
Lardon R., Wijnker E., Keurentjes J., Geelen D. (2020). The genetic framework of shoot regeneration in Arabidopsis comprises master regulators and conditional fine-tuning factors. Commun. Biol. 3:549. doi: 10.1038/s42003-020-01274-9, PMID: PubMed DOI PMC
Laufs P., Peaucelle A., Morin H., Traas J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311–4322. doi: 10.1242/DEV.01320, PMID: PubMed DOI
Lee K., Seo P. J. (2017). High-temperature promotion of callus formation requires the BIN2-ARF-LBD axis in Arabidopsis. Planta 246, 797–802. doi: 10.1007/s00425-017-2747-z, PMID: PubMed DOI
Li H., Cai Z., Wang X., Li M., Cui Y., Cui N., et al. . (2019). SERK receptor-like kinases control division patterns of vascular precursors and ground tissue stem cells during embryo development in Arabidopsis. Mol. Plant 12, 984–1002. doi: 10.1016/j.molp.2019.04.011, PMID: PubMed DOI
Li J., Terzaghi W., Gong Y., Li C., Ling J.-J., Fan Y., et al. . (2020). Modulation of BIN2 kinase activity by HY5 controls hypocotyl elongation in the light. Nat. Commun. 11, 1592–1511. doi: 10.1038/s41467-020-15394-7, PMID: PubMed DOI PMC
Liu Z., Dai X., Li J., Liu N., Liu X., Li S., et al. . (2020). The type-B cytokinin response regulator ARR1 inhibits shoot regeneration in an ARR12-dependent manner in Arabidopsis. Plant Cell 32, 2271–2291. doi: 10.1105/tpc.19.00022, PMID: PubMed DOI PMC
Liu X., Gao L., Dinh T. T., Shi T., Li D., Wang R., et al. . (2014). DNA topoisomerase I affects Polycomb group protein-mediated epigenetic regulation and plant development by altering nucleosome distribution in Arabidopsis. Plant Cell 26, 2803–2817. doi: 10.1105/TPC.114.124941, PMID: PubMed DOI PMC
Liu L., Li C., Song S., Teo Z. W. N., Shen L., Wang Y., et al. . (2018). FTIP-dependent STM trafficking regulates shoot meristem development in Arabidopsis. Cell Rep. 23, 1879–1890. doi: 10.1016/j.celrep.2018.04.033, PMID: PubMed DOI
Liu Q., Yao X., Pi L., Wang H., Cui X., Huang H. (2009). The ARGONAUTE10 gene modulates shoot apical meristem maintenance and establishment of leaf polarity by repressing miR165/166 in Arabidopsis. Plant J. 58, 27–40. doi: 10.1111/J.1365-313X.2008.03757.X, PMID: PubMed DOI
Long J. A., Ohno C., Smith Z. R., Meyerowitz E. M. (2006). TOPLESS regulates apical embryonic fate in Arabidopsis. Science 312, 1520–1523. doi: 10.1126/SCIENCE.1123841, PMID: PubMed DOI
Lozano-Elena F., Planas-Riverola A., Vilarrasa-Blasi J., Schwab R., Caño-Delgado A. I. (2018). Paracrine brassinosteroid signaling at the stem cell niche controls cellular regeneration. J. Cell Sci. 131:jcs204065. doi: 10.1242/jcs.204065, PMID: PubMed DOI PMC
Marhavý P., Bielach A., Abas L., Abuzeineh A., Duclercq J., Tanaka H., et al. . (2011). Cytokinin modulates Endocytic trafficking of PIN1 Auxin efflux carrier to control plant organogenesis. Dev. Cell 21, 796–804. doi: 10.1016/j.devcel.2011.08.014, PMID: PubMed DOI
Martin-Arevalillo R., Nanao M. H., Larrieu A., Vinos-Poyo T., Mast D., Galvan-Ampudia C., et al. . (2017). Structure of the Arabidopsis TOPLESS corepressor provides insight into the evolution of transcriptional repression. Proc. Natl. Acad. Sci. U. S. A. 114, 8107–8112. doi: 10.1073/PNAS.1703054114, PMID: PubMed DOI PMC
Masclaux-Daubresse C., Clément G., Anne P., Routaboul J. M., Guiboileau A., Soulay F., et al. . (2014). Stitching together the multiple dimensions of autophagy using metabolomics and Transcriptomics reveals impacts on metabolism, development, and plant responses to the environment in Arabidopsis. Plant Cell 26, 1857–1877. doi: 10.1105/TPC.114.124677, PMID: PubMed DOI PMC
Mccourt P., Desveaux D. (2010). Plant chemical genetics. New Phytol. 185, 15–26. doi: 10.1111/j.1469-8137.2009.03045.x PubMed DOI
McCready K., Spencer V., Kim M. (2020). The importance of TOR kinase in plant development. Front. Plant Sci. 11:16. doi: 10.3389/fpls.2020.00016, PMID: PubMed DOI PMC
Menand B., Desnos T., Nussaume L., Bergert F., Bouchez D., Meyer C., et al. . (2002). Expression and disruption of the Arabidopsis TOR (target of rapamycin) gene. Proc. Natl. Acad. Sci. U. S. A. 99, 6422–6427. doi: 10.1073/pnas.092141899, PMID: PubMed DOI PMC
Méndez-Hernández H. A., Ledezma-Rodríguez M., Avilez-Montalvo R. N., Juárez-Gómez Y. L., Skeete A., Avilez-Montalvo J., et al. . (2019). Signaling overview of plant somatic embryogenesis. Front. Plant Sci. 10:7. doi: 10.3389/fpls.2019.00077, PMID: PubMed DOI PMC
Meng W. J., Cheng Z. J., Sang Y. L., Zhang M. M., Rong X. F., Wang Z. W., et al. . (2017). Type-B ARABIDOPSIS RESPONSE REGULATORs specify the shoot stem cell niche by dual regulation of WUSCHEL. Plant Cell 29, 1357–1372. doi: 10.1105/tpc.16.00640, PMID: PubMed DOI PMC
Meng X., Wang H., He Y., Liu Y., Walker J. C., Torii K. U., et al. . (2013). A MAPK cascade downstream of ERECTA receptor-like protein kinase regulates Arabidopsis inflorescence architecture by promoting localized cell proliferation. Plant Cell 24, 4948–4960. doi: 10.1105/tpc.112.104695, PMID: PubMed DOI PMC
Motte H., Vercauteren A., Depuydt S., Landschoot S., Geelen D., Werbrouck S., et al. . (2014a). Combining linkage and association mapping identifies RECEPTOR-LIKE PROTEIN KINASE1 as an essential Arabidopsis shoot regeneration gene. Proc. Natl. Acad. Sci. U. S. A. 111, 8305–8310. doi: 10.1073/pnas.1404978111, PMID: PubMed DOI PMC
Motte H., Vereecke D., Geelen D., Werbrouck S. (2014b). The molecular path to in vitro shoot regeneration. Biotechnol. Adv. 32, 107–121. doi: 10.1016/j.biotechadv.2013.12.002, PMID: PubMed DOI
Neu A., Eilbert E., Asseck L. Y., Slane D., Henschen A., Wang K., et al. . (2019). Constitutive signaling activity of a receptor-associated protein links fertilization with embryonic patterning in Arabidopsis thaliana. Proc. Natl. Acad. Sci. U. S. A. 116, 5795–5804. doi: 10.1073/pnas.1815866116, PMID: PubMed DOI PMC
Ni D. A., Sozzani R., Blanchet S., Domenichini S., Reuzeau C., Cella R., et al. . (2009). The Arabidopsis MCM2 gene is essential to embryo development and its over-expression alters root meristem function. New Phytol. 184, 311–322. doi: 10.1111/J.1469-8137.2009.02961.X, PMID: PubMed DOI
Nishimura C., Ohashi Y., Sato S., Kato T., Tabata S., Ueguchi C. (2004). Histidine kinase homologs that act as cytokinin receptors possess overlapping functions in the regulation of shoot and root growth in arabidopsis. Plant Cell 16, 1365–1377. doi: 10.1105/tpc.021477, PMID: PubMed DOI PMC
Nolan T. M., Brennan B., Yang M., Chen J., Zhang M., Li Z., et al. . (2017). Selective autophagy of BES1 mediated by DSK2 balances plant growth and survival. Dev. Cell 41, 33.e7–46.e7. doi: 10.1016/J.DEVCEL.2017.03.013, PMID: PubMed DOI PMC
Nongpiur R., Soni P., Karan R., Singla-Pareek S. L., Pareek A. (2012). Histidine kinases in plants: cross talk between hormone and stress responses. Plant Signal. Behav. 7, 1230–1237. doi: 10.4161/psb.21516, PMID: PubMed DOI PMC
Noutoshi Y., Kuromori T., Wada T., Hirayama T., Kamiya A., Imura Y., et al. . (2006). Loss of NECROTIC SPOTTED LESIONS 1 associates with cell death and defense responses in Arabidopsis thaliana. Plant Mol. Biol. 62, 29–42. doi: 10.1007/S11103-006-9001-6, PMID: PubMed DOI
Ötvös K., Miskolczi P., Marhavý P., Cruz-Ramírez A., Benková E., Robert S., et al. . (2021). Pickle recruits Retinoblastoma related 1 to control lateral root formation in Arabidopsis. Int. J. Mol. Sci. 22:3862. doi: 10.3390/IJMS22083862 PubMed DOI PMC
Pacifici E., Mambro R., Ioio R., Costantino P., Sabatini S. (2018). Acidic cell elongation drives cell differentiation in the Arabidopsis root. EMBO J. 37:e99134. doi: 10.15252/EMBJ.201899134 PubMed DOI PMC
Papon N., Clastre M., Gantet P., Rideau M., Chénieux J.-C., Crèche J. (2003). Inhibition of the plant cytokinin transduction pathway by bacterial histidine kinase inhibitors in Catharanthus roseus cell cultures. FEBS Lett. 537, 5–101. doi: 10.1016/S0014-5793(03)00102-9 PubMed DOI
Papon N., Senoussi M. M., Andreu F., Rideau M., Chenieux J. C., Creche J. (2004). Cloning of a gene encoding a putative ethylene receptor in Catharanthus roseus and its expression in plant and cell cultures. Biol. Plant. 48, 345–350. doi: 10.1023/B:BIOP.0000041085.82296.9c DOI
Park C. J., Caddell D. F., Ronald P. C. (2012). Protein phosphorylation in plant immunity: insights into the regulation of pattern recognition receptor-mediated signaling. Front. Plant Sci. 3:177. doi: 10.3389/fpls.2012.00177, PMID: PubMed DOI PMC
Perez-Riverol Y., Csordas A., Bai J., Bernal-Llinares M., Hewapathirana S., Kundu D. J., et al. . (2019). The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450. doi: 10.1093/NAR/GKY1106, PMID: PubMed DOI PMC
Perilli S., Perez-Perez J. M., Mambro R., Peris C. L., Díaz-Triviño S., Bianco M., et al. . (2013). RETINOBLASTOMA-RELATED protein stimulates cell differentiation in the Arabidopsis root meristem by interacting with Cytokinin signaling. Plant Cell 25, 4469–4478. doi: 10.1105/TPC.113.116632, PMID: PubMed DOI PMC
Pernisova M., Grochova M., Konecny T., Plackova L., Harustiakova D., Kakimoto T., et al. . (2018). Cytokinin signalling regulates organ identity via the AHK4 receptor in arabidopsis. Development 145:dev163907. doi: 10.1242/dev.163907, PMID: PubMed DOI
Ren M., Venglat P., Qiu S., Feng L., Cao Y., Wang E., et al. . (2012). Target of rapamycin signaling regulates metabolism, growth, and life span in Arabidopsis. Plant Cell 24, 4850–4874. doi: 10.1105/tpc.112.107144, PMID: PubMed DOI PMC
Riefler M., Novak O., Strnad M., Schmülling T. (2006). Arabidopsis Cytokinin receptor mutants reveal functions in shoot growth, leaf senescence, seed size, germination, root development, and Cytokinin metabolism. Plant Cell 18, 40–54. doi: 10.1105/TPC.105.037796, PMID: PubMed DOI PMC
Ritchie M. E., Phipson B., Wu D., Hu Y., Law C. W., Shi W., et al. . (2015). Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 43:e47. doi: 10.1093/nar/gkv007, PMID: PubMed DOI PMC
Rodriguez E., Chevalier J., Olsen J., Ansbøl J., Kapousidou V., Zuo Z., et al. . (2020). Autophagy mediates temporary reprogramming and dedifferentiation in plant somatic cells. EMBO J. 39:e103315. doi: 10.15252/EMBJ.2019103315, PMID: PubMed DOI PMC
Ross A. R. S. (2007). “Identification of Histidine Phosphorylations in proteins using mass spectrometry and affinity-based techniques,” in Methods in Enzymology (California: Elsevier Academic Press; ), 423, 549–572. PubMed
Růžička K., Strader L. C., Bailly A., Yang H., Blakeslee J., Łangowski Ł., et al. . (2010). Arabidopsis PIS1 encodes the ABCG37 transporter of auxinic compounds including the auxin precursor indole-3-butyric acid. Proc. Natl. Acad. Sci. 107, 10749–10753. doi: 10.1073/PNAS.1005878107, PMID: PubMed DOI PMC
Ryu H., Kim K., Cho H., Park J., Choe S., Hwang I. (2007). Nucleocytoplasmic shuttling of BZR1 mediated by phosphorylation is essential in Arabidopsis Brassinosteroid signaling. Plant Cell 19, 2749–2762. doi: 10.1105/TPC.107.053728, PMID: PubMed DOI PMC
Sakai H., Aoyama T., Oka A. (2000). Arabidopsis ARR1 and ARR2 response regulators operate as transcriptional activators. Plant J. 24, 703–711. doi: 10.1046/j.1365-313X.2000.00909.x, PMID: PubMed DOI
Scardoni G., Petterlini M., Laudanna C. (2009). Analyzing biological network parameters with CentiScaPe. Bioinformatics 25, 2857–2859. doi: 10.1093/bioinformatics/btp517, PMID: PubMed DOI PMC
Schaller G. E., Bishopp A., Kieber J. J. (2015). The yin-yang of hormones: cytokinin and auxin interactions in plant development. Plant Cell 27, 44–63. doi: 10.1105/tpc.114.133595, PMID: PubMed DOI PMC
Schlegel J., Denay G., Pinto K. G., Stahl Y., Schmid J., Blümke P., et al. . (2021). Control of Arabidopsis shoot stem cell homeostasis by two antagonistic CLE peptide signalling pathways. bioRxiv [preprint]. doi: 10.1101/2021.06.14.448384 PubMed DOI PMC
Shannon P., Markiel A., Ozier O., Baliga N. S., Wang J. T., Ramage D., et al. . (2003). Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504. doi: 10.1101/gr.1239303, PMID: PubMed DOI PMC
Shen L., Liang Z., Gu X., Chen Y., Teo Z. W. N., Hou X., et al. . (2016). N6-Methyladenosine RNA modification regulates shoot stem cell fate in Arabidopsis. Dev. Cell 38, 186–200. doi: 10.1016/J.DEVCEL.2016.06.008, PMID: PubMed DOI PMC
Sheremet Y. A., Yemets A. I., Vissenberg K., Verbelen J. P., Blume Y. B. (2010). Effects of inhibitors of serine/threonine protein kinases on Arabidopsis thaliana root morphology and microtubule Organization in its Cells. Cell Tissue Biol. 4, 399–409. doi: 10.1134/S1990519X10040139 PubMed DOI
Shi B., Zhang C., Tian C., Wang J., Wang Q., Xu T., et al. . (2016). Two-step regulation of a Meristematic cell population acting in shoot branching in Arabidopsis. PLoS Genet. 12:e1006168. doi: 10.1371/journal.pgen.1006168, PMID: PubMed DOI PMC
Slavikova S., Ufaz S., Avin-Wittenberg T., Levanony H., Galili G. (2008). An autophagy-associated Atg8 protein is involved in the responses of Arabidopsis seedlings to hormonal controls and abiotic stresses. J. Exp. Bot. 59, 4029–4043. doi: 10.1093/JXB/ERN244, PMID: PubMed DOI PMC
Somssich M., Je B. I., Simon R., Jackson D. (2016). CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143, 3238–3248. doi: 10.1242/dev.133645, PMID: PubMed DOI
Song S. K., Clark S. E. (2005). POL and related phosphatases are dosage-sensitive regulators of meristem and organ development in Arabidopsis. Dev. Biol. 285, 272–284. doi: 10.1016/J.YDBIO.2005.06.020, PMID: PubMed DOI
Song S.-K., Lee M. M., Clark S. E. (2006). POL and PLL1 phosphatases are CLAVATA1 signaling intermediates required for Arabidopsis shoot and floral stem cells. Development 133, 4691–4698. doi: 10.1242/DEV.02652, PMID: PubMed DOI
Song S. K., Yun Y. B., Lee M. M. (2020). POLTERGEIST and POLTERGEIST-LIKE1 are essential for the maintenance of post-embryonic shoot and root apical meristems as revealed by a partial loss-of-function mutant allele of pll1 in Arabidopsis. Genes Genom. 42, 107–116. doi: 10.1007/s13258-019-00894-8, PMID: PubMed DOI
Stefano G., Renna L., Wormsbaecher C., Gamble J., Zienkiewicz K., Brandizzi F. (2018). Plant endocytosis requires the ER membrane-anchored proteins VAP27-1 and VAP27-3. Cell Rep. 23, 2299–2307. doi: 10.1016/J.CELREP.2018.04.091, PMID: PubMed DOI
Stephenson K., Yamaguchi Y., Hoch J. A. (2000). The mechanism of action of inhibitors of bacterial two-component signal transduction systems *. J. Biol. Chem. 275, 38900–38904. doi: 10.1074/JBC.M006633200 PubMed DOI
Tan S., Luschnig C., Rí Friml J. (2021). Pho-view of Auxin: reversible protein phosphorylation in Auxin biosynthesis. Transport Signal. 14, 151–165. doi: 10.1016/j.molp.2020.11.004, PMID: PubMed DOI
The Gene Ontology Consortium (2014). Gene ontology consortium: going forward. Nucleic Acids Res. 43, D1049–D1056. doi: 10.1093/nar/gku1179, PMID: PubMed DOI PMC
Trehin C., Schrempp S., Chauvet A., Berne-Dedieu A., Thierry A.-M., Faure J.-E., et al. . (2013). QUIRKY interacts with STRUBBELIG and PAL OF QUIRKY to regulate cell growth anisotropy during Arabidopsis gynoecium development. Development 140, 4807–4817. doi: 10.1242/dev.091868, PMID: PubMed DOI
Tyanova S., Temu T., Cox J. (2016a). The MaxQuant computational platform for mass spectrometry-based shotgun proteomics. Nat. Protoc. 11, 2301–2319. doi: 10.1038/nprot.2016.136, PMID: PubMed DOI
Tyanova S., Temu T., Sinitcyn P., Carlson A., Hein M. Y., Geiger T., et al. . (2016b). The Perseus computational platform for comprehensive analysis of (prote) omics data. Nat. Methods 13, 731–740. doi: 10.1038/nmeth.3901, PMID: PubMed DOI
Vaddepalli P., Herrmann A., Fulton L., Oelschner M., Hillmer S., Stratil T. F., et al. . (2014). The C2-domain protein QUIRKY and the receptor-like kinase STRUBBELIG localize to plasmodesmata and mediate tissue morphogenesis in Arabidopsis thaliana. Development 141, 4139–4148. doi: 10.1242/dev.113878, PMID: PubMed DOI
Valvekens D., Van Montagu M., Van Lijsebettens M. (1988). Agrobacterium tumefaciens-mediated transformation of Arabidopsis thaliana root explants by using kanamycin selection. Proc. Natl. Acad. Sci. U. S. A. 85, 40–5536. PubMed PMC
Van Leene J., Han C., Gadeyne A., Eeckhout D., Matthijs C., Cannoot B., et al. . (2019). Capturing the phosphorylation and protein interaction landscape of the plant TOR kinase. Nat. Plants 5, 316–327. doi: 10.1038/s41477-019-0378-z, PMID: PubMed DOI
van Wijk K. J., Friso G., Walther D., Schulze W. X. (2014). Meta-analysis of arabidopsis thaliana phospho-proteomics data reveals compartmentalization of phosphorylation motifs. Plant Cell 26, 2367–2389. doi: 10.1105/tpc.114.125815, PMID: PubMed DOI PMC
Vert G., Walcher C. L., Chory J., Nemhauser J. L. (2008). Integration of auxin and brassinosteroid pathways by Auxin response factor 2. Proc. Natl. Acad. Sci. 105, 9829–9834. doi: 10.1073/PNAS.0803996105, PMID: PubMed DOI PMC
Vu L. D., Stes E., Van Bel M., Nelissen H., Maddelein D., Inzé D., et al. . (2016). Up-to-date workflow for plant (Phospho) proteomics identifies differential drought-responsive phosphorylation events in maize leaves. J. Proteome Res. 15, 4304–4317. doi: 10.1021/acs.jproteome.6b00348, PMID: PubMed DOI
Wang H., Chevalier D., Larue C., Cho S. K., Walker J. C. (2007). The protein phosphatases and protein kinases of Arabidopsis thaliana. Arab. B. 5:e0106. doi: 10.1199/tab.0106, PMID: PubMed DOI PMC
Wang X., Gingrich D. K., Deng Y., Hong Z. (2012). A nucleostemin-like GTPase required for normal apical and floral meristem development in Arabidopsis. Mol. Biol. Cell 23, 1446–1456. doi: 10.1091/MBC.E11-09-0797, PMID: PubMed DOI PMC
Wang P., Hawkins T. J., Richardson C., Cummins I., Deeks M. J., Sparkes I., et al. . (2014a). The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24, 1397–1405. doi: 10.1016/J.CUB.2014.05.003, PMID: PubMed DOI
Wang Z., Li X., Liu N., Peng Q., Wang Y., Fan B., et al. . (2019b). A family of NAI2-interacting proteins in the biogenesis of the ER body and related structures. Plant Physiol. 180, 212–227. doi: 10.1104/PP.18.01500, PMID: PubMed DOI PMC
Wang P., Pleskot R., Zang J., Winkler J., Wang J., Yperman K., et al. . (2019a). Plant AtEH/Pan1 proteins drive autophagosome formation at ER-PM contact sites with actin and endocytic machinery. Nat. Commun. 10, 1–16. doi: 10.1038/s41467-019-12782-6, PMID: PubMed DOI PMC
Wang X., Qi M., Li J., Ji Z., Hu Y., Bao F., et al. . (2014b). The phosphoproteome in regenerating protoplasts from Physcomitrella patens protonemata shows changes paralleling postembryonic development in higher plants. J. Exp. Bot. 65, 2093–2106. doi: 10.1093/jxb/eru082, PMID: PubMed DOI PMC
Wang P., Richardson C., Hawkins T. J., Sparkes I., Hawes C., Hussey P. J. (2016). Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 210, 1311–1326. doi: 10.1111/NPH.13857, PMID: PubMed DOI
Wang X., Xie B., Zhu M., Zhang Z., Hong Z. (2011). Nucleostemin-like 1 is required for embryogenesis and leaf development in Arabidopsis. Plant Mol. Biol. 78, 31–44. doi: 10.1007/S11103-011-9840-7, PMID: PubMed DOI
Welch D., Hassan H., Blilou I., Immink R., Heidstra R., Scheres B. (2007). Arabidopsis JACKDAW and MAGPIE zinc finger proteins delimit asymmetric cell division and stabilize tissue boundaries by restricting SHORT-ROOT action. Genes Dev. 21, 2196–2204. doi: 10.1101/gad.440307, PMID: PubMed DOI PMC
Wildwater M., Campilho A., Perez-Perez J. M., Heidstra R., Blilou I., Korthout H., et al. . (2005). The RETINOBLASTOMA-RELATED gene regulates stem cell maintenance in Arabidopsis roots. Cell 123, 1337–1349. doi: 10.1016/J.CELL.2005.09.042, PMID: PubMed DOI
Wilson R. C., Doudna J. A. (2013). Molecular mechanisms of RNA interference. Annu. Rev. Biophys. 42, 217–239. doi: 10.1146/ANNUREV-BIOPHYS-083012-130404, PMID: PubMed DOI PMC
Wu X. N., Rodriguez C. S., Pertl-Obermeyer H., Obermeyer G., Schulze W. X. (2013). Sucrose-induced receptor kinase SIRK1 regulates a plasma membrane aquaporin in Arabidopsis. Mol. Cell. Proteomics 12, 2856–2873. doi: 10.1074/MCP.M113.029579, PMID: PubMed DOI PMC
Xiong Y., McCormack M., Li L., Hall Q., Xiang C., Sheen J. (2013). Glucose-TOR signalling reprograms the transcriptome and activates meristems. Nature 496, 181–186. doi: 10.1038/nature12030, PMID: PubMed DOI PMC
Xiong Y., Sheen J. (2012). Rapamycin and glucose-target of Rapamycin (TOR) protein signaling in plants. J. Biol. Chem. 287, 2836–2842. doi: 10.1074/JBC.M111.300749, PMID: PubMed DOI PMC
Xuan W., Murphy E., Beeckman T., Audenaert D., De Smet I. (2013). Synthetic molecules: helping to unravel plant signal transduction. J. Chem. Biol. 6, 43–50. doi: 10.1007/s12154-013-0091-8, PMID: PubMed DOI PMC
Xue T., Dai X., Wang R., Wang J., Liu Z., Xiang F. (2017). ARGONAUTE10 inhibits in vitro shoot regeneration via repression of miR165/166 in Arabidopsis thaliana. Plant Cell Physiol. 58, 1789–1800. doi: 10.1093/pcp/pcx117, PMID: PubMed DOI
Yu L. P., Miller A. K., Clark S. E. (2003). POLTERGEIST encodes a protein phosphatase 2C that regulates CLAVATA pathways controlling stem cell identity at Arabidopsis shoot and flower meristems. Curr. Biol. 13, 179–188. doi: 10.1016/S0960-9822(03)00042-3, PMID: PubMed DOI
Zhang L., Li X., Li D., Sun Y., Li Y., Luo Q., et al. . (2018). CARK1 mediates ABA signaling by phosphorylation of ABA receptors. Cell Discov. 4, 30–10. doi: 10.1038/s41421-018-0029-y, PMID: PubMed DOI PMC
Zhang T.-Q., Lian H., Zhou C.-M., Xu L., Jiao Y., Wang J.-W. (2017). A two-step model for de novo activation of WUSCHEL during plant shoot regeneration. Plant Cell Online 29, 1073–1087. doi: 10.1105/tpc.16.00863, PMID: PubMed DOI PMC
Zhang Y., Xiao Y., Du F., Cao L., Dong H., Ren H. (2011). Arabidopsis VILLIN4 is involved in root hair growth through regulating actin organization in a Ca2+−dependent manner. New Phytol. 190, 667–682. doi: 10.1111/J.1469-8137.2010.03632.X, PMID: PubMed DOI
Zhang Z., Zhang X. (2012). Argonautes compete for miR165/166 to regulate shoot apical meristem development. Curr. Opin. Plant Biol. 15, 652–658. doi: 10.1016/J.PBI.2012.05.007, PMID: PubMed DOI PMC
Zhang Y., Zheng L., Hong J. H., Gong X., Zhou C., Pérez-Pérez J. M., et al. . (2016). TOPOISOMERASE1α acts through two distinct mechanisms to regulate stele and Columella stem cell maintenance. Plant Physiol. 171, 483–493. doi: 10.1104/PP.15.01754, PMID: PubMed DOI PMC
Zhou Y., Honda M., Zhu H., Zhang Z., Guo X., Li T., et al. . (2015). Spatiotemporal sequestration of miR165/166 by Arabidopsis Argonaute10 promotes shoot apical meristem maintenance. Cell Rep. 10, 1819–1827. doi: 10.1016/J.CELREP.2015.02.047, PMID: PubMed DOI
Zhu H., Hu F., Wang R., Zhou X., Sze S. H., Liou L. W., et al. . (2011). Arabidopsis Argonaute10 specifically sequesters miR166/165 to regulate shoot apical meristem development. Cell 145, 242–256. doi: 10.1016/J.CELL.2011.03.024, PMID: PubMed DOI PMC
Zhu T., Li L., Feng L., Mo H., Ren M. (2020a). Target of Rapamycin regulates genome methylation reprogramming to control plant growth in Arabidopsis. Front. Genet. 11:186. doi: 10.3389/fgene.2020.00186, PMID: PubMed DOI PMC
Zhu Y., Orre L. M., Tran Y. Z., Mermelekas G., Johansson H. J., Malyutina A., et al. . (2020b). DEqMS: A method for accurate variance estimation in differential protein expression analysis *. Mol. Cell. Proteomics 19, 1047–1057. doi: 10.1074/MCP.TIR119.001646, PMID: PubMed DOI PMC
Li Z.-Y., Xu Z.-S., He G.-Y., Yang G.-X., Chen M., Li L.-C., et al. . (2012). A mutation in Arabidopsis BSK5 encoding a brassinosteroid-signaling kinase protein affects responses to salinity and abscisic acid. Biochem. Biophys. Res. Commun. 426, 522–527. doi: 10.1016/J.BBRC.2012.08.118, PMID: PubMed DOI
Cytokinins - regulators of de novo shoot organogenesis