Enzymatic function of cytochrome b559 in photosystem II

. 2011 Jul-Aug ; 104 (1-2) : 341-7. [epub] 20110216

Jazyk angličtina Země Švýcarsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid21377371

Cytochrome b(559) (cyt b(559)) is a heme-bridged protein heterodimer in photosystem II (PSII) of all oxygenic photosynthetic organisms. In spite of the fact that cyt b(559) is strictly required for proper function of PSII, it is not involved in the linear electron transport chain from water to plastoquinone. Instead of that the participation of cyt b(559) in the cyclic electron transport around PSII has been proposed mainly based on the ability of the heme iron to accept and donate an electron form the electron acceptor and to the electron donor side of PSII, respectively. In addition to the involvement of cyt b(559) in the cyclic electron transport around PSII, several lines of evidence have been provided on the enzymatic function of cyt b(559). The ability of oxygenic photosynthetic organisms to oxidize water and reduce plastoquinone is connected to the formation of reactive oxygen species (ROS) and thus required to develop an effective antioxidant defense system against ROS. The review attempts to summarize a recent progress on the role of cyt b(559) as oxygen reductase, superoxide reductase, superoxide oxidase and plastoquinol oxidase. The focus is mainly given on the characterization of redox, redox potential and acid-base properties of the heme iron in the putative enzymatic cycles. The possible oxidase and reductase enzymatic activity of cyt b(559) in protection from photoinhibition is discussed.

Citace poskytuje Crossref.org

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace