Impact of Global Transcriptional Silencing on Cell Cycle Regulation and Chromosome Segregation in Early Mammalian Embryos

. 2021 Aug 23 ; 22 (16) : . [epub] 20210823

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34445775

Grantová podpora
17-20405 S Grantová Agentura České Republiky
RO 0518 Ministry of Agriculture of the Czech Republic

The onset of an early development is, in mammals, characterized by profound changes of multiple aspects of cellular morphology and behavior. These are including, but not limited to, fertilization and the merging of parental genomes with a subsequent transition from the meiotic into the mitotic cycle, followed by global changes of chromatin epigenetic modifications, a gradual decrease in cell size and the initiation of gene expression from the newly formed embryonic genome. Some of these important, and sometimes also dramatic, changes are executed within the period during which the gene transcription is globally silenced or not progressed, and the regulation of most cellular activities, including those mentioned above, relies on controlled translation. It is known that the blastomeres within an early embryo are prone to chromosome segregation errors, which might, when affecting a significant proportion of a cell within the embryo, compromise its further development. In this review, we discuss how the absence of transcription affects the transition from the oocyte to the embryo and what impact global transcriptional silencing might have on the basic cell cycle and chromosome segregation controlling mechanisms.

Zobrazit více v PubMed

Clarke H.J. Regulation of germ cell development by intercellular signaling in the mammalian ovarian follicle. Wiley Interdiscip. Rev. Dev. Biol. 2018;7:e294. doi: 10.1002/wdev.294. PubMed DOI PMC

Kalous J., Tetkova A., Kubelka M., Susor A. Importance of ERK1/2 in Regulation of Protein Translation during Oocyte Meiosis. Int. J. Mol. Sci. 2018;19:698. doi: 10.3390/ijms19030698. PubMed DOI PMC

Jessus C., Munro C., Houliston E. Managing the Oocyte Meiotic Arrest-Lessons from Frogs and Jellyfish. Cells. 2020;9:1150. doi: 10.3390/cells9051150. PubMed DOI PMC

Bhakta H.H., Refai F.H., Avella M.A. The molecular mechanisms mediating mammalian fertilization. Development. 2019;146:dev176966. doi: 10.1242/dev.176966. PubMed DOI

Saunders C.M., Larman M.G., Parrington J., Cox L.J., Royse J., Blayney L.M., Swann K., Lai F.A. PLC zeta: A sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development. 2002;129:3533–3544. doi: 10.1242/dev.129.15.3533. PubMed DOI

Clift D., Schuh M. Restarting life: Fertilization and the transition from meiosis to mitosis. Nat. Rev. Mol. Cell Biol. 2013;14:549–562. doi: 10.1038/nrm3643. PubMed DOI PMC

Reichmann J., Nijmeijer B., Hossain M.J., Eguren M., Schneider I., Politi A.Z., Roberti M.J., Hufnagel L., Hiiragi T., Ellenberg J. Dual-spindle formation in zygotes keeps parental genomes apart in early mammalian embryos. Science. 2018;361:189–193. doi: 10.1126/science.aar7462. PubMed DOI

Cavazza T., Takeda Y., Politi A.Z., Aushev M., Aldag P., Baker C., Choudhary M., Bucevičius J., Lukinavičius G., Elder K., et al. Parental genome unification is highly error-prone in mammalian embryos. Cell. 2021;184:2860–2877.e22. doi: 10.1016/j.cell.2021.04.013. PubMed DOI PMC

Schultz R.M., Stein P., Svoboda P. The oocyte-to-embryo transition in mouse: Past, present, and future. Biol. Reprod. 2018;99:160–174. doi: 10.1093/biolre/ioy013. PubMed DOI PMC

Debey P., Szöllösi M.S., Szöllösi D., Vautier D., Girousse A., Besombes D. Competent mouse oocytes isolated from antral follicles exhibit different chromatin organization and follow different maturation dynamics. Mol. Reprod. Dev. 1993;36:59–74. doi: 10.1002/mrd.1080360110. PubMed DOI

Longo F., Garagna S., Merico V., Orlandini G., Gatti R., Scandroglio R., Redi C.A., Zuccotti M. Nuclear localization of NORs and centromeres in mouse oocytes during folliculogenesis. Mol. Reprod. Dev. 2003;66:279–290. doi: 10.1002/mrd.10354. PubMed DOI

Tan J.H., Wang H.L., Sun X.S., Liu Y., Sui H.S., Zhang J. Chromatin configurations in the germinal vesicle of mammalian oocytes. Mol. Hum. Reprod. 2009;15:1–9. doi: 10.1093/molehr/gan069. PubMed DOI

Turner S., Wong H.P., Rai J., Hartshorne G.M. Telomere lengths in human oocytes, cleavage stage embryos and blastocysts. Mol. Hum. Reprod. 2010;16:685–694. doi: 10.1093/molehr/gaq048. PubMed DOI PMC

Bonnet-Garnier A., Feuerstein P., Chebrout M., Fleurot R., Jan H.U., Debey P., Beaujean N. Genome organization and epigenetic marks in mouse germinal vesicle oocytes. Int. J. Dev. Biol. 2012;56:877–887. doi: 10.1387/ijdb.120149ab. PubMed DOI

Tadros W., Lipshitz H.D. The maternal-to-zygotic transition: A play in two acts. Development. 2009;136:3033–3042. doi: 10.1242/dev.033183. PubMed DOI

Vastenhouw N.L., Cao W.X., Lipshitz H.D. The maternal-to-zygotic transition revisited. Development. 2019;146:dev161471. doi: 10.1242/dev.161471. PubMed DOI

Xue Z., Huang K., Cai C., Cai L., Jiang C.Y., Feng Y., Liu Z., Zeng Q., Cheng L., Sun Y.E., et al. Genetic programs in human and mouse early embryos revealed by single-cell RNA sequencing. Nature. 2013;500:593–597. doi: 10.1038/nature12364. PubMed DOI PMC

Abe K.I., Funaya S., Tsukioka D., Kawamura M., Suzuki Y., Suzuki M.G., Schultz R.M., Aoki F. Minor zygotic gene activation is essential for mouse preimplantation development. Proc. Natl. Acad. Sci. USA. 2018;115:E6780–E6788. doi: 10.1073/pnas.1804309115. PubMed DOI PMC

Sha Q.Q., Zhu Y.Z., Li S., Jiang Y., Chen L., Sun X.H., Shen L., Ou X.H., Fan H.Y. Characterization of zygotic genome activation-dependent maternal mRNA clearance in mouse. Nucleic Acids Res. 2020;48:879–894. doi: 10.1093/nar/gkz1111. PubMed DOI PMC

Sha Q.Q., Zheng W., Wu Y.W., Li S., Guo L., Zhang S., Lin G., Ou X.H., Fan H.Y. Dynamics and clinical relevance of maternal mRNA clearance during the oocyte-to-embryo transition in humans. Nat. Commun. 2020;11:4917. doi: 10.1038/s41467-020-18680-6. PubMed DOI PMC

Lee M.T., Bonneau A.R., Giraldez A.J. Zygotic genome activation during the maternal-to-zygotic transition. Annu. Rev. Cell Dev. Biol. 2014;30:581–613. doi: 10.1146/annurev-cellbio-100913-013027. PubMed DOI PMC

Jukam D., Shariati S.A.M., Skotheim J.M. Zygotic Genome Activation in Vertebrates. Dev. Cell. 2017;42:316–332. doi: 10.1016/j.devcel.2017.07.026. PubMed DOI PMC

Flyamer I.M., Gassler J., Imakaev M., Brandão H.B., Ulianov S.V., Abdennur N., Razin S.V., Mirny L.A., Tachibana-Konwalski K. Single-nucleus Hi-C reveals unique chromatin reorganization at oocyte-to-zygote transition. Nature. 2017;544:110–114. doi: 10.1038/nature21711. PubMed DOI PMC

Halstead M.M., Ma X., Zhou C., Schultz R.M., Ross P.J. Chromatin remodeling in bovine embryos indicates species-specific regulation of genome activation. Nat. Commun. 2020;11:4654. doi: 10.1038/s41467-020-18508-3. PubMed DOI PMC

Hug C.B., Vaquerizas J.M. The Birth of the 3D Genome during Early Embryonic Development. Trends Genet. 2018;34:903–914. doi: 10.1016/j.tig.2018.09.002. PubMed DOI

Aoki F., Worrad D.M., Schultz R.M. Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev. Biol. 1997;181:296–307. doi: 10.1006/dbio.1996.8466. PubMed DOI

Latham K.E., Garrels J.I., Chang C., Solter D. Quantitative analysis of protein synthesis in mouse embryos. I. Extensive reprogramming at the one- and two-cell stages. Development. 1991;112:921–932. doi: 10.1242/dev.112.4.921. PubMed DOI

Hamatani T., Carter M.G., Sharov A.A., Ko M.S.H. Dynamics of Global Gene Expression Changes during Mouse Preimplantation Development. Dev. Cell. 2004;6:117–131. doi: 10.1016/S1534-5807(03)00373-3. PubMed DOI

Vassena R., Boué S., González-Roca E., Aran B., Auer H., Veiga A., Izpisua Belmonte J.C. Waves of early transcriptional activation and pluripotency program initiation during human preimplantation development. Development. 2011;138:3699–3709. doi: 10.1242/dev.064741. PubMed DOI PMC

Memili E., First N.L. Zygotic and embryonic gene expression in cow: A review of timing and mechanisms of early gene expression as compared with other species. Zygote. 2000;8:87–96. doi: 10.1017/S0967199400000861. PubMed DOI

Misirlioglu M., Page G.P., Sagirkaya H., Kaya A., Parrish J.J., First N.L., Memili E. Dynamics of global transcriptome in bovine matured oocytes and preimplantation embryos. Proc. Natl. Acad. Sci. USA. 2006;103:18905–18910. doi: 10.1073/pnas.0608247103. PubMed DOI PMC

Graf A., Krebs S., Zakhartchenko V., Schwalb B., Blum H., Wolf E. Fine mapping of genome activation in bovine embryos by RNA sequencing. Proc. Natl. Acad. Sci. USA. 2014;111:4139–4144. doi: 10.1073/pnas.1321569111. PubMed DOI PMC

Abe K., Yamamoto R., Franke V., Cao M., Suzuki Y., Suzuki M.G., Vlahovicek K., Svoboda P., Schultz R.M., Aoki F. The first murine zygotic transcription is promiscuous and uncoupled from splicing and 3’ processing. EMBO J. 2015;34:1523–1537. doi: 10.15252/embj.201490648. PubMed DOI PMC

Hochegger H., Takeda S., Hunt T. Cyclin-dependent kinases and cell-cycle transitions: Does one fit all. Nat. Rev. Mol. Cell Biol. 2008;9:910–916. doi: 10.1038/nrm2510. PubMed DOI

Koliopoulos M.G., Alfieri C. Cell cycle regulation by complex nanomachines. FEBS J. 2021 doi: 10.1111/febs.16082. PubMed DOI

Gelens L., Qian J., Bollen M., Saurin A.T. The Importance of Kinase-Phosphatase Integration: Lessons from Mitosis. Trends Cell Biol. 2018;28:6–21. doi: 10.1016/j.tcb.2017.09.005. PubMed DOI

Holder J., Poser E., Barr F.A. Getting out of mitosis: Spatial and temporal control of mitotic exit and cytokinesis by PP1 and PP2A. FEBS Lett. 2019;593:2908–2924. doi: 10.1002/1873-3468.13595. PubMed DOI

Peters J.M. The anaphase-promoting complex: Proteolysis in mitosis and beyond. Mol. Cell. 2002;9:931–943. doi: 10.1016/S1097-2765(02)00540-3. PubMed DOI

Acquaviva C., Pines J. The anaphase-promoting complex/cyclosome: APC/C. J. Cell Sci. 2006;119:2401–2404. doi: 10.1242/jcs.02937. PubMed DOI

Cogswell J.P., Godlevski M.M., Bonham M., Bisi J., Babiss L. Upstream stimulatory factor regulates expression of the cell cycle-dependent cyclin B1 gene promoter. Mol. Cell Biol. 1995;15:2782–2790. doi: 10.1128/MCB.15.5.2782. PubMed DOI PMC

King R.W., Peters J.M., Tugendreich S., Rolfe M., Hieter P., Kirschner M.W. A 20S complex containing CDC27 and CDC16 catalyzes the mitosis-specific conjugation of ubiquitin to cyclin B. Cell. 1995;81:279–288. doi: 10.1016/0092-8674(95)90338-0. PubMed DOI

Brandeis M., Hunt T. The proteolysis of mitotic cyclins in mammalian cells persists from the end of mitosis until the onset of S phase. EMBO J. 1996;15:5280–5289. doi: 10.1002/j.1460-2075.1996.tb00913.x. PubMed DOI PMC

Wasner M., Tschöp K., Spiesbach K., Haugwitz U., Johne C., Mössner J., Mantovani R., Engeland K. Cyclin B1 transcription is enhanced by the p300 coactivator and regulated during the cell cycle by a CHR-dependent repression mechanism. FEBS Lett. 2003;536:66–70. doi: 10.1016/S0014-5793(03)00028-0. PubMed DOI

Palozola K.C., Lerner J., Zaret K.S. A changing paradigm of transcriptional memory propagation through mitosis. Nat. Rev. Mol. Cell Biol. 2019;20:55–64. doi: 10.1038/s41580-018-0077-z. PubMed DOI PMC

Palozola K.C., Donahue G., Liu H., Grant G.R., Becker J.S., Cote A., Yu H., Raj A., Zaret K.S. Mitotic transcription and waves of gene reactivation during mitotic exit. Science. 2017;358:119–122. doi: 10.1126/science.aal4671. PubMed DOI PMC

Susor A., Jansova D., Anger M., Kubelka M. Translation in the mammalian oocyte in space and time. Cell Tissue Res. 2016;363:69–84. doi: 10.1007/s00441-015-2269-6. PubMed DOI

Sirard M.A., Florman H.M., Leibfried-Rutledge M.L., Barnes F.L., Sims M.L., First N.L. Timing of nuclear progression and protein synthesis necessary for meiotic maturation of bovine oocytes. Biol. Reprod. 1989;40:1257–1263. doi: 10.1095/biolreprod40.6.1257. PubMed DOI

Balakier H., MacLusky N.J., Casper R.F. Characterization of the first cell cycle in human zygotes: Implications for cryopreservation. Fertil. Steril. 1993;59:359–365. doi: 10.1016/S0015-0282(16)55678-7. PubMed DOI

Holm P., Shukri N.N., Vajta G., Booth P., Bendixen C., Callesen H. Developmental kinetics of the first cell cycles of bovine in vitro produced embryos in relation to their in vitro viability and sex. Theriogenology. 1998;50:1285–1299. doi: 10.1016/S0093-691X(98)00227-1. PubMed DOI

Fancsovits P., Toth L., Takacs Z.F., Murber A., Papp Z., Urbancsek J. Early pronuclear breakdown is a good indicator of embryo quality and viability. Fertil. Steril. 2005;84:881–887. doi: 10.1016/j.fertnstert.2005.03.068. PubMed DOI

Jones K.T. Mammalian egg activation: From Ca2+ spiking to cell cycle progression. Reproduction. 2005;130:813–823. doi: 10.1530/rep.1.00710. PubMed DOI

Radonova L., Svobodova T., Anger M. Regulation of the cell cycle in early mammalian embryos and its clinical implications. Int. J. Dev. Biol. 2019;63:113–122. doi: 10.1387/ijdb.180400ma. PubMed DOI

Chao H.X., Fakhreddin R.I., Shimerov H.K., Kedziora K.M., Kumar R.J., Perez J., Limas J.C., Grant G.D., Cook J.G., Gupta G.P., et al. Evidence that the human cell cycle is a series of uncoupled, memoryless phases. Mol. Syst. Biol. 2019;15:e8604. doi: 10.15252/msb.20188604. PubMed DOI PMC

Ciemerych M.A., Sicinski P. Cell cycle in mouse development. Oncogene. 2005;24:2877–2898. doi: 10.1038/sj.onc.1208608. PubMed DOI

Satyanarayana A., Kaldis P. Mammalian cell-cycle regulation: Several Cdks, numerous cyclins and diverse compensatory mechanisms. Oncogene. 2009;28:2925–2939. doi: 10.1038/onc.2009.170. PubMed DOI

Palmer N., Kaldis P. Regulation of the Embryonic Cell Cycle During Mammalian Preimplantation Development. Curr. Top. Dev. Biol. 2016;120:1–53. PubMed

Chotiner J.Y., Wolgemuth D.J., Wang P.J. Functions of cyclins and CDKs in mammalian gametogenesis†. Biol. Reprod. 2019;101:591–601. doi: 10.1093/biolre/ioz070. PubMed DOI PMC

Campbell G.J., Hands E.L., Van de Pette M. The Role of CDKs and CDKIs in Murine Development. Int. J. Mol. Sci. 2020;21:6343. doi: 10.3390/ijms21155343. PubMed DOI PMC

Kozar K., Ciemerych M.A., Rebel V.I., Shigematsu H., Zagozdzon A., Sicinska E., Geng Y., Yu Q., Bhattacharya S., Bronson R.T., et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell. 2004;118:477–491. doi: 10.1016/j.cell.2004.07.025. PubMed DOI

Geng Y., Yu Q., Sicinska E., Das M., Schneider J.E., Bhattacharya S., Rideout W.M., Bronson R.T., Gardner H., Sicinski P. Cyclin E Ablation in the Mouse. Cell. 2003;114:431–443. doi: 10.1016/S0092-8674(03)00645-7. PubMed DOI

Parisi T., Beck A.R., Rougier N., McNeil T., Lucian L., Werb Z., Amati B. Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J. 2003;22:4794–4803. doi: 10.1093/emboj/cdg482. PubMed DOI PMC

Brandeis M., Rosewell I., Carrington M., Crompton T., Jacobs M.A., Kirk J., Gannon J., Hunt T. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc. Natl. Acad. Sci. USA. 1998;95:4344–4349. doi: 10.1073/pnas.95.8.4344. PubMed DOI PMC

Strauss B., Harrison A., Coelho P.A., Yata K., Zernicka-Goetz M., Pines J. Cyclin B1 is essential for mitosis in mouse embryos, and its nuclear export sets the time for mitosis. J. Cell Biol. 2018;217:179–193. doi: 10.1083/jcb.201612147. PubMed DOI PMC

Zhang Q.H., Yuen W.S., Adhikari D., Flegg J.A., FitzHarris G., Conti M., Sicinski P., Nabti I., Marangos P., Carroll J. Cyclin A2 modulates kinetochore-microtubule attachment in meiosis II. J. Cell Biol. 2017;216:3133–3143. doi: 10.1083/jcb.201607111. PubMed DOI PMC

Murphy M. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nat. Genet. 1999;23:481. doi: 10.1038/70612. PubMed DOI

Hara K.T., Oda S., Naito K., Nagata M., Schultz R.M., Aoki F. Cyclin A2-CDK2 regulates embryonic gene activation in 1-cell mouse embryos. Dev. Biol. 2005;286:102–113. doi: 10.1016/j.ydbio.2005.07.012. PubMed DOI

Pagliuca F.W., Collins M.O., Lichawska A., Zegerman P., Choudhary J.S., Pines J. Quantitative proteomics reveals the basis for the biochemical specificity of the cell-cycle machinery. Mol. Cell. 2011;43:406–417. doi: 10.1016/j.molcel.2011.05.031. PubMed DOI PMC

Hégarat N., Crncec A., Suarez Peredo Rodriguez M.F., Echegaray Iturra F., Gu Y., Busby O., Lang P.F., Barr A.R., Bakal C., Kanemaki M.T., et al. Cyclin A triggers Mitosis either via the Greatwall kinase pathway or Cyclin B. EMBO J. 2020;39:e104419. doi: 10.15252/embj.2020104419. PubMed DOI PMC

Kanakkanthara A., Jeganathan K.B., Limzerwala J.F., Baker D.J., Hamada M., Nam H.J., van Deursen W.H., Hamada N., Naylor R.M., Becker N.A., et al. Cyclin A2 is an RNA binding protein that controls Mre11 mRNA translation. Science. 2016;353:1549–1552. doi: 10.1126/science.aaf7463. PubMed DOI PMC

Kalaszczynska I., Geng Y., Iino T., Mizuno S., Choi Y., Kondratiuk I., Silver D.P., Wolgemuth D.J., Akashi K., Sicinski P. Cyclin A is redundant in fibroblasts but essential in hematopoietic and embryonic stem cells. Cell. 2009;138:352–365. doi: 10.1016/j.cell.2009.04.062. PubMed DOI PMC

Santamaría D., Barrière C., Cerqueira A., Hunt S., Tardy C., Newton K., Cáceres J.F., Dubus P., Malumbres M., Barbacid M. Cdk1 is sufficient to drive the mammalian cell cycle. Nature. 2007;448:811–815. doi: 10.1038/nature06046. PubMed DOI

Diril M.K., Ratnacaram C.K., Padmakumar V.C., Du T., Wasser M., Coppola V., Tessarollo L., Kaldis P. Cyclin-dependent kinase 1 (Cdk1) is essential for cell division and suppression of DNA re-replication but not for liver regeneration. Proc. Natl. Acad. Sci. USA. 2012;109:3826–3831. doi: 10.1073/pnas.1115201109. PubMed DOI PMC

Pagano M., Jackson P.K. Wagging the dogma; tissue-specific cell cycle control in the mouse embryo. Cell. 2004;118:535–538. doi: 10.1016/j.cell.2004.08.013. PubMed DOI

Susor A., Kubelka M. Translational Regulation in the Mammalian Oocyte. Results Probl. Cell Differ. 2017;63:257–295. PubMed

Sha Q.Q., Zhang J., Fan H.Y. A story of birth and death: mRNA translation and clearance at the onset of Maternal-to-Zygotic transition in mammals. Biol. Reprod. 2019;101:579–590. doi: 10.1093/biolre/ioz012. PubMed DOI

Esencan E., Kallen A., Zhang M., Seli E. Translational activation of maternally derived mRNAs in oocytes and early embryos and the role of embryonic poly(A) binding protein (EPAB) Biol. Reprod. 2019;100:1147–1157. doi: 10.1093/biolre/ioz034. PubMed DOI PMC

Gonzalez L., Nebreda A.R. RINGO/Speedy proteins, a family of non-canonical activators of CDK1 and CDK2. Semin. Cell Dev. Biol. 2020;107:21–27. doi: 10.1016/j.semcdb.2020.03.010. PubMed DOI

Vassalli J.D., Huarte J., Belin D., Gubler P., Vassalli A., O’Connell M.L., Parton L.A., Rickles R.J., Strickland S. Regulated polyadenylation controls mRNA translation during meiotic maturation of mouse oocytes. Genes Dev. 1989;3:2163–2171. doi: 10.1101/gad.3.12b.2163. PubMed DOI

McGrew L.L., Dworkin-Rastl E., Dworkin M.B., Richter J.D. Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element. Genes Dev. 1989;3:803–815. doi: 10.1101/gad.3.6.803. PubMed DOI

Groisman I., Jung M.Y., Sarkissian M., Cao Q., Richter J.D. Translational control of the embryonic cell cycle. Cell. 2002;109:473–483. doi: 10.1016/S0092-8674(02)00733-X. PubMed DOI

Richter J.D. CPEB: A life in translation. Trends Biochem. Sci. 2007;32:279–285. doi: 10.1016/j.tibs.2007.04.004. PubMed DOI

Seli E., Lalioti M.D., Flaherty S.M., Sakkas D., Terzi N., Steitz J.A. An embryonic poly(A)-binding protein (ePAB) is expressed in mouse oocytes and early preimplantation embryos. Proc. Natl. Acad. Sci. USA. 2005;102:367–372. doi: 10.1073/pnas.0408378102. PubMed DOI PMC

Kronja I., Orr-Weaver T.L. Translational regulation of the cell cycle: When, where, how and why. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2011;366:3638–3652. doi: 10.1098/rstb.2011.0084. PubMed DOI PMC

Yang Y., Yang C.R., Han S.J., Daldello E.M., Cho A., Martins J.P.S., Xia G., Conti M. Maternal mRNAs with distinct 3’ UTRs define the temporal pattern of Ccnb1 synthesis during mouse oocyte meiotic maturation. Genes Dev. 2017;31:1302–1307. doi: 10.1101/gad.296871.117. PubMed DOI PMC

Yatskevich S., Rhodes J., Nasmyth K. Organization of Chromosomal DNA by SMC Complexes. Annu. Rev. Genet. 2019;53:445–482. doi: 10.1146/annurev-genet-112618-043633. PubMed DOI

Waizenegger I.C., Hauf S., Meinke A., Peters J.M. Two distinct pathways remove mammalian cohesin from chromosome arms in prophase and from centromeres in anaphase. Cell. 2000;103:399–410. doi: 10.1016/S0092-8674(00)00132-X. PubMed DOI

Perea-Resa C., Bury L., Cheeseman I.M., Blower M.D. Cohesin Removal Reprograms Gene Expression upon Mitotic Entry. Mol. Cell. 2020;78:127–140.e7. doi: 10.1016/j.molcel.2020.01.023. PubMed DOI PMC

Ciosk R., Zachariae W., Michaelis C., Shevchenko A., Mann M., Nasmyth K. An ESP1/PDS1 complex regulates loss of sister chromatid cohesion at the metaphase to anaphase transition in yeast. Cell. 1998;93:1067–1076. doi: 10.1016/S0092-8674(00)81211-8. PubMed DOI

Kamenz J., Hauf S. Time To Split Up: Dynamics of Chromosome Separation. Trends Cell Biol. 2017;27:42–54. doi: 10.1016/j.tcb.2016.07.008. PubMed DOI

Kudo N.R., Wassmann K., Anger M., Schuh M., Wirth K.G., Xu H., Helmhart W., Kudo H., McKay M., Maro B., et al. Resolution of chiasmata in oocytes requires separase-mediated proteolysis. Cell. 2006;126:135–146. doi: 10.1016/j.cell.2006.05.033. PubMed DOI

Tsou M.F., Stearns T. Mechanism limiting centrosome duplication to once per cell cycle. Nature. 2006;442:947–951. doi: 10.1038/nature04985. PubMed DOI

Kumar R. Separase: Function Beyond Cohesion Cleavage and an Emerging Oncogene. J. Cell Biochem. 2017;118:1283–1299. doi: 10.1002/jcb.25835. PubMed DOI

Maier N.K., Ma J., Lampson M.A., Cheeseman I.M. Separase cleaves the kinetochore protein Meikin at the meiosis I/II transition. Dev. Cell. 2021;56:2192–2206.e8. doi: 10.1016/j.devcel.2021.06.019. PubMed DOI PMC

Vijayakumari D., Müller J., Hauf S. Cdc48 influence on separase levels is independent of mitosis and suggests translational sensitivity of separase. bioRxiv. 2021 doi: 10.1101/2021.04.28.441771. PubMed DOI PMC

Meadows J.C., Millar J.B. Sharpening the anaphase switch. Biochem. Soc. Trans. 2015;43:19–22. doi: 10.1042/BST20140250. PubMed DOI

Hellmuth S., Gómez-H L., Pendás A.M., Stemmann O. Securin-independent regulation of separase by checkpoint-induced shugoshin-MAD2. Nature. 2020;580:536–541. doi: 10.1038/s41586-020-2182-3. PubMed DOI

Huang X., Andreu-Vieyra C.V., Wang M., Cooney A.J., Matzuk M.M., Zhang P. Preimplantation mouse embryos depend on inhibitory phosphorylation of separase to prevent chromosome missegregation. Mol. Cell Biol. 2009;29:1498–1505. doi: 10.1128/MCB.01778-08. PubMed DOI PMC

Li M., York J.P., Zhang P. Loss of Cdc20 causes a securin-dependent metaphase arrest in two-cell mouse embryos. Mol. Cell Biol. 2007;27:3481–3488. doi: 10.1128/MCB.02088-06. PubMed DOI PMC

Musacchio A. The Molecular Biology of Spindle Assembly Checkpoint Signaling Dynamics. Curr. Biol. 2015;25:R1002–R1018. doi: 10.1016/j.cub.2015.08.051. PubMed DOI

Pesenti M.E., Weir J.R., Musacchio A. Progress in the structural and functional characterization of kinetochores. Curr. Opin. Struct. Biol. 2016;37:152–163. doi: 10.1016/j.sbi.2016.03.003. PubMed DOI

Nagaoka S.I., Hodges C.A., Albertini D.F., Hunt P.A. Oocyte-specific differences in cell-cycle control create an innate susceptibility to meiotic errors. Curr. Biol. 2011;21:651–657. doi: 10.1016/j.cub.2011.03.003. PubMed DOI PMC

Sebestova J., Danylevska A., Novakova L., Kubelka M., Anger M. Lack of response to unaligned chromosomes in mammalian female gametes. Cell Cycle. 2012;11:3011–3018. doi: 10.4161/cc.21398. PubMed DOI PMC

Lane S.I., Yun Y., Jones K.T. Timing of anaphase-promoting complex activation in mouse oocytes is predicted by microtubule-kinetochore attachment but not by bivalent alignment or tension. Development. 2012;139:1947–1955. doi: 10.1242/dev.077040. PubMed DOI

Kyogoku H., Kitajima T.S. Large Cytoplasm Is Linked to the Error-Prone Nature of Oocytes. Dev. Cell. 2017;41:287–298.e4. doi: 10.1016/j.devcel.2017.04.009. PubMed DOI

Lane S.I.R., Jones K.T. Chromosome biorientation and APC activity remain uncoupled in oocytes with reduced volume. J. Cell Biol. 2017;216:3949–3957. doi: 10.1083/jcb.201606134. PubMed DOI PMC

Vázquez-Diez C., Paim L.M.G., FitzHarris G. Cell-Size-Independent Spindle Checkpoint Failure Underlies Chromosome Segregation Error in Mouse Embryos. Curr. Biol. 2019;29:865–873. doi: 10.1016/j.cub.2018.12.042. PubMed DOI

Bolton H., Graham S.J., Van der Aa N., Kumar P., Theunis K., Fernandez Gallardo E., Voet T., Zernicka-Goetz M. Mouse model of chromosome mosaicism reveals lineage-specific depletion of aneuploid cells and normal developmental potential. Nat. Commun. 2016;7:11165. doi: 10.1038/ncomms11165. PubMed DOI PMC

Pauerova T., Radonova L., Kovacovicova K., Novakova L., Skultety M., Anger M. Aneuploidy during the onset of mouse embryo development. Reproduction. 2020;160:773–782. doi: 10.1530/REP-20-0086. PubMed DOI

Tsurumi C., Hoffmann S., Geley S., Graeser R., Polanski Z. The spindle assembly checkpoint is not essential for CSF arrest of mouse oocytes. J. Cell Biol. 2004;167:1037–1050. doi: 10.1083/jcb.200405165. PubMed DOI PMC

Kouznetsova A., Kitajima T.S., Brismar H., Höög C. Post-metaphase correction of aberrant kinetochore-microtubule attachments in mammalian eggs. EMBO Rep. 2019;20:e47905. doi: 10.15252/embr.201947905. PubMed DOI PMC

Yun Y., Lane S.I., Jones K.T. Premature dyad separation in meiosis II is the major segregation error with maternal age in mouse oocytes. Development. 2014;141:199–208. doi: 10.1242/dev.100206. PubMed DOI PMC

Dobles M., Liberal V., Scott M.L., Benezra R., Sorger P.K. Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell. 2000;101:635–645. doi: 10.1016/S0092-8674(00)80875-2. PubMed DOI

Tian Q., Hanlon Newell A.E., Wang Y., Olson S.B., Fedorov L.M. Complex cytogenetic analysis of early lethality mouse embryos. Chromosome Res. 2011;19:567–574. doi: 10.1007/s10577-011-9209-4. PubMed DOI

Kalitsis P., Earle E., Fowler K.J., Choo K.H. Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev. 2000;14:2277–2282. doi: 10.1101/gad.827500. PubMed DOI PMC

Iwanaga Y., Chi Y.H., Miyazato A., Sheleg S., Haller K., Peloponese J.M., Li Y., Ward J.M., Benezra R., Jeang K.T. Heterozygous deletion of mitotic arrest-deficient protein 1 (MAD1) increases the incidence of tumors in mice. Cancer Res. 2007;67:160–166. doi: 10.1158/0008-5472.CAN-06-3326. PubMed DOI

Wang Q., Liu T., Fang Y., Xie S., Huang X., Mahmood R., Ramaswamy G., Sakamoto K.M., Darzynkiewicz Z., Xu M., et al. BUBR1 deficiency results in abnormal megakaryopoiesis. Blood. 2004;103:1278–1285. doi: 10.1182/blood-2003-06-2158. PubMed DOI

Jeganathan K., Malureanu L., Baker D.J., Abraham S.C., van Deursen J.M. Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J. Cell Biol. 2007;179:255–267. doi: 10.1083/jcb.200706015. PubMed DOI PMC

Wells D., Bermudez M.G., Steuerwald N., Thornhill A.R., Walker D.L., Malter H., Delhanty J.D., Cohen J. Expression of genes regulating chromosome segregation, the cell cycle and apoptosis during human preimplantation development. Hum. Reprod. 2005;20:1339–1348. doi: 10.1093/humrep/deh778. PubMed DOI

Eliscovich C., Peset I., Vernos I., Méndez R. Spindle-localized CPE-mediated translation controls meiotic chromosome segregation. Nat. Cell Biol. 2008;10:858–865. doi: 10.1038/ncb1746. PubMed DOI

Hassold T., Hunt P. To err (meiotically) is human: The genesis of human aneuploidy. Nat. Rev. Genet. 2001;2:280–291. doi: 10.1038/35066065. PubMed DOI

Nagaoka S.I., Hassold T.J., Hunt P.A. Human aneuploidy: Mechanisms and new insights into an age-old problem. Nat. Rev. Genet. 2012;13:493–504. doi: 10.1038/nrg3245. PubMed DOI PMC

Van Echten-Arends J., Mastenbroek S., Sikkema-Raddatz B., Korevaar J.C., Heineman M.J., van der Veen F., Repping S. Chromosomal mosaicism in human preimplantation embryos: A systematic review. Hum. Reprod. Update. 2011;17:620–627. doi: 10.1093/humupd/dmr014. PubMed DOI

Ben-David U., Amon A. Context is everything: Aneuploidy in cancer. Nat. Rev. Genet. 2020;21:44–62. doi: 10.1038/s41576-019-0171-x. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...