A high incidence of chromosome abnormalities in two-cell stage porcine IVP embryos
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
25801469
DOI
10.1007/s13353-015-0280-y
PII: 10.1007/s13353-015-0280-y
Knihovny.cz E-zdroje
- Klíčová slova
- Aneuploidy, Comparative genomic hybridization, Embryo, Pig,
- MeSH
- aneuploidie MeSH
- chromozomální aberace * MeSH
- embryo savčí MeSH
- fertilizace in vitro veterinární MeSH
- srovnávací genomová hybridizace MeSH
- Sus scrofa embryologie genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
In pigs, in vitro production is difficult with a high occurrence of polyspermy and low blastocyst formation rates. To test the hypothesis that this may, at least in part, be due to chromosomal errors, we employed whole genome amplification and comparative genomic hybridization, performing comprehensive chromosome analysis to assess both cells of the two-cell stage in vitro porcine embryos. We thus described the incidence, nature and origin of chromosome abnormalities, i.e. whether they derived from incorrect meiotic division during gametogenesis or aberrant mitotic division in the zygote. We observed that 19 out of 51 (37%) of two-cell stage early pig IVP embryos had a chromosome abnormality, mostly originating from an abnormal division in the zygote. Moreover, we frequently encountered multiple aneuploidies and segmental chromosome aberrations. These results indicate that the pig may be particularly sensitive to in vitro production, which may, in turn, be due to incorrect chromosome segregations during meiosis and early cleavage divisions. We thus accept our hypothesis that chromosome abnormality could explain poor IVP outcomes in pigs.
Zobrazit více v PubMed
Hum Reprod Update. 2002 Jul-Aug;8(4):333-43 PubMed
Theriogenology. 2014 Jan 1;81(1):24-37 PubMed
Cytogenet Genome Res. 2009;126(1-2):210-6 PubMed
Hum Reprod. 1997 Apr;12(4):780-4 PubMed
Mol Reprod Dev. 2005 Sep;72(1):77-87 PubMed
Anim Reprod Sci. 2008 Aug;107(1-2):131-47 PubMed
Hum Reprod. 2002 Feb;17(2):413-9 PubMed
Eur J Obstet Gynecol Reprod Biol. 2014 Apr;175:152-6 PubMed
Hum Reprod Update. 2011 Sep-Oct;17(5):620-7 PubMed
Biol Reprod. 1994 Sep;51(3):373-9 PubMed
Hum Reprod. 2013 Jan;28(1):256-64 PubMed
Prenat Diagn. 2000 Jul;20(7):552-60 PubMed
Theriogenology. 2004 Jan 15;61(2-3):551-60 PubMed
Chromosome Res. 2007;15(3):399-408 PubMed
J Reprod Fertil. 1997 Sep;111(1):101-8 PubMed
Cytogenet Genome Res. 2003;102(1-4):179-83 PubMed
PLoS One. 2011 Apr 27;6(4):e18892 PubMed
Chromosome Res. 2012 May;20(4):447-60 PubMed
Biol Reprod. 1991 Jan;44(1):62-8 PubMed
Reprod Biomed Online. 2004 Jun;8(6):701-11 PubMed
Biol Reprod. 1999 Jun;60(6):1273-8 PubMed
Mol Reprod Dev. 1996 Jul;44(3):417-22 PubMed
Cancer Genet Cytogenet. 2000 Oct 1;122(1):7-12 PubMed
Theriogenology. 2007 Sep 15;68(5):755-62 PubMed
Hum Reprod. 2006 Jan;21(1):223-33 PubMed
Nat Commun. 2012;3:1251 PubMed
Nature. 1988 Mar 31;332(6163):459-61 PubMed
Reprod Biomed Online. 2008 Dec;17(6):841-7 PubMed
Biol Reprod. 1999 Nov;61(5):1340-6 PubMed
Theriogenology. 2003 Nov;60(8):1569-80 PubMed
Prenat Diagn. 1998 Mar;18(3):201-6 PubMed
PLoS One. 2012;7(1):e30335 PubMed
Hum Mol Genet. 2007 Oct 15;16 Spec No. 2:R203-8 PubMed
Nat Med. 2009 May;15(5):577-83 PubMed
Hum Reprod. 1994 Jul;9(7):1265-70 PubMed
Cytogenet Genome Res. 2011;133(2-4):141-8 PubMed
Hum Reprod. 2004 Dec;19(12):2859-68 PubMed
J Reprod Dev. 2008 Feb;54(1):22-9 PubMed
Theriogenology. 2003 Aug;60(3):571-81 PubMed
Fertil Steril. 2003 Oct;80(4):860-8 PubMed