Adenosine A1 Receptor Agonist 2-chloro-N6-cyclopentyladenosine and Hippocampal Excitability During Brain Development in Rats
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
31258477
PubMed Central
PMC6587156
DOI
10.3389/fphar.2019.00656
Knihovny.cz E-zdroje
- Klíčová slova
- adenosine receptor, agonist, development, epileptic afterdischarges, hippocampus, rat,
- Publikační typ
- časopisecké články MeSH
Objective: The adenosinergic system may influence excitability in the brain. Endogenous and exogenous adenosine has anticonvulsant activity presumably by activating A1 receptors. Adenosine A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA) may thus bolster anticonvulsant effects, but its action and the number of A1 receptors at different developmental stages are not known. Methods: Hippocampal epileptic afterdischarges (ADs) were elicited in 12-, 15-, 18-, 25-, 45-, and 60-day-old rats. Stimulation and recording electrodes were implanted into the dorsal hippocampus. The A1 receptor agonist 2-chloro-N6-cyclopentyladenosine (CCPA, 0.5 or 1 mg/kg) was administered intraperitoneally 10 min before the first stimulation. Control animals were injected with saline. All rats were stimulated with a 2-s series of 1-ms biphasic pulses delivered at 60 Hz with increasing stepwise intensity (0.05-0.6 mA). Each age and dose group contained 9-14 animals. The AD thresholds and durations were evaluated, and the A1 receptors were detected in the hippocampus in 7-, 10-, 12-, 15-, 18-, 21-, 25-, 32-, and 52-day-old rats. Results: Both CCPA doses significantly increased hippocampal AD thresholds in 12-, 15-, 18-, and 60-day-old rats compared to controls. In contrast, the higher dose significantly decreased AD threshold in the 25-day-old rats. The AD durations were significantly shortened in all age groups except for 25-day-old rats where they were significantly prolonged. A1 receptor expression in the hippocampus was highest in 10-day-old rats and subsequently decreased. Significance: The adenosine A1 receptor agonist CCPA exhibited anticonvulsant activity at all developmental stages studied here except for 25-day-old rats. Age-related differences might be due to the development of presynaptic A1 receptors in the hippocampus.
Zobrazit více v PubMed
Abdelmalik P. A., Burnham W. M., Carlen P. L. (2005). Increased seizure susceptibility of the hippocampus compared with the neocortex of the immature mouse brain in vitro. Epilepsia 46 (3), 356–366. 10.1111/j.0013-9580.2005.34204.x PubMed DOI
Aicardi J., Shorvon S. D., (1997). “Intractable epilepsy,” in Epilepsy: a comprehensive textbook. Eds. Engel J., Pedley T. A. (Philadelphia: Lippincott-Raven; ), 1325–1331.
Arosio B., Casati M., Gussago C., Ferri E., Abbate C., Scortichini V., et al. (2016). Adenosine Type A2A receptor in peripheral cell from patients with Alzheimer’s disease, vascular dementia, and idiopathic normal pressure hydrocephalus: a new/old potential target. J. Alzheimers Dis. 54 (2), 417–425. 10.3233/JAD-160324 PubMed DOI
Ault B., Wang C. M. (1986). Adenosine inhibits epileptiform activity arising in hippocampal area CA3. Br. J. Pharmacol. 87 (4), 695–703. 10.1111/j.1476-5381.1986.tb14587.x PubMed DOI PMC
Barrie A. P., Nicholls D. G. (1993). Adenosine A1 receptor inhibition of glutamate exocytosis and protein kinase C–mediated decoupling. J. Neurochem. 60, 1081–1086. 10.1111/j.1471-4159.1993.tb03257.x PubMed DOI
Bier D., Holschbach M. H., Wutz W., Olsson R. A., Coenen H. H. (2006). Metabolism of A(1)1 adenosine receptor positron tomography ligand [18F]8-cyclopentyl-3-(3-fluoropropyl)-1-propylxanthine ([18F]CPFPX) in rodents and humans. Drug Metab. Dispos. 34 (4), 570–576. 10.1124/dmd.105.006411 PubMed DOI
Boison D. (2005). Adenosine and epilepsy: from therapeutic rationale to new antiepileptic strategies. Neuroscientist 11 (1), 25–36. 10.1177/1073858404269112 PubMed DOI
Boison D., Aronica E. (2015). Comorbidities in neurology: is adenosine the common link? Neuropharmacology 97, 18–34. 10.1016/j.neuropharm.2015.04.031 PubMed DOI PMC
Bragin A., Penttonen M., Buzsáki G. (1997). Termination of epileptic afterdischarge in the hippocampus. J. Neurosci. 17 (7), 2567–2579. 10.1523/JNEUROSCI.17-07-02567.1997 PubMed DOI PMC
Camm A. J., Garratt C. J. (1991). Adenosine and supraventrivular tachycardia. N. Engl. J. Med. 325, 1621–1629. 10.1056/NEJM199112053252306 PubMed DOI
Cechova S., Elsobky A. M., Venton B. J. (2010). A1 receptors self-regulate adenosine release in the striatum: evidence of autoreceptor characteristics. Neuroscience 171 (4), 1006–1015. 10.1016/j.neuroscience.2010.09.063 PubMed DOI PMC
Clark A. N., Youkey R., Liu X., Jia L., Blatt R., Day Y. J., et al. (2007). A1 adenosine receptor activation promotes angiogenesis and release of VEGF from monocytes. Circ. Res. 101 (11), 1130–1138. 10.1161/CIRCRESAHA.107.150110 PubMed DOI
Colella A. D., Chegenii N., Tea M. N., Gibbins I. L., Williams K. A., Chataway T. K. (2012). Comparison of stain-free gels with traditional immunoblot loading control methodology. Anal. Biochem. 430, 108–110. 10.1016/j.ab.2012.08.015 PubMed DOI
Cornford E. M., Oldendorf W. H. (1975). Independent blood-brain barrier transport systems for nucleic acid precursors. Biochim. Biophys. Acta 394, 211–219. 10.1016/0005-2736(75)90259-X PubMed DOI
Costenla A. R., Diógenes M. J., Canas P. M., Rodrigues R. J., Nogueira C., Maroco J., et al. (2011). Enhanced role of adenosine A(2A) receptors in the modulation of LTP in the rat hippocampus upon ageing. Eur. J. Neurosci. 34 (1), 12–21. 10.1111/j.1460-9568.2011.07719.x PubMed DOI
Cunha R. A., Ribeiro J. A. (2000). Purinergic modulation of [(3)H]GABA release from rat hippocampal nerve terminals. Neuropharmacology 39 (7), 1156–1167. 10.1016/S0028-3908(99)00237-3 PubMed DOI
Cunha R. A., Constantino M. C., Sebastião A. M., Ribeiro J. A. (1995). Modification of A1 and A2a adenosine receptor binding in aged striatum, hippocampus and cortex of the rat. Neuroreport 6, 1583–1588. 10.1097/00001756-199507310-00029 PubMed DOI
Cunha R. A., Johansson B., Constantino M. D., Sebastiao A. M., Fredholm B. B. (1996). Evidence for high-affinity binding sites for the adenosine A2A receptor agonist [3 H] CGS 21680 in the rat hippocampus and cerebral cortex that are different from striatal A2A receptors. Naunyn Schmiedebergs Arch. Pharmacol. 353, 261–271. 10.1007/BF00168627 PubMed DOI
Cunha R. A., Milusheva E., Vizi E. S. (1994). Excitatory and inhibitory effects of A1 and A2A adenosine receptor activation on the electrically evoked [3H] acetylcholine release from different areas of the rat hippocampus. J. Neurochem. 63 (1), 207–214. 10.1046/j.1471-4159.1994.63010207.x PubMed DOI
Daval J., Werck M. (1991). Autoradiographic changes in brain adenosine A1 receptors and their coupling to G proteins following seizures in the developing rat. Brain Res. Dev. Brain Res. 59 (2), 237–247. 10.1016/0165-3806(91)90104-Q PubMed DOI
Daval J. L., Werck M. C., Nehlig A., Pereira de Vasconcelos A. (1991). Quantitative autoradiographic study of the postnatal development of adenosine A1 receptors and their coupling to G proteins in the rat brain. Neuroscience 40 (3), 841–851. 10.1016/0306-4522(91)90016-H PubMed DOI
Descombes S., Avoli M., Psarropoulou C. (1998). A comparison of the adenosine-mediated synaptic inhibition in the CA3 area of immature and adult rat hippocampus. Brain Res. Dev. Brain Res. 110 (1), 51–59. 10.1016/S0165-3806(98)00093-5 PubMed DOI
Doriat J. F., Humbert A. C., Daval J. L. (1996). Brain maturation of high-affinity adenosine A2 receptors and their coupling to G-proteins. Brain Res. Dev. Brain Res. 93 (1–2), 1–9. 10.1016/0165-3806(96)00009-0 PubMed DOI
Dunwiddie T. V., Masino S. A. (2001). The role and regulation of adenosine in the central nervous system. Annu. Rev. Neurosci. 24, 31–55. 10.1146/annurev.neuro.24.1.31 PubMed DOI
Ekonomou A., Sperk G., Kostopoulos G., Angelatou F. (2000). Reduction of A1 adenosine receptors in rat hippocampus after kainic acid–induced limbic seizures. Neurosci. Lett. 284, 49–52. 10.1016/S0304-3940(00)00954-X PubMed DOI
Fastbom J., Fredholm B. B. (1985). Inhibition of [3H] glutamate release from rat hippocampal slices by L-phenylisopropyladenosine. Acta Physiol. Scand. 125 (1), 121–123. 10.1111/j.1748-1716.1985.tb07698.x PubMed DOI
Frush D. P., McNamara J. O. (1986). Evidence implicating dentate granule cells in wet dog shakes produced by kindling stimulations of entorhinal cortex. Exp. Neurol. 92, 102–113. 10.1016/0014-4886(86)90128-7 PubMed DOI
Fumagalli M., Lecca D., Abbracchio M. P., Ceruti S. (2017). Pathophysiological role of purines and pyrimidines in neurodevelopment: unveiling new pharmacological approaches to congenital brain diseases. Front. Pharmacol. 19 (8), 941. 10.3389/fphar.2017.00941 PubMed DOI PMC
Geiger J. D., LaBella F. S., Nagy J. I. (1984). Ontogenesis of adenosine receptors in the central nervous system of the rat. Brain Res. 315 (1), 97–104. 10.1016/0165-3806(84)90080-4 PubMed DOI
Gorter J. A., van Vliet E. A., Lopes da Silva F. H. (2016). Which insights have we gained from the kindling and post-status epilepticus models? J. Neurosci. Methods 260, 96–108. 10.1016/j.jneumeth.2015.03.025 PubMed DOI
Greene R. W., Haas H. L. (1991). The electrophysiology of adenosine in the mammalian central nervous system. Prog. Neurobiol. 36 (4), 329–341. 10.1016/0301-0082(91)90005-L PubMed DOI
Huber A., Güttinger M., Möhler H., Boison D. (2002). Seizure suppression by adenosine A(2A) receptor activation in a rat model of audiogenic brainstem epilepsy. Neurosci. Lett. 329 (3), 289–292. 10.1016/S0304-3940(02)00684-5 PubMed DOI
Huber A., Padrun V., Déglon N., Aebischer P., Möhler H., Boison D. (2001). Grafts of adenosine-releasing cells suppress seizures in kindling epilepsy. Proc. Natl. Acad. Sci. U. S. A. 98, 7611–7616. 10.1073/pnas.131102898 PubMed DOI PMC
Ipata P. L. (2011). Origin, utilization, and recycling of nucleosides in central nervous system. Adv. Physiol. Educ. 35 (4), 342–346. 10.1152/advan.00068.2011 PubMed DOI
Isomura Y., Sugimoto M., Fujiwara-Tsukamoto Y., Yamamoto-Muraki S., Yamada J., Fukuda A. (2003). Synaptically activated Cl- accumulation responsible for depolarizing GABAergic responses in mature hippocampal neurons. J. Neurophysiol. 90, 2752–2756. 10.1152/jn.00142.2003 PubMed DOI
Janusz C. A., Berman R. F. (1993). The adenosine binding enhancer, PD 81,723, inhibits epileptiform bursting in the hippocampal brain slice. Brain Res. 619 (1–2), 131–136. 10.1016/0006-8993(93)91604-Q PubMed DOI
Jin Z. L., Lee T. F., Zhou S. J., Wang L. C. (1993). Age-dependent change in the inhibitory effect of an adenosine agonist on hippocampal acetylcholine release in rats. Brain Res. Bull. 30 (1–2), 149–152. 10.1016/0361-9230(93)90051-C PubMed DOI
Johansson B., Georgiev V., Fredholm B. B. (1997). Distribution and postnatal ontogeny of adenosine A2A receptors in rat brain: comparison with dopamine receptors. Neuroscience 80, 1187–1207. 10.1016/S0306-4522(97)00143-7 PubMed DOI
Johnston M. V. (2004). “Seizures in childhood,” in Nelson textbook of pediatrics, 17th Ed. Eds. Behrman R. E., Kliegman R. M., Jenson H. B. (Philadelphia: Saunders; ), 2013–2038.
Kandratavicius L., Balista P. A., Lopes-Aguiar C., Ruggiero R. N., Umeoka E. H., Garcia-Cairasco N., et al. (2014). Animal models of epilepsy: use and limitations. Neuropsychiat. Dis. Treat. 10, 1693–1705. 10.2147/NDT.S50371 PubMed DOI PMC
Klaasse E. C., Ijzerman A. P., de Grip W. J., Beukers M. W. (2008). Internalization and desensitization of adenosine receptors. Purinergic. Signal. 4 (1), 21–37. 10.1007/s11302-007-9086-7 PubMed DOI PMC
Klishin A., Lozovaya N., Krishtal O. (1995). A1 adenosine receptors differentially regulate the N-methyl-D-aspartate and non-N-methyl-D-aspartate receptor-mediated components of hippocampal excitatory postsynaptic current in a Ca2+/Mg(2+)-dependent manner. Neuroscience 65 (4), 947–953. 10.1016/0306-4522(94)00518-A PubMed DOI
Klitgaard H., Knutsen L. J., Thomsen C. (1993). Contrasting effects of adenosine A1 and A2 receptor ligands in different chemoconvulsive rodent models. Eur. J. Pharmacol. 242 (3), 221–228. 10.1016/0014-2999(93)90245-D PubMed DOI
Klotz K. N., Lohse M. J., Schwabe U., Cristalli G., Vittori S., Grifantini M. (1989). 2-Chloro-N6-[3H]cyclopentyladenosine ([3H]CCPA)—a high affinity agonist radioligand for A1 adenosine receptors. Naunyn Schmiedebergs Arch. Pharmacol. 340 (6), 679–683. 10.1007/BF00717744 PubMed DOI
Kotloski R., Lynch M., Lauersdorf S., Sutula T. (2002). Repeated brief seizures induce progressive hippocampal neuron loss and memory deficits. Prog. Brain Res. 135, 95–110. 10.1016/S0079-6123(02)35010-6 PubMed DOI
Layland J., Carrick D., Lee M., Oldroyd K., Berry C. (2014). Adenosine: physiology, pharmacology, and clinical applications. JACC Cardiovasc Interv. 7 (6), 581–591. 10.1016/j.jcin.2014.02.009 PubMed DOI
Lewin E., Bleck V. (1981). Electroshock seizures in mice: effect on brain adenosine and its metabolites. Epilepsia 22, 577–581. 10.1111/j.1528-1157.1981.tb04129.x PubMed DOI
Lopes L. V., Cunha R. A., Ribeiro J. A. (1999). Cross talk between A(1) and A(2A) adenosine receptors in the hippocampus and cortex of young adult and old rats. J. Neurophysiol. 82, 3196–3203. 10.1152/jn.1999.82.6.3196 PubMed DOI
Lopes L. V., Rebola N., Costenla A. R., Halldner L., Jacobson M., Oliveira C. R., et al. (2003). Adenosine A3 receptors in the rat hippocampus: lack of interaction with A1 receptors. Drug Dev. Res. 58, 428–438. 10.1002/ddr.10188 DOI
Lowry O. H., Rosebrough N. J., Farr A. L., Randall R. J. (1951). Protein measurement with the Folin phenol reagent. J. Biol. Chem. 193, 265–275. PubMed
Marangos P. J., Patel J., Stivers J. (1982). Ontogeny of adenosine binding sites in rat forebrain and cerebellum. J. Neurochem. 39 (1), 267–270. 10.1111/j.1471-4159.1982.tb04732.x PubMed DOI
Mares P. (2014). A1 not A2A adenosine receptors play a role in cortical epileptic afterdischarges in immature rats. J. Neural Transm. 121 (11), 1329–1336. 10.1007/s00702-014-1234-y PubMed DOI
Mathot R. A. A., Appel S., van Schaick E. A., Soudijn W., Ijzerman A. P., Danhof M. (1993). High-performance liquid chromatography of the adenosine A1 agonist N6-cyclopentyladenosine and the A1 antagonist 8-cyclopentyltheophylline and its application in a pharmacokinetic study in rats. J. Chromatogr. 620, 113–120. 10.1016/0378-4347(93)80058-C PubMed DOI
Mills J. H., Alabanza L., Weksler B. B., Couraud P. O., Romero I. A., Bynoe M. S. (2011). Human brain endothelial cells are responsive to adenosine receptor activation. Purinergic. Signalling 7 (2), 265–273. 10.1007/s11302-011-9222-2 PubMed DOI PMC
Moshe S. L. (2010). Seizures early in life. Neurology 55, 15–20. PubMed
Ogunshola O. O., Stewart W. B., Mihalcik V., Solli T., Madri J. A., and Ment, L R. (2000). Neuronal VEGF expression correlates with angiogenesis in postnatal developing rat brain. Brain Res. Dev. Brain Res. 119 (1), 139–153. 10.1016/S0165-3806(99)00125-X PubMed DOI
Pagonopoulou O., Angelatou F. (1992). Reduction of A1 adenosine receptors in cortex, hippocampus and cerebellum in ageing mouse brain. Neuroreport 3, 735–737. 10.1097/00001756-199209000-00003 PubMed DOI
Pavan B., Ijzerman A. P. (1998). Processing of adenosine receptor agonists in rat and human whole blood. Biochem. Pharamacol. 56 (12), 1625–32. 10.1016/S0006-2952(98)00270-6 PubMed DOI
Peterson G. L. (1997). A simplification of the protein assay method of Lowry et al. which is more generally applicable. Anal. Biochem. 83, 346–356. 10.1016/0003-2697(77)90043-4 PubMed DOI
Pometlova M., Kubova H., Mares P. (2010). Effects of 2-chloroadenosine on cortical epileptic afterdischarges in immature rats. Pharmacol. Rep. 62, 62–67. 10.1016/S1734-1140(10)70243-7 PubMed DOI
Rebola N., Coelho J. E., Costenla A. R., Lopes L. V., Parada A., Oliveira C. R., et al. (2003. b). Decrease of adenosine A1 receptor density and of adenosine neuromodulation in the hippocampus of kindled rats. Eur. J. Neurosci. 18, 820–828. 10.1046/j.1460-9568.2003.02815.x PubMed DOI
Rebola N., Rodrigues R. J., Lopes L. V., Richardson P. J., Oliveira C. R., Cunha R. A. (2005). Adenosine A1 and A2A receptors are co-expressed in pyramidal neurons and co-localized in glutamatergic nerve terminals of the rat hippocampus. Neuroscience 133 (1), 79–83. 10.1016/j.neuroscience.2005.01.054 PubMed DOI
Rebola N., Sebastião A. M., de Mendonca A., Oliveira C. R., Ribeiro J. A., Cunha R. A. (2003. a). Enhanced adenosine A2A receptor facilitation of synaptic transmission in the hippocampus of aged rats. J. Neurophysiol. 90 (2), 1295–1303. 10.1152/jn.00896.2002 PubMed DOI
Ribeiro F. F., Xapelli S., Miranda-Lourenço C., Tanqueiro S. R., Fonseca-Gomes J., Diógenes M. J., et al. (2016). Purine nucleosides in neuroregeneration and neuroprotection. Neuropharmacology 104, 226–242. 10.1016/j.neuropharm.2015.11.006 PubMed DOI
Rivkees S. A. (1995). The ontogeny of cardiac and neural A1 adenosine receptor expression in rats. Brain Res. Dev. Brain Res. 89 (2), 202–213. 10.1016/0165-3806(95)00120-3 PubMed DOI
Rivkees S. A., Price S. L., Zhou F. C. (1995). Immunohistochemical detection of A1 adenosine receptors in rat brain with emphasis on localization in the hippocampal formation, cerebral cortex, cerebellum, and basal ganglia. Brain Res. 677 (2), 193–203. 10.1016/0006-8993(95)00062-U PubMed DOI
Sanchez R. M., Jensen F. (2001). Maturational aspects of epilepsy mechanisms and consequences for the immature brain. Epilepsia 42 (5), 577–585. 10.1046/j.1528-1157.2001.12000.x PubMed DOI
Schultz V., Lowenstein J. M. (1978). The purine nucleotide cycle. J. Biol. Chem. 253, 1938–1943. PubMed
Simonato M., Varani K., Muzzolini A., Bianchi C., Beani L., Borea P. A. (1994). Adenosine A1 receptors in the rat brain in the kindling model of epilepsy. Eur. J. Pharmacol. 265 (3), 121–124. 10.1016/0014-2999(94)90421-9 PubMed DOI
Sollevi A. (1997). Adenosine for pain control. Acta. Anaesthesiol. Scand. Suppl. 110, 135–136. 10.1111/j.1399-6576.1997.tb05532.x PubMed DOI
Tancredi V., D’Antuono M., Nehlig A., Avoli M. (1998). Modulation of epileptiform activity by adenosine A1 receptor-mediated mechanisms in the juvenile rat hippocampus. J. Pharmacol. Exp. Ther. 286 (3), 1412–1419. PubMed
Taylor C. P., Dudek F. E. (1982). Synchronous neural afterdischarges in rat hippocampal slices without active chemical synapses. Science 218 (4574), 810–812. 10.1126/science.7134978 PubMed DOI
Veliskova J., Velisek L., Mares P. (1988). Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol. Bohemoslov. 37 (5), 395–405. PubMed
Viitanen T., Ruusuvuori E., Kaila K., Voipio J. (2010). The K+-Cl cotransporter KCC2 promotes GABAergic excitation in the mature rat hippocampus. J. Physiol. 588, 1527–1540. 10.1113/jphysiol.2009.181826 PubMed DOI PMC
Wieraszko A., Seyfried T. N. (1989). Increased amount of extracellular ATP in stimulated hippocampal slices of seizure prone mice. Neurosci. Lett. 106, 287–293. 10.1016/0304-3940(89)90178-X PubMed DOI
Wojcik W. J., Neff N. H. (1983). Differential location of adenosine A1 and A2 receptors in striatum. Neurosci. Lett. 41 (1–2), 55–60. 10.1016/0304-3940(83)90222-7 PubMed DOI
Zavala-Tecuapetla C., Kubova H., Otahal J., Tsenov G., Mares P. (2014). Age-dependent suppression of hippocampal epileptic afterdischarges by metabotropic glutamate receptor 5 antagonist MTEP. Pharmacol. Rep. 66, 927–930. 10.1016/j.pharep.2014.02.018 PubMed DOI
Zhou Q. Y., Li C., Olah M. E. (1992). Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. Proc. Natl. Acad. Sci. U. S. A. 89 (16), 7432–7437. 10.1073/pnas.89.16.7432 PubMed DOI PMC