Seizures elicited by transcorneal 6 Hz stimulation in developing rats
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
39752469
PubMed Central
PMC11698314
DOI
10.1371/journal.pone.0313681
PII: PONE-D-24-20334
Knihovny.cz E-zdroje
- MeSH
- elektrická stimulace * MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- rohovka patofyziologie patologie MeSH
- věkové faktory MeSH
- záchvaty * patofyziologie etiologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Seizures elicited by corneal 6-Hz stimulation are widely acknowledged as a model of temporal lobe seizures. Despite the intensive research in rodents, no studies hint at this model in developing animals. We focused on seven age groups of both male and female rats. Biphasic pulses with 0.3 ms duration and current intensities from 20 to 80 mA were applied transcorneally for 3 s to calculate threshold intensities for individual age groups. Threshold stimulation intensity necessary for elicitation of clonic seizures was highly age- and sex-dependent. The highest threshold was observed in the youngest (15-day-old) group then it decreased to the age of 25 days and increased again up to adulthood. The threshold current tended to be lower in females of all age groups. The incidence of convulsive seizures increased with stimulation intensity up to postnatal day 25 in either sex. In rats of 31 days old and older convulsions occurred irregularly regardless of the stimulation current and sex. For subsequent analysis, the animals were categorized into two groups: juveniles, aged 15 to 25 days, and adolescents/adults, aged 31 days and older. Our statistical analyses revealed an increased risk of convulsions after the stimulation with higher intensities in juvenile but not adolescent/adult rats. Females tended to be more sensitive to the stimulation with lower currents than males. Seizure severity was higher in females 18- to 25-day old compared to males of the same age and the seizure duration increased with stimulation intensities in juvenile but not adolescent/adult animals. The data extend the use of the rat 6 Hz model to immature animals and may be useful as a model of pediatric temporal lobe seizures.
Zobrazit více v PubMed
Toman JEP. Neuropharmacologic considerations in psychic seizures. Neurology 1951; 1:444–60. doi: 10.1212/wnl.1.11-12.444 PubMed DOI
Brown WC. Properties and alterations of electrically induced seizures in mice. Epilepsia 1953; 2:127–37.
Barton ME, Klein BD, Wolf HH, White HS. Pharmacological characterization of the 6 Hz psychomotor seizure model of partial epilepsy. Epilepsy Res. 2001; 47:217–27. doi: 10.1016/s0920-1211(01)00302-3 PubMed DOI
Walrave L, Maes K, Coppens J, Bentea E, Van Eeckhaut A, Massie A, et al.. Validation of the 6 Hz refractory seizure mouse model for intracerebroventricularly administered compounds. Epilepsy Res. 2015; 115:67–72. doi: 10.1016/j.eplepsyres.2015.06.003 Epub 2015 Jun 6. PubMed DOI
Smith M, Wilcox KS, White HS. Discovery of antiepileptic drugs. Neurotherapeutics 2007; 4:12–7. doi: 10.1016/j.nurt.2006.11.009 PubMed DOI PMC
Löscher W. The search for new screening models of pharmacoresistant epilepsy: Is induction of acute seizures in epileptic rodents a suitable approach? Neurochem Res. 2017; 42:1926–38. doi: 10.1007/s11064-016-2025-7 PubMed DOI
Sangdee P, Turkanis SA, Karler R, Portera Sanchez A. Kindling like effects induced by repeated corneal electro shock in mice. Epilepsia 1982; 23:471–9. PubMed
Matagne A, Klitgaard H. Validation of corneally kindled mice: a sensitive screening model for partial epilepsy in man. Epilepsy Res. 1998; 31:59–71. doi: 10.1016/s0920-1211(98)00016-3 PubMed DOI
Potschka H, Löscher W. Corneal kindling in mice: behavioral and phar,acological differences to conventional kindling. Epilepsy Res. 1999; 37:109–1210, PubMed
Rowley NM, White HS. Comparative anticonvulsant efficacy in the corneal kindled mouse model of partial epilepsy: Correlation with other seizure and epilepsy models. Epilepsy Res. 2010; 92:163–69. doi: 10.1016/j.eplepsyres.2010.09.002 PubMed DOI
Leclercq K, Matgne A, Kaminski RM. Low potency and limited efficacy of antiepileptic drugs in the mouse 6 Hz corneal kindling model. Epilepsy Res. 2014; 108:675–83. doi: 10.1016/j.eplepsyres.2014.02.013 PubMed DOI
Hartman AL, Lyle M, Rogawski MA, Gasior M. Efficacy of the ketogenic diet in the 6-Hz seizure test. Epilepsia 2008; 49:334–9. doi: 10.1111/j.1528-1167.2007.01430.x PubMed DOI PMC
Metcalf CS, West PJ, Thomson KE, Edwards SF, Smith MD, White HS, et al.. Development and Pharmacologic Characterization of the Rat 6 Hz Model of Partial Seizures Epilepsia 2017; 58:1073–84. doi: 10.1111/epi.13764 PubMed DOI PMC
Esneault E, Peyon G, Castagné V. Efficacy of anticonvulsant substances in the 6hz seizure test: comparison of two rodent species Epilepsy Res. 2017; 134:9–15. doi: 10.1016/j.eplepsyres.2017.05.002 PubMed DOI
Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia 1993; 34:453–68. doi: 10.1111/j.1528-1157.1993.tb02586.x PubMed DOI
Cherubini E, de Feo MR, Mecarelli O, Ricci GF. Behavioral and electrographic patterns induced by systemic administration of kainic acid in developing rats. Develop. Brain Res. 1983; 9:60–77. doi: 10.1016/0165-3806(83)90110-4 PubMed DOI
Albala BJ, Moshé SL, Okada R. Kainic acid-induced seizures: A developmental study. Develop. Brain Res. 1984; 13:139–148. doi: 10.1016/0165-3806(84)90085-3 PubMed DOI
Tremblay E, Nitecka L, Berger ML, Ben-Ari Y. Maturation of kainic acid seizure-brain damage syndrome in the rat. I. Clinical, electrographic and metabolic observations. Neuroscience 1984; 4:1051–1072. PubMed
Velíšková J, Velíšek L, Mareš P. Epileptic phenomena produced by kainic acid in laboratory rats during ontogenesis. Physiol. Bohemoslov. 1988; 37:395–405. PubMed
Cavalheiro EA, de Feo MR, Mecarelli O, Ricci GF. Intracortical and intrahippocampal injections of kainic acid in developing rats: an electrographic study. Electroenceph. Clin. Neurophysiol. 1983; 56:480–486. doi: 10.1016/0013-4694(83)90232-8 PubMed DOI
Cook TM, Crutcher KA. Intrahippocampal injection of kainic acid produces significant pyramidal cell loss in neonatal rats. Neurosscience 1986; 18:79–92. doi: 10.1016/0306-4522(86)90180-6 PubMed DOI
Mareš P, Kubová H. 6 Hz Seizure Model in Immature Rats AES Meeting Abstract 3.058, 2019.
Racine RJ. Modification of seizure activity by electrical stimulation: II. Motor seizures. Electroenceph. Clin. Neurophysiol. 1972; 32:281–94. PubMed
Bates D, Mächler M, Bolker B, Walker S. Fitting Linear Mixed-Effects Models Using lme4. J. Statistical Software, 2015; 67(1). doi: 10.18637/jss.v067.i01 DOI
Lenth RV. emmeans: Estimated Marginal Means, aka Least-Squares Means. 2021; https://cran.r-project.org/package=emmeans
R Core Team. R: A language and environment for statistical computing (3.6.3). 2023; R Foundation for Statistical Computing. http://www.r-project.org/
RStudio Team. RStudio: Integrated Development for R. (1.2.5033). 2019; RStudio, Inc. http://www.rstudio.com/
Wickham H. ggplot2. Springer; New York. 2009; doi: 10.1007/978-0-387-98141-3 DOI
Wickham H, Averick M, Bryan J, Chang W., McGowan L., François R., et al.. Welcome to the Tidyverse. J. Open Source Software 2019;4,1686. doi: 10.21105/joss.01686 DOI
Benjamini Y, Hochberg Y. Controlling the False Discovery Rate: A Practical and Powerful Approach to Multiple Testing. J. Royal Statistical Soc.: Series B (Methodological), 1995; 57:289–300. doi: 10.1111/j.2517-6161.1995.tb02031.x DOI
Velíšek L, Kubová H, Pohl M, Staňková L, Mareš P, Schickerová R. Pentylenetetrazol-induced seizures in rats: an ontogenetic study. Naunyn-Schmiedeberg’s Arch. Pharmacol. 1992; 346:588–91. doi: 10.1007/BF00169017 PubMed DOI
Browning RA, Nelson DK. Modification of electroshock and pentylenetetrazol seizure pattern in rats after precollicular transections. Exp. Neurol. 1986; 93:546–56. PubMed
Giordano C, Vinet J, Curia G, Biagini G. Repeated 6-Hz corneal stimulation progressively increases FosB/ FosB levels in the lateral amygdala and induces seizure generalization to the hippocampus. PLos ONE 2015; 10:e0141221. PubMed PMC
Fábera P, Pařízková M, Uttl L, Vondráková K, Kubová H, Tsenov G, et al.. Adenosine A1 Receptor Agonist 2-chloro-N6-cyclopentyladenosine and Hippocampal Excitability During Brain Development in Rats. Frontiers Pharmacol. 2019. doi: 10.3389/fphar.2019.00656 PubMed DOI PMC
Mareš P, Kubová H. Developmental patterns of postictal refractoriness and potentiation akin to cortical stimulation. Epilepsia 2015;56:e10–4. epub 2014 Dec 3. doi: 10.1111/epi.12870 PubMed DOI
Leibowitz SF, Akabayashi A, Alexander J, Karatayev O, Chang GQ. Puberty onset in female rats: relation to fat intake, ovarian steroids and the peptides, galanin and encephalin, in the paraventricular and medial preoptic nuclei. J Neuroendocrinol 2009; 538–549. doi: 10.1111/j.1365-2826.2009.01870.x PubMed DOI PMC
Jahan K, Pillai KK, Vohora D. Serotonergic mechanisms in the 6-Hz psychomotor seizures in mice. Hum Exp Toxicol 2019; 38:336–46. doi: 10.1177/0960327118814149 PubMed DOI
Mensah JA, Johnson K, Reilly CA, Wilcox KS, Rower JE, Matcalf CS. Evaluating the efficacy of prototype antiseizure drugs using a preclinical pharmacokinetic approach. Epilepsia 2022; 63:2937–2948. doi: 10.1111/epi.17402 PubMed DOI PMC