Chemical Composition and Rheological Properties of Seed Mucilages of Various Yellow- and Brown-Seeded Flax (Linum usitatissimum L.) Cultivars
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QJ1510274XXX
Ministry of Agriculture
20-SVV/2020
Ministry of Education Youth and Sports
PubMed
35631922
PubMed Central
PMC9145172
DOI
10.3390/polym14102040
PII: polym14102040
Knihovny.cz E-zdroje
- Klíčová slova
- cultivars, flaxseed mucilage, multivariate analysis, polysaccharides, rheology,
- Publikační typ
- časopisecké články MeSH
When seeds sown in the soil become wet, their hulls secrete viscous matter that can retain water and thus support germination. Flaxseed mucilage (FSM) is an example of such a material and is attractive for food, cosmetic, and pharmaceutical applications due to its suitable rheological properties. FSM consists mainly of two polysaccharides, namely, arabinoxylan and rhamnogalacturonan I, and it also contains some proteins, minerals, and phenolic compounds. The genotype and the year of the flax harvest can significantly affect the composition and functional properties of FSM. In this work, FSM samples were isolated from flax seeds of different cultivars and harvest years, and their structural and rheological properties were compared using statistical methods. The samples showed significant variability in composition and rheological properties depending on the cultivar and storage time. It was found that the ratio of two polysaccharide fractions and the contribution of less-prevalent proteins are important factors determining the rheological parameters of FSM, characterizing the shear-thinning, thixotropic, and dynamic viscoelastic behavior of this material in aqueous solutions. The yield strength and the hysteresis loop were found to be associated with the contribution of the pectin fraction, which included homogalacturonan and rhamnogalacturonan I. In contrast, the shear-thinning and especially the dynamic viscoelastic properties depended on the arabinoxylan content. Proteins also affected the viscoelastic properties and maintained the elastic component of FSM in the solution. The above structural and rheological characteristics should be taken into account when considering effective applications for this material.
Zobrazit více v PubMed
Jhala A.J., Hall L.M. Flax (Linum usitatissimum L.): Current uses and future applications. Aust. J. Basic Appl. Sci. 2010;4:4304–4312.
Rubilar M., Gutiérrez C., Verdugo M., Shene C., Sineiro J. Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr. 2010;10:373–377. doi: 10.4067/S0718-95162010000100010. DOI
Miart F., Fournet F., Dubrulle N., Petit E., Demailly H., Dupont L., Zabijak L., Marcelo P., Boudaoud A., Pineau C., et al. Cytological approaches combined with chemical analysis reveals the layered nature of flax mucilage. Front. Plant Sci. 2019;10:684. doi: 10.3389/fpls.2019.00684. PubMed DOI PMC
Ding H.H., Cui S.W., Goff H.D., Wang Q., Chen J., Han N.F. Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: Extraction and physicochemical characterization. Int. Food Res. J. 2014;56:166–173. doi: 10.1016/j.foodres.2013.12.005. DOI
Cui W., Mazza G., Oomah B.D., Biliaderis C.G. Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. Lebensm. Wiss Technol. 1994;27:363–369. doi: 10.1006/fstl.1994.1074. DOI
Kamel R., Afifi S.M., Kassem I.A., Elkasabgy N.A., Farag M.A. Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int. J. Biol. Macromol. 2020;165:2550–2564. doi: 10.1016/j.ijbiomac.2020.10.175. PubMed DOI
Fedeniuk R.W., Biliaderis C.G. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J. Agric. Food Chem. 1994;42:240–247. doi: 10.1021/jf00038a003. DOI
Warrand J., Michaud P., Picton L., Muller G., Courtois B., Ralainirina R., Courtois J. Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia. 2003;58:331–335.
Ding H.H., Qian K., Goff H.D., Wang Q., Cui S.W. Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chem. 2018;254:266–271. doi: 10.1016/j.foodchem.2018.01.159. PubMed DOI
Qian K.Y., Cui S.W., Nikiforuk J., Goff H.D. Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydr. Res. 2012;362:47–55. doi: 10.1016/j.carres.2012.08.005. PubMed DOI
Warrand J., Michaud P., Picton L., Muller G., Courtois B., Pailanirina R., Courtois J. Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage. Int. J. Biol. Macromol. 2005;35:121–125. doi: 10.1016/j.ijbiomac.2004.12.006. PubMed DOI
Naran R., Chen G., Carpita N.C. Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol. 2008;148:132–141. doi: 10.1104/pp.108.123513. PubMed DOI PMC
Ray S., Paynel F., Morvan C., Lerouge P., Driouich A., Ray B. Characterization of mucilage polysaccharides, arabinogalactan proteins and cell-wall hemicellulosic polysaccharides isolated from flax seed meal: A wealth of structural moieties. Carbohydr. Polym. 2013;93:651–660. doi: 10.1016/j.carbpol.2012.12.034. PubMed DOI
Cui W., Mazza G. Physicochemical characteristics of flaxseed gum. Int. Food Res. J. 1996;29:397–402. doi: 10.1016/0963-9969(96)00005-1. DOI
Chen W.Y., Chang H.Y., Lu J.K., Huang Y.C., Harroun S.G., Tseng Y.T., Li Y.J., Huang C.C., Chang H.T. Self-Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrug-Resistant Bacteria and Wound-Healing Application. Adv. Funct. Mater. 2015;25:7189–7199. doi: 10.1002/adfm.201503248. DOI
Cui W., Mazza G., Biliaderis C.G. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994;42:1891–1895. doi: 10.1021/jf00045a012. DOI
Kaur M., Kaur R., Punia S. Characterization of mucilages extracted from different flaxseed (Linum usitatissiumum L.) cultivars: A heteropolysaccharide with desirable functional and rheological properties. Int. J. Biol. Macromol. 2018;117:919–927. doi: 10.1016/j.ijbiomac.2018.06.010. PubMed DOI
Kaewmanee T., Bagnasco L., Benjakul S., Lanteri S., Morelli C.F., Speranza G., Cosulich M.E. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem. 2014;148:60–69. doi: 10.1016/j.foodchem.2013.10.022. PubMed DOI
Chornick T.L. Master’s Thesis. University of Manitoba; Winnipeg, MB, Canada: 2002. [(accessed on 25 March 2022)]. Effect of Cultivar and Sequential Ethanol Precipitation on the Physicochemical Properties of Flaxseed Mucilage. Available online: https://mspace.lib.umanitoba.ca/bitstream/handle/1993/19583/Chornick_Effect_of.pdf.
Synytsya A., Poučková P., Zadinová M., Troshchynska Y., Štětina J., Synytsya A., Saloň I., Král V. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats. Int. J. of Biol. Macromol. 2020;165:3156–3168. doi: 10.1016/j.ijbiomac.2020.09.251. PubMed DOI
Karami N., Kamkar A., Shahbazi Y., Misaghi A. Edible films based on chitosan-flaxseed mucilage: In vitro antimicrobial and antioxidant properties and their application on survival of food-borne pathogenic bacteria in raw minced trout fillets. Pharm. Biomed. Res. 2019;5:10–16. doi: 10.18502/pbr.v5i2.1580. DOI
Tee Y.B., Wong J., Tan M.C., Talib R.A. Development of edible film from flaxseed mucilage. BioResources. 2016;11:10286–10295. doi: 10.15376/biores.11.4.10286-10295. DOI
Soleimani-Rambod A., Zomorodi S., Naghizadeh Raeisi S., Khosrowshahi Asl A., Shahidi S.A. The effect of xanthan gum and flaxseed mucilage as edible coatings in Cheddar cheese during ripening. Coatings. 2018;8:80. doi: 10.3390/coatings8020080. DOI
Rodrigues F.J., Cedran M.F., Garcia S. Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius) Food Bioproc. Technol. 2018;11:1605–1614. doi: 10.1007/s11947-018-2128-z. DOI
Treviño-Garza M.Z., Correa-Cerón R.C., Ortiz-Lechuga E.G., Solís-Arévalo K.K., Castillo-Hernández S.L., Gallardo-Rivera C.T., Arévalo Niño K. Effect of linseed (Linum usitatissimum) mucilage and chitosan edible coatings on quality and shelf-life of fresh-cut cantaloupe (Cucumis melo) Coatings. 2019;9:368. doi: 10.3390/coatings9060368. DOI
Bitaghsir M., Kadivar M., Shahedi M. Investigation of the possibility of producing low-calorie cake containing flaxseed mucilage as fat replacer. Iran. J. Nutr. Sci. Food Technol. 2014;9:73–82.
Basiri S., Haidary N., Shekarforoush S.S., Niakousari M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018;187:59–65. doi: 10.1016/j.carbpol.2018.01.049. PubMed DOI
Akhtar M.N., Mushtaq Z., Ahmad N., Khan M.K., Ahmad M.H., Hussain A.I., Imran M. Optimal ultrasound-assisted process extraction, characterization, and functional product development from flaxseed meal derived polysaccharide gum. Processes. 2019;7:189. doi: 10.3390/pr7040189. DOI
Arabshahi-Delouee S., Rahati Ghochani S., Mohammadi A. Effect of flaxseed (Linum usitatissimum) mucilage on physicochemical and sensorial properties of semi-fat set yoghurt. J. Food Biosci. Technol. 2020;10:91–100.
Korus J., Witczak T., Ziobro R., Juszczak L. Linseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT-Food Sci. Technol. 2015;62:257–264. doi: 10.1016/j.lwt.2015.01.040. DOI
Chen H.H., Xu S.Y., Wang Z. Interaction between flaxseed gum and meat protein. J. Food Eng. 2007;80:1051–1059. doi: 10.1016/j.jfoodeng.2006.08.017. DOI
Kishk Y.F., Elsheshetawy H.E., Mahmoud E.A. Influence of isolated flaxseed mucilage as a non-starch polysaccharide on noodle quality. Int. J. Food Sci. Technol. 2011;46:661–668. doi: 10.1111/j.1365-2621.2010.02547.x. DOI
Wang D.W., Zhang Y.R., Huang H.F. A study on application of flaxseed gum in ice cream. J. Jilin Agricult. Univ. 2003;25:224–227.
Stewart S., Mazza G. Effect of flaxseed gum on quality and stability of a model salad dressing. J. Food Quality. 2000;23:373–390. doi: 10.1111/j.1745-4557.2000.tb00565.x. DOI
Chen H.H., Xu S., Wang Z. Film and foam properties of flaxseed gum. Food Ferment. Industr. 2006;32:34–37.
Alix S., Marais S., Morvan C., Lebrun L. Biocomposite materials from flax plants: Preparation and properties. Composites A Appl. Sci. Manufact. 2008;39:1793–1801. doi: 10.1016/j.compositesa.2008.08.008. DOI
Bustamante M., Villarroel M., Rubilar M., Shene C. Lactobacillus acidophilus La-05 encapsulated by spray drying: Effect of mucilage and protein from flaxseed (Linum usitatissimum L.) LWT-Food Sci. Technol. 2015;62:1162–1168. doi: 10.1016/j.lwt.2015.02.017. DOI
Treviño-Garza M.Z., Yañez-Echeverría S.A., García S., Mora-Zúñiga A.E., Arévalo-Niño K. Physico-mechanical, barrier and antimicrobial properties of linseed mucilage films incorporated with H. virginiana extract. Mexican J. Chem. Eng. 2020;19:983–996.
Fang S., Zhou Q., Hu Y., Liu F., Mei J., Xie J. Antimicrobial carvacrol incorporated in flaxseed gum-sodium alginate active films to improve the quality attributes of chinese sea bass (Lateolabrax maculatus) during cold storage. Molecules. 2019;24:3292. doi: 10.3390/molecules24183292. PubMed DOI PMC
Barbary O.M., Al-Sohaimy S.A., El-Saadani M.A., Zeitoun A.M.A. Extraction, composition and physicochemical properties of flaxseed mucilage. J Adv. Agric. Res. 2009;14:605–620.
Liang S., Li X., Ma X., Li A., Wang Y., Reaney M.J., Shim Y.Y. A flaxseed heteropolysaccharide stimulates immune responses and inhibits hepatitis B virus. Int. J. Biol. Macromol. 2019;136:230–240. doi: 10.1016/j.ijbiomac.2019.06.076. PubMed DOI
Kristensen M., Jensen M.G., Aarestrup J., Petersen K.E., Søndergaard L., Mikkelsen M.S., Astrup A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depends on food type. Nutr. Metabol. 2012;9:8. doi: 10.1186/1743-7075-9-8. PubMed DOI PMC
Luo J., Li Y., Mai Y., Gao L., Ou S., Wang Y., Liu L., Peng X. Flaxseed gum reduces body weight by regulating gut microbiota. J. Funct. Foods. 2018;47:136–142. doi: 10.1016/j.jff.2018.05.042. DOI
Biao Y., Jiannan H., Yaolan C., Shujie C., Dechun H., Mcclements D.J., Chongjiang C. Identification and characterization of antioxidant and immune-stimulatory polysaccharides in flaxseed hull. Food Chem. 2020;315:126266. doi: 10.1016/j.foodchem.2020.126266. PubMed DOI
Inamdar M.A., Abhang P.C., Momin M. Fenugreek & Flax Seeds Mucilages Used as a Pharmaceutical Binder. LAP LAMBERT Academic Publisher.; Chisinau, Moldova: 2013. pp. 1–76.
Haseeb M.T., Hussain M.A., Yuk S.H., Bashir S., Nauman M. Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on–off switching and drug release. Carbohydr. Polym. 2016;136:750–756. doi: 10.1016/j.carbpol.2015.09.092. PubMed DOI
Sheikh F.A., Hussain M.A., Ashraf M.U., Haseeb M.T., Farid-ul-Haq M. Linseed hydrogel based floating drug delivery system for fluoroquinolone: Design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm. J. 2020;28:538–549. doi: 10.1016/j.jsps.2020.03.005. PubMed DOI PMC
Basu S., Chakrabatorty S., Bandyopadhyay A.K. Development and evaluation of a mucoadhesive nasal gel of midazolam prepared with Linum usitatissimum L. seed mucilage. Sci. Pharm. 2009;77:899–910. doi: 10.3797/scipharm.0807-10. DOI
Basu S., Bandyopadhyay A.K. Characterization of mucoadhesive nasal gels containing midazolam hydrochloride prepared from Linum usitatissimum L. mucilage. Braz. J. Pharm. Sci. 2011;47:817–823. doi: 10.1590/S1984-82502011000400019. DOI
Nerkar P.P., Gattani S.G. Oromucosal delivery of venlafaxine by linseed mucilage based gel: In vitro and in vivo evaluation in rabbits. Arch. Pharm. Res. 2013;36:846–853. doi: 10.1007/s12272-013-0097-3. PubMed DOI
Deng Y., Chen J., Huang J., Yang X., Zhang X., Yuan S., Liao W. Preparation and characterization of cellulose/flaxseed gum composite hydrogel and its hemostatic and wound healing functions evaluation. Cellulose. 2020;27:3971–3988. doi: 10.1007/s10570-020-03055-3. DOI
Haseeb M.T., Hussain M.A., Abbas K., Youssif B.G., Bashir S., Yuk S.H., Bukhari S.N.A. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications. Int. J. Nanomed. 2017;12:2845. doi: 10.2147/IJN.S133971. PubMed DOI PMC
Wannerberger K., Nylander T., Nyman M. Rheologicai and chemical properties of mucilage in different varieties from linseed (Linum ucitatissimum L) Acta Agric. Scan. 1991;41:311–319. doi: 10.1080/00015129109439914. DOI
Liu J., Shim Y.Y., Shen J., Wang Y., Ghosh S., Reaney M.J. Variation of composition and functional properties of gum from six Canadian flaxseed (Linum usitatissimum L.) cultivars. Int. J. Food Sci. Technol. 2016;51:2313–2326. doi: 10.1111/ijfs.13200. DOI
Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC
Troshchynska Y., Bleha R., Kumbarová L., Sluková M., Sinica A., Štětina J. Characterisation of flaxseed cultivars based on NIR diffusion reflectance spectra of whole seeds and derived samples. Czech J. Food Sci. 2019;37:374–382. doi: 10.17221/270/2018-CJFS. DOI
Troshchynska Y., Bleha R., Kumbarová L., Sluková M., Sinica A., Štětina J. Discrimination of flax cultivars based on visible diffusion reflectance spectra and colour parameters of whole seeds. Czech J. Food Sci. 2019;37:199–204. doi: 10.17221/202/2018-CJFS. DOI
Ziolkovska A. Laws of flaxseed mucilage extraction. Food Hydrocol. 2012;26:197–204. doi: 10.1016/j.foodhyd.2011.04.022. DOI
Blakeney A.B., Harris P.J., Henry R.J., Stone B.A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 1983;113:291–299. doi: 10.1016/0008-6215(83)88244-5. DOI
Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–488. doi: 10.1016/0003-2697(73)90377-1. PubMed DOI
Ghica M.V., Hîrjău M., Lupuleasa D., Dinu-Pîrvu C.E. Flow and thixotropic parameters for rheological characterization of hydro-gels. Molecules. 2016;21:786. doi: 10.3390/molecules21060786. PubMed DOI PMC
Wang Y., Li D., Wang L.J., Xue J. Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydr. Polym. 2011;83:489–494. doi: 10.1016/j.carbpol.2010.08.015. DOI
Ikeda S., Nishinari K. “Weak gel”-type rheological properties of aqueous dispersions of non-aggregated κ-carrageenan helices. J. Agricult. Food Chem. 2001;49:4436–4441. doi: 10.1021/jf0103065. PubMed DOI
Özkan N., Xin H., Chen X.D. Application of a depth sensing indentation hardness test to evaluate the mechanical properties of food materials. J. Food Sci. 2002;65:1814–1820. doi: 10.1111/j.1365-2621.2002.tb08728.x. DOI
Chen Y., Zhang J.G., Sun H.J., Wei Z.J. Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. Int. J. Biol. Macromol. 2014;70:498–505. doi: 10.1016/j.ijbiomac.2014.07.024. PubMed DOI
Iagher F., Reicher F., Ganter J.L.M.S. Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp. Int. J. Biol. Macromol. 2002;31:9–17. doi: 10.1016/S0141-8130(02)00044-2. PubMed DOI
Ramachandran S., Chen S., Etzler F. Rheological characterization of hydroxypropylcellulose gels. Drug Develop. Industr. Pharm. 1999;25:153–161. doi: 10.1081/DDC-100102155. PubMed DOI
Razavi S.M.A., Karazhiyan H. Flow properties and tixotropy of selected hydrocolloids: Experimental and modeling studies. Food Hydrocol. 2009;23:908–912. doi: 10.1016/j.foodhyd.2008.05.010. DOI
Lardy F., Vennat B., Pouget M.P., Pourrat A. Functionalization of hydrocolloids: Principal component analysis applied to the study of correlations between parameters describing the consistency of hydrogels. Drug Develop. Industr. Pharm. 2000;26:715–721. doi: 10.1081/DDC-100101289. PubMed DOI
Fekri N., Khayami M., Heidari R., Jamee R. Chemical analysis of flaxseed, sweet basil, dragon head and quince seed mucilages. Res. J. Biol. Sci. 2008;3:166–170.
Kaushik P., Dowling K., Adhikari R., Barrow C.J., Adhikari B. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem. 2017;215:333–340. doi: 10.1016/j.foodchem.2016.07.137. PubMed DOI
Vieira J.M., Mantovani R.A., Raposo M.F.J., Coimbra M.A., Vicente A.A., Cunha R.L. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 2019;213:217–227. doi: 10.1016/j.carbpol.2019.02.078. PubMed DOI
Wang Y., Li D., Wang L.J., Li S.J., Adhikari B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydr. Polym. 2010;81:128–133. doi: 10.1016/j.carbpol.2010.02.005. DOI
Mazza G., Biliaderis C.G. Functional properties of flax seed mucilage. J. Food Sci. 1989;54:1302–1305. doi: 10.1111/j.1365-2621.1989.tb05978.x. DOI
Qian K.Y., Cui S.W., Wu Y., Goff H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocol. 2012;28:275–283. doi: 10.1016/j.foodhyd.2011.12.019. DOI
Oomah B.D., Kenaschuk E.O., Cui W., Mazza G. Variation in the composition of water-soluble polysaccharides in flaxseed. J. Agric. Food Chem. 1995;43:1484–1488. doi: 10.1021/jf00054a013. DOI
Guo Q., Zhu X., Zhen W., Li Z., Kang J., Sun X., Wang S., Cui S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocol. 2021;112:106289. doi: 10.1016/j.foodhyd.2020.106289. DOI
Kjøniksen A.L., Hiorth M., Roots J., Nyström B. Shear-induced association and gelation of aqueous solutions of pectin. J. Phys. Chem. B. 2003;107:6324–6328. doi: 10.1021/jp0302358. DOI
Tho I., Kjøniksen A.L., Nyström B., Roots J. Characterization of association and gelation of pectin in methanol−water mixtures. Biomacromolecules. 2003;4:1623–1629. doi: 10.1021/bm0300204. PubMed DOI
Bernaerts T.M., Kyomugasho C., Van Looveren N., Gheysen L., Foubert I., Hendrickx M.E., Van Loey A.M. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydr. Polym. 2018;195:542–550. doi: 10.1016/j.carbpol.2018.05.001. PubMed DOI
Larson R.G. The Structure and Rheology of Complex Fluids. Volume 150. Oxford University Press; New York, NY, USA: 1999. pp. 1–663.
Wientjes R.H., Duits M.H., Jongschaap R.J., Mellema J. Linear rheology of guar gum solutions. Macromolecules. 2000;33:9594–9605. doi: 10.1021/ma001065p. DOI