Chemical Composition and Rheological Properties of Seed Mucilages of Various Yellow- and Brown-Seeded Flax (Linum usitatissimum L.) Cultivars

. 2022 May 17 ; 14 (10) : . [epub] 20220517

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35631922

Grantová podpora
QJ1510274XXX Ministry of Agriculture
20-SVV/2020 Ministry of Education Youth and Sports

When seeds sown in the soil become wet, their hulls secrete viscous matter that can retain water and thus support germination. Flaxseed mucilage (FSM) is an example of such a material and is attractive for food, cosmetic, and pharmaceutical applications due to its suitable rheological properties. FSM consists mainly of two polysaccharides, namely, arabinoxylan and rhamnogalacturonan I, and it also contains some proteins, minerals, and phenolic compounds. The genotype and the year of the flax harvest can significantly affect the composition and functional properties of FSM. In this work, FSM samples were isolated from flax seeds of different cultivars and harvest years, and their structural and rheological properties were compared using statistical methods. The samples showed significant variability in composition and rheological properties depending on the cultivar and storage time. It was found that the ratio of two polysaccharide fractions and the contribution of less-prevalent proteins are important factors determining the rheological parameters of FSM, characterizing the shear-thinning, thixotropic, and dynamic viscoelastic behavior of this material in aqueous solutions. The yield strength and the hysteresis loop were found to be associated with the contribution of the pectin fraction, which included homogalacturonan and rhamnogalacturonan I. In contrast, the shear-thinning and especially the dynamic viscoelastic properties depended on the arabinoxylan content. Proteins also affected the viscoelastic properties and maintained the elastic component of FSM in the solution. The above structural and rheological characteristics should be taken into account when considering effective applications for this material.

Zobrazit více v PubMed

Jhala A.J., Hall L.M. Flax (Linum usitatissimum L.): Current uses and future applications. Aust. J. Basic Appl. Sci. 2010;4:4304–4312.

Rubilar M., Gutiérrez C., Verdugo M., Shene C., Sineiro J. Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr. 2010;10:373–377. doi: 10.4067/S0718-95162010000100010. DOI

Miart F., Fournet F., Dubrulle N., Petit E., Demailly H., Dupont L., Zabijak L., Marcelo P., Boudaoud A., Pineau C., et al. Cytological approaches combined with chemical analysis reveals the layered nature of flax mucilage. Front. Plant Sci. 2019;10:684. doi: 10.3389/fpls.2019.00684. PubMed DOI PMC

Ding H.H., Cui S.W., Goff H.D., Wang Q., Chen J., Han N.F. Soluble polysaccharides from flaxseed kernel as a new source of dietary fibres: Extraction and physicochemical characterization. Int. Food Res. J. 2014;56:166–173. doi: 10.1016/j.foodres.2013.12.005. DOI

Cui W., Mazza G., Oomah B.D., Biliaderis C.G. Optimization of an aqueous extraction process for flaxseed gum by response surface methodology. Lebensm. Wiss Technol. 1994;27:363–369. doi: 10.1006/fstl.1994.1074. DOI

Kamel R., Afifi S.M., Kassem I.A., Elkasabgy N.A., Farag M.A. Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int. J. Biol. Macromol. 2020;165:2550–2564. doi: 10.1016/j.ijbiomac.2020.10.175. PubMed DOI

Fedeniuk R.W., Biliaderis C.G. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J. Agric. Food Chem. 1994;42:240–247. doi: 10.1021/jf00038a003. DOI

Warrand J., Michaud P., Picton L., Muller G., Courtois B., Ralainirina R., Courtois J. Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia. 2003;58:331–335.

Ding H.H., Qian K., Goff H.D., Wang Q., Cui S.W. Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chem. 2018;254:266–271. doi: 10.1016/j.foodchem.2018.01.159. PubMed DOI

Qian K.Y., Cui S.W., Nikiforuk J., Goff H.D. Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydr. Res. 2012;362:47–55. doi: 10.1016/j.carres.2012.08.005. PubMed DOI

Warrand J., Michaud P., Picton L., Muller G., Courtois B., Pailanirina R., Courtois J. Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage. Int. J. Biol. Macromol. 2005;35:121–125. doi: 10.1016/j.ijbiomac.2004.12.006. PubMed DOI

Naran R., Chen G., Carpita N.C. Novel rhamnogalacturonan I and arabinoxylan polysaccharides of flax seed mucilage. Plant Physiol. 2008;148:132–141. doi: 10.1104/pp.108.123513. PubMed DOI PMC

Ray S., Paynel F., Morvan C., Lerouge P., Driouich A., Ray B. Characterization of mucilage polysaccharides, arabinogalactan proteins and cell-wall hemicellulosic polysaccharides isolated from flax seed meal: A wealth of structural moieties. Carbohydr. Polym. 2013;93:651–660. doi: 10.1016/j.carbpol.2012.12.034. PubMed DOI

Cui W., Mazza G. Physicochemical characteristics of flaxseed gum. Int. Food Res. J. 1996;29:397–402. doi: 10.1016/0963-9969(96)00005-1. DOI

Chen W.Y., Chang H.Y., Lu J.K., Huang Y.C., Harroun S.G., Tseng Y.T., Li Y.J., Huang C.C., Chang H.T. Self-Assembly of Antimicrobial Peptides on Gold Nanodots: Against Multidrug-Resistant Bacteria and Wound-Healing Application. Adv. Funct. Mater. 2015;25:7189–7199. doi: 10.1002/adfm.201503248. DOI

Cui W., Mazza G., Biliaderis C.G. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994;42:1891–1895. doi: 10.1021/jf00045a012. DOI

Kaur M., Kaur R., Punia S. Characterization of mucilages extracted from different flaxseed (Linum usitatissiumum L.) cultivars: A heteropolysaccharide with desirable functional and rheological properties. Int. J. Biol. Macromol. 2018;117:919–927. doi: 10.1016/j.ijbiomac.2018.06.010. PubMed DOI

Kaewmanee T., Bagnasco L., Benjakul S., Lanteri S., Morelli C.F., Speranza G., Cosulich M.E. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem. 2014;148:60–69. doi: 10.1016/j.foodchem.2013.10.022. PubMed DOI

Chornick T.L. Master’s Thesis. University of Manitoba; Winnipeg, MB, Canada: 2002. [(accessed on 25 March 2022)]. Effect of Cultivar and Sequential Ethanol Precipitation on the Physicochemical Properties of Flaxseed Mucilage. Available online: https://mspace.lib.umanitoba.ca/bitstream/handle/1993/19583/Chornick_Effect_of.pdf.

Synytsya A., Poučková P., Zadinová M., Troshchynska Y., Štětina J., Synytsya A., Saloň I., Král V. Hydrogels based on low-methoxyl amidated citrus pectin and flaxseed gum formulated with tripeptide glycyl-l-histidyl-l-lysine improve the healing of experimental cutting wounds in rats. Int. J. of Biol. Macromol. 2020;165:3156–3168. doi: 10.1016/j.ijbiomac.2020.09.251. PubMed DOI

Karami N., Kamkar A., Shahbazi Y., Misaghi A. Edible films based on chitosan-flaxseed mucilage: In vitro antimicrobial and antioxidant properties and their application on survival of food-borne pathogenic bacteria in raw minced trout fillets. Pharm. Biomed. Res. 2019;5:10–16. doi: 10.18502/pbr.v5i2.1580. DOI

Tee Y.B., Wong J., Tan M.C., Talib R.A. Development of edible film from flaxseed mucilage. BioResources. 2016;11:10286–10295. doi: 10.15376/biores.11.4.10286-10295. DOI

Soleimani-Rambod A., Zomorodi S., Naghizadeh Raeisi S., Khosrowshahi Asl A., Shahidi S.A. The effect of xanthan gum and flaxseed mucilage as edible coatings in Cheddar cheese during ripening. Coatings. 2018;8:80. doi: 10.3390/coatings8020080. DOI

Rodrigues F.J., Cedran M.F., Garcia S. Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius) Food Bioproc. Technol. 2018;11:1605–1614. doi: 10.1007/s11947-018-2128-z. DOI

Treviño-Garza M.Z., Correa-Cerón R.C., Ortiz-Lechuga E.G., Solís-Arévalo K.K., Castillo-Hernández S.L., Gallardo-Rivera C.T., Arévalo Niño K. Effect of linseed (Linum usitatissimum) mucilage and chitosan edible coatings on quality and shelf-life of fresh-cut cantaloupe (Cucumis melo) Coatings. 2019;9:368. doi: 10.3390/coatings9060368. DOI

Bitaghsir M., Kadivar M., Shahedi M. Investigation of the possibility of producing low-calorie cake containing flaxseed mucilage as fat replacer. Iran. J. Nutr. Sci. Food Technol. 2014;9:73–82.

Basiri S., Haidary N., Shekarforoush S.S., Niakousari M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018;187:59–65. doi: 10.1016/j.carbpol.2018.01.049. PubMed DOI

Akhtar M.N., Mushtaq Z., Ahmad N., Khan M.K., Ahmad M.H., Hussain A.I., Imran M. Optimal ultrasound-assisted process extraction, characterization, and functional product development from flaxseed meal derived polysaccharide gum. Processes. 2019;7:189. doi: 10.3390/pr7040189. DOI

Arabshahi-Delouee S., Rahati Ghochani S., Mohammadi A. Effect of flaxseed (Linum usitatissimum) mucilage on physicochemical and sensorial properties of semi-fat set yoghurt. J. Food Biosci. Technol. 2020;10:91–100.

Korus J., Witczak T., Ziobro R., Juszczak L. Linseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT-Food Sci. Technol. 2015;62:257–264. doi: 10.1016/j.lwt.2015.01.040. DOI

Chen H.H., Xu S.Y., Wang Z. Interaction between flaxseed gum and meat protein. J. Food Eng. 2007;80:1051–1059. doi: 10.1016/j.jfoodeng.2006.08.017. DOI

Kishk Y.F., Elsheshetawy H.E., Mahmoud E.A. Influence of isolated flaxseed mucilage as a non-starch polysaccharide on noodle quality. Int. J. Food Sci. Technol. 2011;46:661–668. doi: 10.1111/j.1365-2621.2010.02547.x. DOI

Wang D.W., Zhang Y.R., Huang H.F. A study on application of flaxseed gum in ice cream. J. Jilin Agricult. Univ. 2003;25:224–227.

Stewart S., Mazza G. Effect of flaxseed gum on quality and stability of a model salad dressing. J. Food Quality. 2000;23:373–390. doi: 10.1111/j.1745-4557.2000.tb00565.x. DOI

Chen H.H., Xu S., Wang Z. Film and foam properties of flaxseed gum. Food Ferment. Industr. 2006;32:34–37.

Alix S., Marais S., Morvan C., Lebrun L. Biocomposite materials from flax plants: Preparation and properties. Composites A Appl. Sci. Manufact. 2008;39:1793–1801. doi: 10.1016/j.compositesa.2008.08.008. DOI

Bustamante M., Villarroel M., Rubilar M., Shene C. Lactobacillus acidophilus La-05 encapsulated by spray drying: Effect of mucilage and protein from flaxseed (Linum usitatissimum L.) LWT-Food Sci. Technol. 2015;62:1162–1168. doi: 10.1016/j.lwt.2015.02.017. DOI

Treviño-Garza M.Z., Yañez-Echeverría S.A., García S., Mora-Zúñiga A.E., Arévalo-Niño K. Physico-mechanical, barrier and antimicrobial properties of linseed mucilage films incorporated with H. virginiana extract. Mexican J. Chem. Eng. 2020;19:983–996.

Fang S., Zhou Q., Hu Y., Liu F., Mei J., Xie J. Antimicrobial carvacrol incorporated in flaxseed gum-sodium alginate active films to improve the quality attributes of chinese sea bass (Lateolabrax maculatus) during cold storage. Molecules. 2019;24:3292. doi: 10.3390/molecules24183292. PubMed DOI PMC

Barbary O.M., Al-Sohaimy S.A., El-Saadani M.A., Zeitoun A.M.A. Extraction, composition and physicochemical properties of flaxseed mucilage. J Adv. Agric. Res. 2009;14:605–620.

Liang S., Li X., Ma X., Li A., Wang Y., Reaney M.J., Shim Y.Y. A flaxseed heteropolysaccharide stimulates immune responses and inhibits hepatitis B virus. Int. J. Biol. Macromol. 2019;136:230–240. doi: 10.1016/j.ijbiomac.2019.06.076. PubMed DOI

Kristensen M., Jensen M.G., Aarestrup J., Petersen K.E., Søndergaard L., Mikkelsen M.S., Astrup A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depends on food type. Nutr. Metabol. 2012;9:8. doi: 10.1186/1743-7075-9-8. PubMed DOI PMC

Luo J., Li Y., Mai Y., Gao L., Ou S., Wang Y., Liu L., Peng X. Flaxseed gum reduces body weight by regulating gut microbiota. J. Funct. Foods. 2018;47:136–142. doi: 10.1016/j.jff.2018.05.042. DOI

Biao Y., Jiannan H., Yaolan C., Shujie C., Dechun H., Mcclements D.J., Chongjiang C. Identification and characterization of antioxidant and immune-stimulatory polysaccharides in flaxseed hull. Food Chem. 2020;315:126266. doi: 10.1016/j.foodchem.2020.126266. PubMed DOI

Inamdar M.A., Abhang P.C., Momin M. Fenugreek & Flax Seeds Mucilages Used as a Pharmaceutical Binder. LAP LAMBERT Academic Publisher.; Chisinau, Moldova: 2013. pp. 1–76.

Haseeb M.T., Hussain M.A., Yuk S.H., Bashir S., Nauman M. Polysaccharides based superabsorbent hydrogel from Linseed: Dynamic swelling, stimuli responsive on–off switching and drug release. Carbohydr. Polym. 2016;136:750–756. doi: 10.1016/j.carbpol.2015.09.092. PubMed DOI

Sheikh F.A., Hussain M.A., Ashraf M.U., Haseeb M.T., Farid-ul-Haq M. Linseed hydrogel based floating drug delivery system for fluoroquinolone: Design, in vitro drug release and in vivo real-time floating detection. Saudi Pharm. J. 2020;28:538–549. doi: 10.1016/j.jsps.2020.03.005. PubMed DOI PMC

Basu S., Chakrabatorty S., Bandyopadhyay A.K. Development and evaluation of a mucoadhesive nasal gel of midazolam prepared with Linum usitatissimum L. seed mucilage. Sci. Pharm. 2009;77:899–910. doi: 10.3797/scipharm.0807-10. DOI

Basu S., Bandyopadhyay A.K. Characterization of mucoadhesive nasal gels containing midazolam hydrochloride prepared from Linum usitatissimum L. mucilage. Braz. J. Pharm. Sci. 2011;47:817–823. doi: 10.1590/S1984-82502011000400019. DOI

Nerkar P.P., Gattani S.G. Oromucosal delivery of venlafaxine by linseed mucilage based gel: In vitro and in vivo evaluation in rabbits. Arch. Pharm. Res. 2013;36:846–853. doi: 10.1007/s12272-013-0097-3. PubMed DOI

Deng Y., Chen J., Huang J., Yang X., Zhang X., Yuan S., Liao W. Preparation and characterization of cellulose/flaxseed gum composite hydrogel and its hemostatic and wound healing functions evaluation. Cellulose. 2020;27:3971–3988. doi: 10.1007/s10570-020-03055-3. DOI

Haseeb M.T., Hussain M.A., Abbas K., Youssif B.G., Bashir S., Yuk S.H., Bukhari S.N.A. Linseed hydrogel-mediated green synthesis of silver nanoparticles for antimicrobial and wound-dressing applications. Int. J. Nanomed. 2017;12:2845. doi: 10.2147/IJN.S133971. PubMed DOI PMC

Wannerberger K., Nylander T., Nyman M. Rheologicai and chemical properties of mucilage in different varieties from linseed (Linum ucitatissimum L) Acta Agric. Scan. 1991;41:311–319. doi: 10.1080/00015129109439914. DOI

Liu J., Shim Y.Y., Shen J., Wang Y., Ghosh S., Reaney M.J. Variation of composition and functional properties of gum from six Canadian flaxseed (Linum usitatissimum L.) cultivars. Int. J. Food Sci. Technol. 2016;51:2313–2326. doi: 10.1111/ijfs.13200. DOI

Saha D., Bhattacharya S. Hydrocolloids as thickening and gelling agents in food: A critical review. J. Food Sci. Technol. 2010;47:587–597. doi: 10.1007/s13197-010-0162-6. PubMed DOI PMC

Troshchynska Y., Bleha R., Kumbarová L., Sluková M., Sinica A., Štětina J. Characterisation of flaxseed cultivars based on NIR diffusion reflectance spectra of whole seeds and derived samples. Czech J. Food Sci. 2019;37:374–382. doi: 10.17221/270/2018-CJFS. DOI

Troshchynska Y., Bleha R., Kumbarová L., Sluková M., Sinica A., Štětina J. Discrimination of flax cultivars based on visible diffusion reflectance spectra and colour parameters of whole seeds. Czech J. Food Sci. 2019;37:199–204. doi: 10.17221/202/2018-CJFS. DOI

Ziolkovska A. Laws of flaxseed mucilage extraction. Food Hydrocol. 2012;26:197–204. doi: 10.1016/j.foodhyd.2011.04.022. DOI

Blakeney A.B., Harris P.J., Henry R.J., Stone B.A. A simple and rapid preparation of alditol acetates for monosaccharide analysis. Carbohydr. Res. 1983;113:291–299. doi: 10.1016/0008-6215(83)88244-5. DOI

Blumenkrantz N., Asboe-Hansen G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973;54:484–488. doi: 10.1016/0003-2697(73)90377-1. PubMed DOI

Ghica M.V., Hîrjău M., Lupuleasa D., Dinu-Pîrvu C.E. Flow and thixotropic parameters for rheological characterization of hydro-gels. Molecules. 2016;21:786. doi: 10.3390/molecules21060786. PubMed DOI PMC

Wang Y., Li D., Wang L.J., Xue J. Effects of high pressure homogenization on rheological properties of flaxseed gum. Carbohydr. Polym. 2011;83:489–494. doi: 10.1016/j.carbpol.2010.08.015. DOI

Ikeda S., Nishinari K. “Weak gel”-type rheological properties of aqueous dispersions of non-aggregated κ-carrageenan helices. J. Agricult. Food Chem. 2001;49:4436–4441. doi: 10.1021/jf0103065. PubMed DOI

Özkan N., Xin H., Chen X.D. Application of a depth sensing indentation hardness test to evaluate the mechanical properties of food materials. J. Food Sci. 2002;65:1814–1820. doi: 10.1111/j.1365-2621.2002.tb08728.x. DOI

Chen Y., Zhang J.G., Sun H.J., Wei Z.J. Pectin from Abelmoschus esculentus: Optimization of extraction and rheological properties. Int. J. Biol. Macromol. 2014;70:498–505. doi: 10.1016/j.ijbiomac.2014.07.024. PubMed DOI

Iagher F., Reicher F., Ganter J.L.M.S. Structural and rheological properties of polysaccharides from mango (Mangifera indica L.) pulp. Int. J. Biol. Macromol. 2002;31:9–17. doi: 10.1016/S0141-8130(02)00044-2. PubMed DOI

Ramachandran S., Chen S., Etzler F. Rheological characterization of hydroxypropylcellulose gels. Drug Develop. Industr. Pharm. 1999;25:153–161. doi: 10.1081/DDC-100102155. PubMed DOI

Razavi S.M.A., Karazhiyan H. Flow properties and tixotropy of selected hydrocolloids: Experimental and modeling studies. Food Hydrocol. 2009;23:908–912. doi: 10.1016/j.foodhyd.2008.05.010. DOI

Lardy F., Vennat B., Pouget M.P., Pourrat A. Functionalization of hydrocolloids: Principal component analysis applied to the study of correlations between parameters describing the consistency of hydrogels. Drug Develop. Industr. Pharm. 2000;26:715–721. doi: 10.1081/DDC-100101289. PubMed DOI

Fekri N., Khayami M., Heidari R., Jamee R. Chemical analysis of flaxseed, sweet basil, dragon head and quince seed mucilages. Res. J. Biol. Sci. 2008;3:166–170.

Kaushik P., Dowling K., Adhikari R., Barrow C.J., Adhikari B. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem. 2017;215:333–340. doi: 10.1016/j.foodchem.2016.07.137. PubMed DOI

Vieira J.M., Mantovani R.A., Raposo M.F.J., Coimbra M.A., Vicente A.A., Cunha R.L. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 2019;213:217–227. doi: 10.1016/j.carbpol.2019.02.078. PubMed DOI

Wang Y., Li D., Wang L.J., Li S.J., Adhikari B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydr. Polym. 2010;81:128–133. doi: 10.1016/j.carbpol.2010.02.005. DOI

Mazza G., Biliaderis C.G. Functional properties of flax seed mucilage. J. Food Sci. 1989;54:1302–1305. doi: 10.1111/j.1365-2621.1989.tb05978.x. DOI

Qian K.Y., Cui S.W., Wu Y., Goff H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocol. 2012;28:275–283. doi: 10.1016/j.foodhyd.2011.12.019. DOI

Oomah B.D., Kenaschuk E.O., Cui W., Mazza G. Variation in the composition of water-soluble polysaccharides in flaxseed. J. Agric. Food Chem. 1995;43:1484–1488. doi: 10.1021/jf00054a013. DOI

Guo Q., Zhu X., Zhen W., Li Z., Kang J., Sun X., Wang S., Cui S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocol. 2021;112:106289. doi: 10.1016/j.foodhyd.2020.106289. DOI

Kjøniksen A.L., Hiorth M., Roots J., Nyström B. Shear-induced association and gelation of aqueous solutions of pectin. J. Phys. Chem. B. 2003;107:6324–6328. doi: 10.1021/jp0302358. DOI

Tho I., Kjøniksen A.L., Nyström B., Roots J. Characterization of association and gelation of pectin in methanol−water mixtures. Biomacromolecules. 2003;4:1623–1629. doi: 10.1021/bm0300204. PubMed DOI

Bernaerts T.M., Kyomugasho C., Van Looveren N., Gheysen L., Foubert I., Hendrickx M.E., Van Loey A.M. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum. Carbohydr. Polym. 2018;195:542–550. doi: 10.1016/j.carbpol.2018.05.001. PubMed DOI

Larson R.G. The Structure and Rheology of Complex Fluids. Volume 150. Oxford University Press; New York, NY, USA: 1999. pp. 1–663.

Wientjes R.H., Duits M.H., Jongschaap R.J., Mellema J. Linear rheology of guar gum solutions. Macromolecules. 2000;33:9594–9605. doi: 10.1021/ma001065p. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...