Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
PubMed
35954070
PubMed Central
PMC9368198
DOI
10.3390/foods11152304
PII: foods11152304
Knihovny.cz E-zdroje
- Klíčová slova
- Linum usitatissimum L., flaxseed, flaxseed gum, flaxseed proteins, food hydrocolloids, functional properties, health benefits,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.
Zobrazit více v PubMed
Goyal A., Sharma V., Upadhyay N., Gill S., Sihag M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014;51:1633–1653. doi: 10.1007/s13197-013-1247-9. PubMed DOI PMC
Oomah B.D. Flaxseed by-products. In: Campos-Vega R., Oomah B.D., Vergara-Castaneda H.A., editors. Food Wastes and By-Products: Nutraceutical and Health Potential. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2020. pp. 267–289.
Kajla P., Sharma A., Sood D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015;52:1857–1871. doi: 10.1007/s13197-014-1293-y. PubMed DOI PMC
Parikh M., Maddaford T.G., Austria J.A., Aliani M., Netticadan T., Pierce G.N. Dietary flaxseed as a strategy for improving human health. Nutrients. 2019;11:1171. doi: 10.3390/nu11051171. PubMed DOI PMC
Kuijsten A., Arts I.C.W., van’t Veer P., Hollman P.C.H. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J. Nutr. 2005;135:2812–2816. doi: 10.1093/jn/135.12.2812. PubMed DOI
Morris D.H. Flax: A Health and Nutrition Primer. Flax Council of Canada; Winnipeg, MB, Canada: 2007. p. 140.
Singh K.K., Mridula D., Rehal J., Barnwal P. Flaxseed: A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr. 2011;51:210–222. doi: 10.1080/10408390903537241. PubMed DOI
Rubilar M., Gutiérrez C., Verdugo M., Shene C., Sineiro J. Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr. 2010;10:373–377. doi: 10.4067/S0718-95162010000100010. DOI
Wüstenberg T. General overview of food hydrocolloids. In: Wüstenberg T., editor. Cellulose and Cellulose Derivatives in the Food Industry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2014. pp. 1–68.
Williams P.A., Phillips G.O. 1—Introduction to food hydrocolloids. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing; Cambridge, UK: 2009. pp. 1–22.
Izydorczyk M., Cui S., Wang Q. Polysaccharide gums: Structures, functional properties, and applications. In: Cui S.W., editor. Food Carbohydrates: Chemistry, Physical Properties and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 2005. p. 46.
González-Pérez S., Arellano J.B. 15—Vegetable protein isolates. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing; Cambridge, UK: 2009. pp. 383–419.
Xu X., Liu W., Liu C., Luo L., Chen J., Luo S., McClements D.J., Wu L. Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocoll. 2016;61:251–260. doi: 10.1016/j.foodhyd.2016.05.023. DOI
Zang X., Yue C., Wang Y., Shao M., Yu G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019;85:168–174. doi: 10.1016/j.jcs.2018.09.001. DOI
Gao Y., Li J., Chang C., Wang C., Yang Y., Su Y. Effect of enzymatic hydrolysis on heat stability and emulsifying properties of egg yolk. Food Hydrocoll. 2019;97:105224. doi: 10.1016/j.foodhyd.2019.105224. DOI
Liu R., Wang L., Liu Y., Wu T., Zhang M. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocoll. 2018;81:39–47. doi: 10.1016/j.foodhyd.2018.01.031. DOI
Mudgil D., Barak S., Khatkar B.S. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. Int. J. Biol. Macromol. 2016;93:131–135. doi: 10.1016/j.ijbiomac.2016.08.064. PubMed DOI
Mudgil D., Barak S., Patel A., Shah N. Partially hydrolyzed guar gum as a potential prebiotic source. Int. J. Biol. Macromol. 2018;112:207–210. doi: 10.1016/j.ijbiomac.2018.01.164. PubMed DOI
Mary P.R., Prashanth K.V.H., Vasu P., Kapoor M. Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601) Carbohydr. Res. 2019;486:107822. doi: 10.1016/j.carres.2019.107822. PubMed DOI
Wongputtisin P., Khanongnuch C. Prebiotic properties of crude oligosaccharide prepared from enzymatic hydrolysis of basil seed gum. Food Sci. Biotechnol. 2015;24:1767–1773. doi: 10.1007/s10068-015-0230-9. DOI
Jian H.-L., Zhu L.-W., Zhang W.-M., Sun D.-F., Jiang J.-X. Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum. Int. J. Biol. Macromol. 2013;55:282–288. doi: 10.1016/j.ijbiomac.2013.01.025. PubMed DOI
Kot A., Kamińska-Dwórznicka A., Antczak A., Jakubczyk E., Matwijczuk A. Effect of ι-carrageenan and its acidic and enzymatic hydrolysates on ice crystal structure changes in model sucrose solution. Colloids Surf. A Physicochem. Eng. Asp. 2022;643:128744. doi: 10.1016/j.colsurfa.2022.128744. DOI
Yemenicioğlu A., Farris S., Turkyilmaz M., Gulec S. A review of current and future food applications of natural hydrocolloids. Int. J. Food Sci. Technol. 2020;55:1389–1406. doi: 10.1111/ijfs.14363. DOI
Safdar B., Pang Z., Liu X., Jatoi M.A., Mehmood A., Rashid M.T., Ali N., Naveed M. Flaxseed gum: Extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J. Food Biochem. 2019;43:e13014. doi: 10.1111/jfbc.13014. PubMed DOI
Liu J., Shim Y.Y., Tse T.J., Wang Y., Reaney M.J.T. Flaxseed gum a versatile natural hydrocolloid for food and non-food applications. Trends Food Sci. Technol. 2018;75:146–157. doi: 10.1016/j.tifs.2018.01.011. DOI
Biliaderis C.G., Izydorczyk M.S. Functional Food Carbohydrates. CRC Press; Boca Raton, FL, USA: 2006. p. 588.
Drozłowska E., Bartkowiak A., Łopusiewicz Ł. Characterization of flaxseed oil bimodal emulsions prepared with flaxseed oil cake extract applied as a natural emulsifying agent. Polymers. 2020;12:2207. doi: 10.3390/polym12102207. PubMed DOI PMC
Jiang Y., Reddy C.K., Huang K., Chen L., Xu B. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. Int. J. Biol. Macromol. 2019;133:1156–1163. doi: 10.1016/j.ijbiomac.2019.04.187. PubMed DOI
Vieira J.M., Mantovani R.A., Raposo M.F.J., Coimbra M.A., Vicente A.A., Cunha R.L. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 2019;213:217–227. doi: 10.1016/j.carbpol.2019.02.078. PubMed DOI
Safdar B., Zhihua P., Xinqi L., Jatoi M.A., Rashid M.T. Influence of different extraction techniques on recovery, purity, antioxidant activities, and microstructure of flaxseed gum. J. Food Sci. 2020;85:3168–3182. doi: 10.1111/1750-3841.15426. PubMed DOI
Bouaziz F., Koubaa M., Barba F.J., Roohinejad S., Chaabouni S.E. Antioxidant properties of water-soluble gum from flaxseed hulls. Antioxidants. 2016;5:26. doi: 10.3390/antiox5030026. PubMed DOI PMC
Luo J., Li Y., Mai Y., Gao L., Ou S., Wang Y., Liu L., Peng X. Flaxseed gum reduces body weight by regulating gut microbiota. J. Funct. Foods. 2018;47:136–142. doi: 10.1016/j.jff.2018.05.042. DOI
Thakur G., Mitra A., Pal K., Rousseau D. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2009;60:126–136. doi: 10.1080/09637480903022735. PubMed DOI
Oomah B.D., Mazza G. Flaxseed proteins—A review. Food Chem. 1993;48:109–114. doi: 10.1016/0308-8146(93)90043-F. DOI
Nwachukwu I.D., Aluko R.E. Physicochemical and emulsification properties of flaxseed (Linum usitatissimum) albumin and globulin fractions. Food Chem. 2018;255:216–225. doi: 10.1016/j.foodchem.2018.02.068. PubMed DOI
Dev D.K., Quensel E. Preparation and functional properties of linseed protein products containing differing levels of mucilage. J. Food Sci. 1988;53:1834–1837. doi: 10.1111/j.1365-2621.1988.tb07854.x. DOI
Wu S., Wang X., Qi W., Guo Q. Bioactive protein/peptides of flaxseed: A review. Trends Food Sci. Technol. 2019;92:184–193. doi: 10.1016/j.tifs.2019.08.017. DOI
Cui S. Polysaccharide Gums from Agricultural Products: Processing, Structures and Functionality. CRC Press; Boca Raton, FL, USA: 2000. p. 284.
Roulard R., Petit E., Mesnard F., Rhazi L. Molecular investigations of flaxseed mucilage polysaccharides. Int. J. Biol. Macromol. 2016;86:840–847. doi: 10.1016/j.ijbiomac.2016.01.093. PubMed DOI
Hu Y., Shim Y.Y., Reaney M.J.T. Flaxseed gum solution functional properties. Foods. 2020;9:681. doi: 10.3390/foods9050681. PubMed DOI PMC
Kaushik P., Dowling K., Adhikari R., Barrow C.J., Adhikari B. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem. 2017;215:333–340. doi: 10.1016/j.foodchem.2016.07.137. PubMed DOI
Wang Y., Li D., Wang L.-J., Li S.-J., Adhikari B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydr. Polym. 2010;81:128–133. doi: 10.1016/j.carbpol.2010.02.005. DOI
Qian K.-Y., Cui S.W., Nikiforuk J., Goff H.D. Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydr. Res. 2012;362:47–55. doi: 10.1016/j.carres.2012.08.005. PubMed DOI
Cui W., Mazza G., Oomah B.D., Biliaderis C.G. Optimization of an Aqueous Extraction Process for Flaxseed Gum by Response Surface Methodology. LWT—Food Sci. Technol. 1994;27:363–369. doi: 10.1006/fstl.1994.1074. DOI
Fabre J.-F., Lacroux E., Valentin R., Mouloungui Z. Ultrasonication as a highly efficient method of flaxseed mucilage extraction. Ind. Crops Prod. 2015;65:354–360. doi: 10.1016/j.indcrop.2014.11.015. DOI
Kaewmanee T., Bagnasco L., Benjakul S., Lanteri S., Morelli C.F., Speranza G., Cosulich M.E. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem. 2014;148:60–69. doi: 10.1016/j.foodchem.2013.10.022. PubMed DOI
Hadad S., Goli S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol. 2018;114:408–414. doi: 10.1016/j.ijbiomac.2018.03.154. PubMed DOI
Kamel R., Afifi S.M., Kassem I.A.A., Elkasabgy N.A., Farag M.A. Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int. J. Biol. Macromol. 2020;165:2550–2564. doi: 10.1016/j.ijbiomac.2020.10.175. PubMed DOI
Cui W., Mazza G. Physicochemical characteristics of flaxseed gum. Food Res. Int. 1996;29:397–402. doi: 10.1016/0963-9969(96)00005-1. DOI
Hellebois T., Fortuin J., Xu X., Shaplov A.S., Gaiani C., Soukoulis C. Structure conformation, physicochemical and rheological properties of flaxseed gums extracted under alkaline and acidic conditions. Int. J. Biol. Macromol. 2021;192:1217–1230. doi: 10.1016/j.ijbiomac.2021.10.087. PubMed DOI
Warr J., Michaud P., Picton L., Muller G., Courtois B., Ralainirina R., Courtois J. Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia. 2003;58:331–335. doi: 10.1365/s10337-003-0060-4. DOI
Moczkowska M., Karp S., Niu Y., Kurek M.A. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed—A physicochemical approach. Food Hydrocoll. 2019;90:105–112. doi: 10.1016/j.foodhyd.2018.12.018. DOI
Warrand J., Michaud P., Picton L., Muller G., Courtois B., Ralainirina R., Courtois J. Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage. Int. J. Biol. Macromol. 2005;35:121–125. doi: 10.1016/j.ijbiomac.2004.12.006. PubMed DOI
Ding H.H., Qian K., Goff H.D., Wang Q., Cui S.W. Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chem. 2018;254:266–271. doi: 10.1016/j.foodchem.2018.01.159. PubMed DOI
Elboutachfaiti R., Delattre C., Quéro A., Roulard R., Duchêne J., Mesnard F., Petit E. Fractionation and structural characterization of six purified rhamnogalacturonans type I from flaxseed mucilage. Food Hydrocoll. 2017;62:273–279. doi: 10.1016/j.foodhyd.2016.08.005. DOI
Qian K.Y., Cui S.W., Wu Y., Goff H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocoll. 2012;28:275–283. doi: 10.1016/j.foodhyd.2011.12.019. DOI
Fedeniuk R.W., Biliaderis C.G. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J. Agric. Food Chem. 1994;42:240–247. doi: 10.1021/jf00038a003. DOI
Troshchynska Y., Bleha R., Synytsya A., Štětina J. Chemical composition and rheological properties of seed mucilages of various yellow- and brown-seeded flax (Linum usitatissimum L.) cultivars. Polymers. 2022;14:2040. doi: 10.3390/polym14102040. PubMed DOI PMC
Ren X., He H., Li T. Variations in the structural and functional properties of flaxseed gum from six different flaxseed cultivars. Food Sci. Nutr. 2021;9:6131–6138. doi: 10.1002/fsn3.2566. PubMed DOI PMC
Bárta J., Bártová V., Jarošová M., Švajner J., Smetana P., Kadlec J., Filip V., Kyselka J., Berčíková M., Zdráhal Z., et al. Oilseed cake flour composition, functional properties and antioxidant potential as effects of sieving and species differences. Foods. 2021;10:2766. doi: 10.3390/foods10112766. PubMed DOI PMC
Chang Y., Li Y., Miao Q., Jiang H., Gao X. Rheological properties of six plant-based seed gums. Am. J. Anal. Chem. 2017;08:690–707. doi: 10.4236/ajac.2017.811051. DOI
Cui W., Mazza G., Biliaderis C.G. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994;42:1891–1895. doi: 10.1021/jf00045a012. DOI
Chen H.-H., Xu S.-Y., Wang Z. Gelation properties of flaxseed gum. J. Food Eng. 2006;77:295–303. doi: 10.1016/j.jfoodeng.2005.06.033. DOI
Sun J., Liu W.-y., Feng M.-q., Xu X.-l., Zhou G.-h. Characterization of olive oil emulsions stabilized by flaxseed gum. J. Food Eng. 2019;247:74–79. doi: 10.1016/j.jfoodeng.2018.11.023. DOI
Yu X., Huang S., Yang F., Qin X., Nie C., Deng Q., Huang F., Xiang Q., Zhu Y., Geng F. Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides. Food Hydrocoll. 2022;125:107447. doi: 10.1016/j.foodhyd.2021.107447. DOI
Yang C., Hu C., Zhang H., Chen W., Deng Q., Tang H., Huang F. Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro. Int. J. Biol. Macromol. 2020;153:1107–1116. doi: 10.1016/j.ijbiomac.2019.10.241. PubMed DOI
Guo Q., Zhu X., Zhen W., Li Z., Kang J., Sun X., Wang S., Cui S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocoll. 2021;112:106289. doi: 10.1016/j.foodhyd.2020.106289. DOI
Kristensen M., Jensen M.G., Aarestrup J., Petersen K.E.N., Søndergaard L., Mikkelsen M.S., Astrup A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr. Metab. 2012;9:8. doi: 10.1186/1743-7075-9-8. PubMed DOI PMC
Korus J., Witczak T., Ziobro R., Juszczak L. Linseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT—Food Sci. Technol. 2015;62:257–264. doi: 10.1016/j.lwt.2015.01.040. DOI
Stewart S., Mazza G. Effect of flaxseed gum on quality and stability of a model salad dressing. J. Food Qual. 2000;23:373–390. doi: 10.1111/j.1745-4557.2000.tb00565.x. DOI
Qin L., Xu S.-y., Zhang W.-b. Effect of enzymatic hydrolysis on the yield of cloudy carrot juice and the effects of hydrocolloids on color and cloud stability during ambient storage. J. Sci. Food Agric. 2005;85:505–512. doi: 10.1002/jsfa.1882. DOI
Basiri S., Haidary N., Shekarforoush S.S., Niakousari M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018;187:59–65. doi: 10.1016/j.carbpol.2018.01.049. PubMed DOI
Sun J., Li X., Xu X., Zhou G. Influence of various levels of flaxseed gum addition on the water-holding capacities of heat-induced porcine myofibrillar protein. J. Food Sci. 2011;76:C472–C478. doi: 10.1111/j.1750-3841.2011.02094.x. PubMed DOI
Zhou W.W., Meng L., Li X., Ma L., Dai R. Effect of the interaction between carrageenan, gellan gum and flaxseed gum on quality attributes of starch-free emulsion-type sausage. J. Muscle Foods. 2010;21:255–267. doi: 10.1111/j.1745-4573.2009.00180.x. DOI
Liu J., Shim Y.Y., Shen J., Wang Y., Reaney M.J.T. Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocoll. 2017;64:18–27. doi: 10.1016/j.foodhyd.2016.10.006. DOI
Kaushik P., Dowling K., McKnight S., Barrow C.J., Adhikari B. Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res. Int. 2016;86:1–8. doi: 10.1016/j.foodres.2016.05.015. DOI
Pham L.B., Wang B., Zisu B., Truong T., Adhikari B. Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocoll. 2020;107:105944. doi: 10.1016/j.foodhyd.2020.105944. DOI
Hasanvand E., Rafe A. Characterization of flaxseed gum/rice bran protein complex coacervates. Food Biophys. 2018;13:387–395. doi: 10.1007/s11483-018-9544-5. DOI
Lai K., How Y., Pui L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J. Microencapsul. 2021;38:134–148. doi: 10.1080/02652048.2020.1863490. PubMed DOI
Lai K., Mohd Ghazali H., How Y.H., Pui L.P. Preliminary evaluation of potential prebiotic capacity of selected legumes and seed mucilage on the probiotic strain Lactobacillus rhamnosus GG. Asia-Pac. J. Mol. Biol. Biotechnol. 2021;29:60–72. doi: 10.35118/apjmbb.2021.029.1.07. DOI
Lai K.-W., How Y.-H., Pui L.-P. Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. J. Food Process. Preserv. 2020;44:e14965. doi: 10.1111/jfpp.14965. DOI
Soleimani-Rambod A., Zomorodi S., Naghizadeh Raeisi S., Khosrowshahi Asl A., Shahidi S.-A. The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings. 2018;8:80. doi: 10.3390/coatings8020080. DOI
Lu Z., Saldaña M.D.A., Jin Z., Sun W., Gao P., Bilige M., Sun W. Layer-by-layer electrostatic self-assembled coatings based on flaxseed gum and chitosan for Mongolian cheese preservation. Innov. Food Sci. Emerg. Technol. 2021;73:102785. doi: 10.1016/j.ifset.2021.102785. DOI
Yousuf B., Srivastava A.K. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol. 2017;104:1030–1038. doi: 10.1016/j.ijbiomac.2017.07.025. PubMed DOI
Treviño-Garza M.Z., Correa-Cerón R.C., Ortiz-Lechuga E.G., Solís-Arévalo K.K., Castillo-Hernández S.L., Gallardo-Rivera C.T., Arévalo Niño K. Effect of linseed (Linum usitatissimum) mucilage and chitosan edible coatings on quality and shelf-life of fresh-cut cantaloupe (Cucumis melo) Coatings. 2019;9:368. doi: 10.3390/coatings9060368. DOI
Treviño-Garza M.Z., García S., Heredia N., Alanís-Guzmán M.G., Arévalo-Niño K. Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus) Postharvest Biol. Technol. 2017;128:63–75. doi: 10.1016/j.postharvbio.2017.01.007. DOI
Rodrigues F.J., Cedran M.F., Garcia S. Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius) Food Bioprocess Technol. 2018;11:1605–1614. doi: 10.1007/s11947-018-2128-z. DOI
Al-Okbi S.Y. Highlights on functional foods, with special reference to flaxseed. J. Nat. Fibers. 2005;2:63–68. doi: 10.1300/J395v02n03_06. DOI
Long J.-j., Zu Y.-g., Fu Y.-j., Luo M., Mu P.-s., Zhao C.-j., Li C.-y., Wang W., Li J. Oil removal from oily water systems using immobilized flaxseed gum gel beads. RSC Adv. 2012;2:5172–5177. doi: 10.1039/c2ra20375h. DOI
Wang M., Huang G., Zhang G., Chen Y., Liu D., Li C. Selective flotation separation of fluorite from calcite by application of flaxseed gum as depressant. Miner. Eng. 2021;168:106938. doi: 10.1016/j.mineng.2021.106938. DOI
Prado N.S., Silva I.S.V.d., Silva T.A.L., Oliveira W.J.d., Motta L.A.d.C., Pasquini D., Otaguro H. Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Mater. Res. 2018;21:e20180134. doi: 10.1590/1980-5373-mr-2018-0134. DOI
Smith A.K., Johnsen V.L., Beckel A.C. Linseed proteins. Ind. Eng. Chem. 1946;38:353–356. doi: 10.1021/ie50435a030. DOI
Sosulski F.W., Bakal A. Isolated proteins from rapeseed, flax and sunflower meals. Can. Inst. Food Technol. J. 1969;2:28–32. doi: 10.1016/S0008-3860(69)74338-0. DOI
Lan Y., Ohm J.-B., Chen B., Rao J. Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocoll. 2020;104:105731. doi: 10.1016/j.foodhyd.2020.105731. DOI
Perreault V., Hénaux L., Bazinet L., Doyen A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 2017;221:1805–1812. doi: 10.1016/j.foodchem.2016.10.100. PubMed DOI
Vassel B., Nesbitt L.L. The nitrogenous constituents of flaxseed: II. The isolation of a purified protein fraction. J. Biol. Chem. 1945;159:571–584. doi: 10.1016/S0021-9258(17)41562-6. DOI
Youle R.J., Huang A.H.C. Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Am. J. Bot. 1981;68:44–48. doi: 10.1002/j.1537-2197.1981.tb06354.x. DOI
Dev D.K., Sienkiewicz T. Isolation and subunit composition of 11 S globulin of linseed (Linum usitatissimum L.) Food/Nahr. 1987;31:767–769. doi: 10.1002/food.19870310741. DOI
Madhusudhan K.T., Singh N. Studies on linseed proteins. J. Agric. Food Chem. 1983;31:959–963. doi: 10.1021/jf00119a010. DOI
Kaushik P., Dowling K., McKnight S., Barrow C.J., Wang B., Adhikari B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016;197:212–220. doi: 10.1016/j.foodchem.2015.09.106. PubMed DOI
Wanasundara P.K.J.P.D., Shahidi F. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J. Food Sci. 1996;61:604–607. doi: 10.1111/j.1365-2621.1996.tb13168.x. DOI
Ye X.-P., Xu M.-F., Tang Z.-X., Chen H.-J., Wu D.-T., Wang Z.-Y., Songzhen Y.-X., Hao J., Wu L.-M., Shi L.-E. Flaxseed protein: Extraction, functionalities and applications. Food Sci. Technol. 2022;42 doi: 10.1590/fst.22021. DOI
Udenigwe C.C., Lin Y.-S., Hou W.-C., Aluko R.E. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J. Funct. Foods. 2009;1:199–207. doi: 10.1016/j.jff.2009.01.009. DOI
Logarušić M., Radošević K., Bis A., Panić M., Slivac I., Gaurina Srček V. Biological potential of flaxseed protein hydrolysates obtained by different proteases. Plant Foods Hum. Nutr. 2020;75:518–524. doi: 10.1007/s11130-020-00841-z. PubMed DOI
Giacomino S., Peñas E., Ferreyra V., Pellegrino N., Fournier M., Apro N., Olivera Carrión M., Frias J. Extruded flaxseed meal enhances the nutritional quality of cereal-based products. Plant Foods Hum. Nutr. 2013;68:131–136. doi: 10.1007/s11130-013-0359-8. PubMed DOI
Rabetafika H.N., Van Remoortel V., Danthine S., Paquot M., Blecker C. Flaxseed proteins: Food uses and health benefits. Int. J. Food Sci. Technol. 2011;46:221–228. doi: 10.1111/j.1365-2621.2010.02477.x. DOI
Madhusudhan K.T., Singh N. Isolation and characterization of the major fraction (12 S) of linseed proteins. J. Agric. Food Chem. 1985;33:673–677. doi: 10.1021/jf00064a026. DOI
Marcone M.F., Kakuda Y., Yada R.Y. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—I. Isolation/purification and characterization. Food Chem. 1998;62:27–47. doi: 10.1016/S0308-8146(97)00158-1. DOI
Chung M.W.Y., Lei B., Li-Chan E.C.Y. Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.) Food Chem. 2005;90:271–279. doi: 10.1016/j.foodchem.2003.07.038. DOI
Krause J.-P., Schultz M., Dudek S. Effect of extraction conditions on composition, surface activity and rheological properties of protein isolates from flaxseed (Linum usitatissimum L) J. Sci. Food Agric. 2002;82:970–976. doi: 10.1002/jsfa.1140. DOI
Madhusudhan K.T., Singh N. Isolation and characterization of a small molecular weight protein of linseed meal. Phytochemistry. 1985;24:2507–2509. doi: 10.1016/S0031-9422(00)80656-1. DOI
Liu J., Shim Y.Y., Poth A.G., Reaney M.J.T. Conlinin in flaxseed (Linum usitatissimum L.) gum and its contribution to emulsification properties. Food Hydrocoll. 2016;52:963–971. doi: 10.1016/j.foodhyd.2015.09.001. DOI
Tirgar M., Silcock P., Carne A., Birch E.J. Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem. 2017;215:417–424. doi: 10.1016/j.foodchem.2016.08.002. PubMed DOI
Martínez-Flores H.E., Barrera E.S., Garnica-Romo M.G., Penagos C.J.C., Saavedra J.P., Macazaga-Alvarez R. Functional characteristics of protein flaxseed concentrate obtained applying a response surface methodology. J. Food Sci. 2006;71:C495–C498. doi: 10.1111/j.1750-3841.2006.00147.x. DOI
Waszkowiak K., Mikołajczak B. The effect of roasting on the protein profile and antiradical capacity of flaxseed meal. Foods. 2020;9:1383. doi: 10.3390/foods9101383. PubMed DOI PMC
Wei C.-K., Thakur K., Liu D.-H., Zhang J.-G., Wei Z.-J. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products. Food Chem. 2018;263:186–193. doi: 10.1016/j.foodchem.2018.04.120. PubMed DOI
Wei C.-K., Ni Z.-J., Thakur K., Liao A.-M., Huang J.-H., Wei Z.-J. Color and flavor of flaxseed protein hydrolysates Maillard reaction products: Effect of cysteine, initial pH, and thermal treatment. Int. J. Food Prop. 2019;22:84–99. doi: 10.1080/10942912.2019.1573830. DOI
Mueller K., Eisner P., Kirchhoff E. Simplified fractionation process for linseed meal by alkaline extraction—Functional properties of protein and fibre fractions. J. Food Eng. 2010;99:49–54. doi: 10.1016/j.jfoodeng.2010.01.036. DOI
Mueller K., Eisner P., Yoshie-Stark Y., Nakada R., Kirchhoff E. Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.) J. Food Eng. 2010;98:453–460. doi: 10.1016/j.jfoodeng.2010.01.028. DOI
Wang B., Wang L.-J., Li D., Bhandari B., Wu W.-F., Shi J., Chen X.D., Mao Z.-H. Effects of potato starch addition and cooling rate on rheological characteristics of flaxseed protein concentrate. J. Food Eng. 2009;91:392–401. doi: 10.1016/j.jfoodeng.2008.09.032. DOI
Dev D.K., Quensel E. Functional properties of linseed protein products containing different levels of mucilage in selected food systems. J. Food Sci. 1989;54:183–186. doi: 10.1111/j.1365-2621.1989.tb08597.x. DOI
Min C., Ma W., Kuang J., Huang J., Xiong Y.L. Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocoll. 2022;126:107482. doi: 10.1016/j.foodhyd.2022.107482. DOI
Sharma M., Saini C.S. Efficacy of flaxseed protein-based edible coatings on the quality of whole guava (Psidium guajava) during storage. Food Sci. Appl. Biotechnol. 2021;4:93–104. doi: 10.30721/fsab2021.v4.i2.132. DOI
Bustamante M., Oomah B.D., Rubilar M., Shene C. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem. 2017;216:97–105. doi: 10.1016/j.foodchem.2016.08.019. PubMed DOI
Manthey F.A., Sinha S., Wolf-Hall C.E., Hall C.A., III Effect of flaxseed flour and packaging on shelf life of refrigerated pasta. J. Food Process. Preserv. 2008;32:75–87. doi: 10.1111/j.1745-4549.2007.00166.x. DOI
Xu Y., Hall C., III, Wolf-Hall C. Antifungal activity stability of flaxseed protein extract using response surface methodology. J. Food Sci. 2007;73:M9–M14. doi: 10.1111/j.1750-3841.2007.00576.x. PubMed DOI
Xu Y., Hall C., Wolf-Hall C., Manthey F. Fungistatic activity of flaxseed in potato dextrose agar and a fresh noodle system. Int. J. Food Microbiol. 2008;121:262–267. doi: 10.1016/j.ijfoodmicro.2007.11.005. PubMed DOI
Marambe H.K., Shand P.J., Wanasundara J.P.D. In vitro digestibility of flaxseed (Linum usitatissimum L.) protein: Effect of seed mucilage, oil and thermal processing. Int. J. Food Sci. Technol. 2013;48:628–635. doi: 10.1111/ijfs.12008. DOI
Oomah B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001;81:889–894. doi: 10.1002/jsfa.898. DOI
Udenigwe C.C., Aluko R.E. Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high Fischer ratio peptide mixture. J. Agric. Food Chem. 2010;58:4762–4768. doi: 10.1021/jf100149w. PubMed DOI
Udenigwe C.C., Lu Y.-L., Han C.-H., Hou W.-C., Aluko R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009;116:277–284. doi: 10.1016/j.foodchem.2009.02.046. DOI
Silva F.G.D.e., Hernández-Ledesma B., Amigo L., Netto F.M., Miralles B. Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT—Food Sci. Technol. 2017;76:140–146. doi: 10.1016/j.lwt.2016.10.049. DOI
Hwang C.-F., Chen Y.-A., Luo C., Chiang W.-D. Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. Int. J. Food Sci. Technol. 2016;51:681–689. doi: 10.1111/ijfs.13030. DOI
Doyen A., Udenigwe C.C., Mitchell P.L., Marette A., Aluko R.E., Bazinet L. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Food Chem. 2014;145:66–76. doi: 10.1016/j.foodchem.2013.07.108. PubMed DOI
Omoni A.O., Aluko R.E. Mechanism of the inhibition of calmodulin-dependent neuronal nitric oxide synthase by flaxseed protein hydrolysates. J. Am. Oil Chem. Soc. 2006;83:335–340. doi: 10.1007/s11746-006-1209-8. DOI
Omoni A.O., Aluko R.E. Effect of cationic flaxseed protein hydrolysate fractions on the in vitro structure and activity of calmodulin-dependent endothelial nitric oxide synthase. Mol. Nutr. Food Res. 2006;50:958–966. doi: 10.1002/mnfr.200600041. PubMed DOI
Gui B., Shim Y.Y., Reaney M.J.T. Distribution of cyclolinopeptides in flaxseed fractions and products. J. Agric. Food Chem. 2012;60:8580–8589. doi: 10.1021/jf3023832. PubMed DOI
Sharav O., Shim Y.Y., Okinyo-Owiti D.P., Sammynaiken R., Reaney M.J.T. Effect of cyclolinopeptides on the oxidative stability of flaxseed oil. J. Agric. Food Chem. 2014;62:88–96. doi: 10.1021/jf4037744. PubMed DOI
Tolkachev O.N., Zhuchenko A.A. Biologically active substances of flax: Medicinal and nutritional properties (a review) Pharm. Chem. J. 2004;34:360–367. doi: 10.1023/A:1005217407453. DOI
Anzlovar S., Serra M.D., Dermastia M., Menestrina G. Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. Mol. Plant-Microbe Interact. 1998;11:610–617. doi: 10.1094/MPMI.1998.11.7.610. DOI
Lipilina E., Ganji V. Incorporation of ground flaxseed into bakery products and its effect on sensory and nutritional characteristics—A pilot study. J. Foodserv. 2009;20:52–59. doi: 10.1111/j.1748-0159.2008.00124.x. DOI
Wu M., Li D., Wang L.-J., Özkan N., Mao Z.-H. Rheological properties of extruded dispersions of flaxseed-maize blend. J. Food Eng. 2010;98:480–491. doi: 10.1016/j.jfoodeng.2010.01.031. DOI
Juodeikiene G., Zadeike D., Trakselyte-Rupsiene K., Gasauskaite K., Bartkiene E., Lele V., Viskelis P., Bernatoniene J., Ivanauskas L., Jakstas V. Functionalisation of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochemicals. LWT. 2020;124:109180. doi: 10.1016/j.lwt.2020.109180. DOI
Wang B., Li D., Wang L.-J., Özkan N. Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. J. Food Eng. 2010;96:555–561. doi: 10.1016/j.jfoodeng.2009.09.001. DOI
Ghosal S., Bhattacharyya D.K., Bhowal J. Production, characterization, and storage stability of nutritionally enriched flaxseed-based spread. J. Food Process. Preserv. 2022;46:e16574. doi: 10.1111/jfpp.16574. DOI
Alpaslan M., Hayta M. The effects of flaxseed, soy and corn flours on the textural and sensory properties of a bakery product. J. Food Qual. 2006;29:617–627. doi: 10.1111/j.1745-4557.2006.00099.x. DOI
Koca A.F., Anil M. Effect of flaxseed and wheat flour blends on dough rheology and bread quality. J. Sci. Food Agric. 2007;87:1172–1175. doi: 10.1002/jsfa.2739. DOI
Lunardello K.A., Yamashita F., de Toledo Benassi M., de Rensis C.M.V.B. The physicochemical characteristics of nonfat set yoghurt containing some hydrocolloids. Int. J. Dairy Technol. 2012;65:260–267. doi: 10.1111/j.1471-0307.2011.00762.x. DOI
Akdeniz V., Akalın A.S. New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends Food Sci. Technol. 2019;86:392–398. doi: 10.1016/j.tifs.2019.02.046. DOI
Basiri S., Tajbakhsh S., Shekarforoush S.S. Fortification of stirred yoghurt with mucilage-free flaxseed and its physicochemical, microbial, textural and sensory properties. Int. Dairy J. 2022;131:105384. doi: 10.1016/j.idairyj.2022.105384. DOI
Delouee Arabshahi S., Rahati Ghochani S., Mohammadi A. Effect of flaxseed (Linum usitatissimum) mucilage on physicochemical and sensorial properties of semi-fat set yoghurt. J. Food Biosci. Technol. 2020;10:91–100.
Nguyen P.T.M., Kravchuk O., Bhandari B., Prakash S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017;72:90–104. doi: 10.1016/j.foodhyd.2017.05.035. DOI
Ng S.B.X., Nguyen P.T.M., Bhandari B., Prakash S. Influence of different functional ingredients on physical properties, rheology, tribology, and oral perceptions of no fat stirred yoghurt. J. Texture Stud. 2018;49:274–285. doi: 10.1111/jtxs.12307. PubMed DOI
Sodini I., Montella J., Tong P.S. Physical properties of yogurt fortified with various commercial whey protein concentrates. J. Sci. Food Agric. 2005;85:853–859. doi: 10.1002/jsfa.2037. DOI
Remeuf F., Mohammed S., Sodini I., Tissier J.P. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. Int. Dairy J. 2003;13:773–782. doi: 10.1016/S0958-6946(03)00092-X. DOI
Hu Y., Li Y., Liu X. Soybean peptides promote yoghurt fermentation and quality. Biotechnol. Lett. 2020;42:1927–1937. doi: 10.1007/s10529-020-02912-2. PubMed DOI