Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application

. 2022 Aug 02 ; 11 (15) : . [epub] 20220802

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35954070

Flaxseed is an excellent source of valuable nutrients and is also considered a functional food. There are two types of hydrocolloids in flaxseed: flaxseed gum and proteins. Flaxseed gum exhibits emulsifying and foaming activities or can be used as a thickening and gelling agent. Due to its form of soluble fiber, flaxseed gum is related to many health benefits. Flaxseed proteins have various functional properties based on their physicochemical properties. While albumins possess the emulsion-forming ability, globulins better serve as foaming agents. Flaxseed proteins may also serve as a source of functional peptides with interesting biological and health-related activities. Functional properties and health-related benefits predetermine the application of these hydrocolloids, mainly in the food industry or medicine. Although these properties of flaxseed hydrocolloids have been recently and extensively studied, they are still not widely used on the industrial scale compared to other popular plant gums and proteins. The aim of this review was to present, discuss and highlight the recent discoveries in the structural characteristics and functional and biological properties of these versatile hydrocolloids with respect to factors affecting their characteristics and offer new insights into their potential applications as comparable alternatives to the other natural hydrocolloids or as the sources of novel functional products.

Zobrazit více v PubMed

Goyal A., Sharma V., Upadhyay N., Gill S., Sihag M. Flax and flaxseed oil: An ancient medicine & modern functional food. J. Food Sci. Technol. 2014;51:1633–1653. doi: 10.1007/s13197-013-1247-9. PubMed DOI PMC

Oomah B.D. Flaxseed by-products. In: Campos-Vega R., Oomah B.D., Vergara-Castaneda H.A., editors. Food Wastes and By-Products: Nutraceutical and Health Potential. John Wiley & Sons Ltd.; Hoboken, NJ, USA: 2020. pp. 267–289.

Kajla P., Sharma A., Sood D.R. Flaxseed—A potential functional food source. J. Food Sci. Technol. 2015;52:1857–1871. doi: 10.1007/s13197-014-1293-y. PubMed DOI PMC

Parikh M., Maddaford T.G., Austria J.A., Aliani M., Netticadan T., Pierce G.N. Dietary flaxseed as a strategy for improving human health. Nutrients. 2019;11:1171. doi: 10.3390/nu11051171. PubMed DOI PMC

Kuijsten A., Arts I.C.W., van’t Veer P., Hollman P.C.H. The relative bioavailability of enterolignans in humans is enhanced by milling and crushing of flaxseed. J. Nutr. 2005;135:2812–2816. doi: 10.1093/jn/135.12.2812. PubMed DOI

Morris D.H. Flax: A Health and Nutrition Primer. Flax Council of Canada; Winnipeg, MB, Canada: 2007. p. 140.

Singh K.K., Mridula D., Rehal J., Barnwal P. Flaxseed: A potential source of food, feed and fiber. Crit. Rev. Food Sci. Nutr. 2011;51:210–222. doi: 10.1080/10408390903537241. PubMed DOI

Rubilar M., Gutiérrez C., Verdugo M., Shene C., Sineiro J. Flaxseed as a source of functional ingredients. J. Soil Sci. Plant Nutr. 2010;10:373–377. doi: 10.4067/S0718-95162010000100010. DOI

Wüstenberg T. General overview of food hydrocolloids. In: Wüstenberg T., editor. Cellulose and Cellulose Derivatives in the Food Industry. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2014. pp. 1–68.

Williams P.A., Phillips G.O. 1—Introduction to food hydrocolloids. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing; Cambridge, UK: 2009. pp. 1–22.

Izydorczyk M., Cui S., Wang Q. Polysaccharide gums: Structures, functional properties, and applications. In: Cui S.W., editor. Food Carbohydrates: Chemistry, Physical Properties and Applications. 1st ed. CRC Press; Boca Raton, FL, USA: 2005. p. 46.

González-Pérez S., Arellano J.B. 15—Vegetable protein isolates. In: Phillips G.O., Williams P.A., editors. Handbook of Hydrocolloids. 2nd ed. Woodhead Publishing; Cambridge, UK: 2009. pp. 383–419.

Xu X., Liu W., Liu C., Luo L., Chen J., Luo S., McClements D.J., Wu L. Effect of limited enzymatic hydrolysis on structure and emulsifying properties of rice glutelin. Food Hydrocoll. 2016;61:251–260. doi: 10.1016/j.foodhyd.2016.05.023. DOI

Zang X., Yue C., Wang Y., Shao M., Yu G. Effect of limited enzymatic hydrolysis on the structure and emulsifying properties of rice bran protein. J. Cereal Sci. 2019;85:168–174. doi: 10.1016/j.jcs.2018.09.001. DOI

Gao Y., Li J., Chang C., Wang C., Yang Y., Su Y. Effect of enzymatic hydrolysis on heat stability and emulsifying properties of egg yolk. Food Hydrocoll. 2019;97:105224. doi: 10.1016/j.foodhyd.2019.105224. DOI

Liu R., Wang L., Liu Y., Wu T., Zhang M. Fabricating soy protein hydrolysate/xanthan gum as fat replacer in ice cream by combined enzymatic and heat-shearing treatment. Food Hydrocoll. 2018;81:39–47. doi: 10.1016/j.foodhyd.2018.01.031. DOI

Mudgil D., Barak S., Khatkar B.S. Effect of partially hydrolyzed guar gum on pasting, thermo-mechanical and rheological properties of wheat dough. Int. J. Biol. Macromol. 2016;93:131–135. doi: 10.1016/j.ijbiomac.2016.08.064. PubMed DOI

Mudgil D., Barak S., Patel A., Shah N. Partially hydrolyzed guar gum as a potential prebiotic source. Int. J. Biol. Macromol. 2018;112:207–210. doi: 10.1016/j.ijbiomac.2018.01.164. PubMed DOI

Mary P.R., Prashanth K.V.H., Vasu P., Kapoor M. Structural diversity and prebiotic potential of short chain β-manno-oligosaccharides generated from guar gum by endo-β-mannanase (ManB-1601) Carbohydr. Res. 2019;486:107822. doi: 10.1016/j.carres.2019.107822. PubMed DOI

Wongputtisin P., Khanongnuch C. Prebiotic properties of crude oligosaccharide prepared from enzymatic hydrolysis of basil seed gum. Food Sci. Biotechnol. 2015;24:1767–1773. doi: 10.1007/s10068-015-0230-9. DOI

Jian H.-L., Zhu L.-W., Zhang W.-M., Sun D.-F., Jiang J.-X. Enzymatic production and characterization of manno-oligosaccharides from Gleditsia sinensis galactomannan gum. Int. J. Biol. Macromol. 2013;55:282–288. doi: 10.1016/j.ijbiomac.2013.01.025. PubMed DOI

Kot A., Kamińska-Dwórznicka A., Antczak A., Jakubczyk E., Matwijczuk A. Effect of ι-carrageenan and its acidic and enzymatic hydrolysates on ice crystal structure changes in model sucrose solution. Colloids Surf. A Physicochem. Eng. Asp. 2022;643:128744. doi: 10.1016/j.colsurfa.2022.128744. DOI

Yemenicioğlu A., Farris S., Turkyilmaz M., Gulec S. A review of current and future food applications of natural hydrocolloids. Int. J. Food Sci. Technol. 2020;55:1389–1406. doi: 10.1111/ijfs.14363. DOI

Safdar B., Pang Z., Liu X., Jatoi M.A., Mehmood A., Rashid M.T., Ali N., Naveed M. Flaxseed gum: Extraction, bioactive composition, structural characterization, and its potential antioxidant activity. J. Food Biochem. 2019;43:e13014. doi: 10.1111/jfbc.13014. PubMed DOI

Liu J., Shim Y.Y., Tse T.J., Wang Y., Reaney M.J.T. Flaxseed gum a versatile natural hydrocolloid for food and non-food applications. Trends Food Sci. Technol. 2018;75:146–157. doi: 10.1016/j.tifs.2018.01.011. DOI

Biliaderis C.G., Izydorczyk M.S. Functional Food Carbohydrates. CRC Press; Boca Raton, FL, USA: 2006. p. 588.

Drozłowska E., Bartkowiak A., Łopusiewicz Ł. Characterization of flaxseed oil bimodal emulsions prepared with flaxseed oil cake extract applied as a natural emulsifying agent. Polymers. 2020;12:2207. doi: 10.3390/polym12102207. PubMed DOI PMC

Jiang Y., Reddy C.K., Huang K., Chen L., Xu B. Hydrocolloidal properties of flaxseed gum/konjac glucomannan compound gel. Int. J. Biol. Macromol. 2019;133:1156–1163. doi: 10.1016/j.ijbiomac.2019.04.187. PubMed DOI

Vieira J.M., Mantovani R.A., Raposo M.F.J., Coimbra M.A., Vicente A.A., Cunha R.L. Effect of extraction temperature on rheological behavior and antioxidant capacity of flaxseed gum. Carbohydr. Polym. 2019;213:217–227. doi: 10.1016/j.carbpol.2019.02.078. PubMed DOI

Safdar B., Zhihua P., Xinqi L., Jatoi M.A., Rashid M.T. Influence of different extraction techniques on recovery, purity, antioxidant activities, and microstructure of flaxseed gum. J. Food Sci. 2020;85:3168–3182. doi: 10.1111/1750-3841.15426. PubMed DOI

Bouaziz F., Koubaa M., Barba F.J., Roohinejad S., Chaabouni S.E. Antioxidant properties of water-soluble gum from flaxseed hulls. Antioxidants. 2016;5:26. doi: 10.3390/antiox5030026. PubMed DOI PMC

Luo J., Li Y., Mai Y., Gao L., Ou S., Wang Y., Liu L., Peng X. Flaxseed gum reduces body weight by regulating gut microbiota. J. Funct. Foods. 2018;47:136–142. doi: 10.1016/j.jff.2018.05.042. DOI

Thakur G., Mitra A., Pal K., Rousseau D. Effect of flaxseed gum on reduction of blood glucose and cholesterol in type 2 diabetic patients. Int. J. Food Sci. Nutr. 2009;60:126–136. doi: 10.1080/09637480903022735. PubMed DOI

Oomah B.D., Mazza G. Flaxseed proteins—A review. Food Chem. 1993;48:109–114. doi: 10.1016/0308-8146(93)90043-F. DOI

Nwachukwu I.D., Aluko R.E. Physicochemical and emulsification properties of flaxseed (Linum usitatissimum) albumin and globulin fractions. Food Chem. 2018;255:216–225. doi: 10.1016/j.foodchem.2018.02.068. PubMed DOI

Dev D.K., Quensel E. Preparation and functional properties of linseed protein products containing differing levels of mucilage. J. Food Sci. 1988;53:1834–1837. doi: 10.1111/j.1365-2621.1988.tb07854.x. DOI

Wu S., Wang X., Qi W., Guo Q. Bioactive protein/peptides of flaxseed: A review. Trends Food Sci. Technol. 2019;92:184–193. doi: 10.1016/j.tifs.2019.08.017. DOI

Cui S. Polysaccharide Gums from Agricultural Products: Processing, Structures and Functionality. CRC Press; Boca Raton, FL, USA: 2000. p. 284.

Roulard R., Petit E., Mesnard F., Rhazi L. Molecular investigations of flaxseed mucilage polysaccharides. Int. J. Biol. Macromol. 2016;86:840–847. doi: 10.1016/j.ijbiomac.2016.01.093. PubMed DOI

Hu Y., Shim Y.Y., Reaney M.J.T. Flaxseed gum solution functional properties. Foods. 2020;9:681. doi: 10.3390/foods9050681. PubMed DOI PMC

Kaushik P., Dowling K., Adhikari R., Barrow C.J., Adhikari B. Effect of extraction temperature on composition, structure and functional properties of flaxseed gum. Food Chem. 2017;215:333–340. doi: 10.1016/j.foodchem.2016.07.137. PubMed DOI

Wang Y., Li D., Wang L.-J., Li S.-J., Adhikari B. Effects of drying methods on the functional properties of flaxseed gum powders. Carbohydr. Polym. 2010;81:128–133. doi: 10.1016/j.carbpol.2010.02.005. DOI

Qian K.-Y., Cui S.W., Nikiforuk J., Goff H.D. Structural elucidation of rhamnogalacturonans from flaxseed hulls. Carbohydr. Res. 2012;362:47–55. doi: 10.1016/j.carres.2012.08.005. PubMed DOI

Cui W., Mazza G., Oomah B.D., Biliaderis C.G. Optimization of an Aqueous Extraction Process for Flaxseed Gum by Response Surface Methodology. LWT—Food Sci. Technol. 1994;27:363–369. doi: 10.1006/fstl.1994.1074. DOI

Fabre J.-F., Lacroux E., Valentin R., Mouloungui Z. Ultrasonication as a highly efficient method of flaxseed mucilage extraction. Ind. Crops Prod. 2015;65:354–360. doi: 10.1016/j.indcrop.2014.11.015. DOI

Kaewmanee T., Bagnasco L., Benjakul S., Lanteri S., Morelli C.F., Speranza G., Cosulich M.E. Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chem. 2014;148:60–69. doi: 10.1016/j.foodchem.2013.10.022. PubMed DOI

Hadad S., Goli S.A.H. Fabrication and characterization of electrospun nanofibers using flaxseed (Linum usitatissimum) mucilage. Int. J. Biol. Macromol. 2018;114:408–414. doi: 10.1016/j.ijbiomac.2018.03.154. PubMed DOI

Kamel R., Afifi S.M., Kassem I.A.A., Elkasabgy N.A., Farag M.A. Arabinoxylan and rhamnogalacturonan mucilage: Outgoing and potential trends of pharmaceutical, environmental, and medicinal merits. Int. J. Biol. Macromol. 2020;165:2550–2564. doi: 10.1016/j.ijbiomac.2020.10.175. PubMed DOI

Cui W., Mazza G. Physicochemical characteristics of flaxseed gum. Food Res. Int. 1996;29:397–402. doi: 10.1016/0963-9969(96)00005-1. DOI

Hellebois T., Fortuin J., Xu X., Shaplov A.S., Gaiani C., Soukoulis C. Structure conformation, physicochemical and rheological properties of flaxseed gums extracted under alkaline and acidic conditions. Int. J. Biol. Macromol. 2021;192:1217–1230. doi: 10.1016/j.ijbiomac.2021.10.087. PubMed DOI

Warr J., Michaud P., Picton L., Muller G., Courtois B., Ralainirina R., Courtois J. Large-scale purification of water-soluble polysaccharides from flaxseed mucilage, and isolation of a new anionic polymer. Chromatographia. 2003;58:331–335. doi: 10.1365/s10337-003-0060-4. DOI

Moczkowska M., Karp S., Niu Y., Kurek M.A. Enzymatic, enzymatic-ultrasonic and alkaline extraction of soluble dietary fibre from flaxseed—A physicochemical approach. Food Hydrocoll. 2019;90:105–112. doi: 10.1016/j.foodhyd.2018.12.018. DOI

Warrand J., Michaud P., Picton L., Muller G., Courtois B., Ralainirina R., Courtois J. Structural investigations of the neutral polysaccharide of Linum usitatissimum L. seeds mucilage. Int. J. Biol. Macromol. 2005;35:121–125. doi: 10.1016/j.ijbiomac.2004.12.006. PubMed DOI

Ding H.H., Qian K., Goff H.D., Wang Q., Cui S.W. Structural and conformational characterization of arabinoxylans from flaxseed mucilage. Food Chem. 2018;254:266–271. doi: 10.1016/j.foodchem.2018.01.159. PubMed DOI

Elboutachfaiti R., Delattre C., Quéro A., Roulard R., Duchêne J., Mesnard F., Petit E. Fractionation and structural characterization of six purified rhamnogalacturonans type I from flaxseed mucilage. Food Hydrocoll. 2017;62:273–279. doi: 10.1016/j.foodhyd.2016.08.005. DOI

Qian K.Y., Cui S.W., Wu Y., Goff H.D. Flaxseed gum from flaxseed hulls: Extraction, fractionation, and characterization. Food Hydrocoll. 2012;28:275–283. doi: 10.1016/j.foodhyd.2011.12.019. DOI

Fedeniuk R.W., Biliaderis C.G. Composition and physicochemical properties of linseed (Linum usitatissimum L.) mucilage. J. Agric. Food Chem. 1994;42:240–247. doi: 10.1021/jf00038a003. DOI

Troshchynska Y., Bleha R., Synytsya A., Štětina J. Chemical composition and rheological properties of seed mucilages of various yellow- and brown-seeded flax (Linum usitatissimum L.) cultivars. Polymers. 2022;14:2040. doi: 10.3390/polym14102040. PubMed DOI PMC

Ren X., He H., Li T. Variations in the structural and functional properties of flaxseed gum from six different flaxseed cultivars. Food Sci. Nutr. 2021;9:6131–6138. doi: 10.1002/fsn3.2566. PubMed DOI PMC

Bárta J., Bártová V., Jarošová M., Švajner J., Smetana P., Kadlec J., Filip V., Kyselka J., Berčíková M., Zdráhal Z., et al. Oilseed cake flour composition, functional properties and antioxidant potential as effects of sieving and species differences. Foods. 2021;10:2766. doi: 10.3390/foods10112766. PubMed DOI PMC

Chang Y., Li Y., Miao Q., Jiang H., Gao X. Rheological properties of six plant-based seed gums. Am. J. Anal. Chem. 2017;08:690–707. doi: 10.4236/ajac.2017.811051. DOI

Cui W., Mazza G., Biliaderis C.G. Chemical structure, molecular size distributions, and rheological properties of flaxseed gum. J. Agric. Food Chem. 1994;42:1891–1895. doi: 10.1021/jf00045a012. DOI

Chen H.-H., Xu S.-Y., Wang Z. Gelation properties of flaxseed gum. J. Food Eng. 2006;77:295–303. doi: 10.1016/j.jfoodeng.2005.06.033. DOI

Sun J., Liu W.-y., Feng M.-q., Xu X.-l., Zhou G.-h. Characterization of olive oil emulsions stabilized by flaxseed gum. J. Food Eng. 2019;247:74–79. doi: 10.1016/j.jfoodeng.2018.11.023. DOI

Yu X., Huang S., Yang F., Qin X., Nie C., Deng Q., Huang F., Xiang Q., Zhu Y., Geng F. Effect of microwave exposure to flaxseed on the composition, structure and techno-functionality of gum polysaccharides. Food Hydrocoll. 2022;125:107447. doi: 10.1016/j.foodhyd.2021.107447. DOI

Yang C., Hu C., Zhang H., Chen W., Deng Q., Tang H., Huang F. Optimation for preparation of oligosaccharides from flaxseed gum and evaluation of antioxidant and antitumor activities in vitro. Int. J. Biol. Macromol. 2020;153:1107–1116. doi: 10.1016/j.ijbiomac.2019.10.241. PubMed DOI

Guo Q., Zhu X., Zhen W., Li Z., Kang J., Sun X., Wang S., Cui S.W. Rheological properties and stabilizing effects of high-temperature extracted flaxseed gum on oil/water emulsion systems. Food Hydrocoll. 2021;112:106289. doi: 10.1016/j.foodhyd.2020.106289. DOI

Kristensen M., Jensen M.G., Aarestrup J., Petersen K.E.N., Søndergaard L., Mikkelsen M.S., Astrup A. Flaxseed dietary fibers lower cholesterol and increase fecal fat excretion, but magnitude of effect depend on food type. Nutr. Metab. 2012;9:8. doi: 10.1186/1743-7075-9-8. PubMed DOI PMC

Korus J., Witczak T., Ziobro R., Juszczak L. Linseed (Linum usitatissimum L.) mucilage as a novel structure forming agent in gluten-free bread. LWT—Food Sci. Technol. 2015;62:257–264. doi: 10.1016/j.lwt.2015.01.040. DOI

Stewart S., Mazza G. Effect of flaxseed gum on quality and stability of a model salad dressing. J. Food Qual. 2000;23:373–390. doi: 10.1111/j.1745-4557.2000.tb00565.x. DOI

Qin L., Xu S.-y., Zhang W.-b. Effect of enzymatic hydrolysis on the yield of cloudy carrot juice and the effects of hydrocolloids on color and cloud stability during ambient storage. J. Sci. Food Agric. 2005;85:505–512. doi: 10.1002/jsfa.1882. DOI

Basiri S., Haidary N., Shekarforoush S.S., Niakousari M. Flaxseed mucilage: A natural stabilizer in stirred yogurt. Carbohydr. Polym. 2018;187:59–65. doi: 10.1016/j.carbpol.2018.01.049. PubMed DOI

Sun J., Li X., Xu X., Zhou G. Influence of various levels of flaxseed gum addition on the water-holding capacities of heat-induced porcine myofibrillar protein. J. Food Sci. 2011;76:C472–C478. doi: 10.1111/j.1750-3841.2011.02094.x. PubMed DOI

Zhou W.W., Meng L., Li X., Ma L., Dai R. Effect of the interaction between carrageenan, gellan gum and flaxseed gum on quality attributes of starch-free emulsion-type sausage. J. Muscle Foods. 2010;21:255–267. doi: 10.1111/j.1745-4573.2009.00180.x. DOI

Liu J., Shim Y.Y., Shen J., Wang Y., Reaney M.J.T. Whey protein isolate and flaxseed (Linum usitatissimum L.) gum electrostatic coacervates: Turbidity and rheology. Food Hydrocoll. 2017;64:18–27. doi: 10.1016/j.foodhyd.2016.10.006. DOI

Kaushik P., Dowling K., McKnight S., Barrow C.J., Adhikari B. Microencapsulation of flaxseed oil in flaxseed protein and flaxseed gum complex coacervates. Food Res. Int. 2016;86:1–8. doi: 10.1016/j.foodres.2016.05.015. DOI

Pham L.B., Wang B., Zisu B., Truong T., Adhikari B. Microencapsulation of flaxseed oil using polyphenol-adducted flaxseed protein isolate-flaxseed gum complex coacervates. Food Hydrocoll. 2020;107:105944. doi: 10.1016/j.foodhyd.2020.105944. DOI

Hasanvand E., Rafe A. Characterization of flaxseed gum/rice bran protein complex coacervates. Food Biophys. 2018;13:387–395. doi: 10.1007/s11483-018-9544-5. DOI

Lai K., How Y., Pui L. Microencapsulation of Lactobacillus rhamnosus GG with flaxseed mucilage using co-extrusion technique. J. Microencapsul. 2021;38:134–148. doi: 10.1080/02652048.2020.1863490. PubMed DOI

Lai K., Mohd Ghazali H., How Y.H., Pui L.P. Preliminary evaluation of potential prebiotic capacity of selected legumes and seed mucilage on the probiotic strain Lactobacillus rhamnosus GG. Asia-Pac. J. Mol. Biol. Biotechnol. 2021;29:60–72. doi: 10.35118/apjmbb.2021.029.1.07. DOI

Lai K.-W., How Y.-H., Pui L.-P. Storage stability of microencapsulated Lactobacillus rhamnosus GG in hawthorn berry tea with flaxseed mucilage. J. Food Process. Preserv. 2020;44:e14965. doi: 10.1111/jfpp.14965. DOI

Soleimani-Rambod A., Zomorodi S., Naghizadeh Raeisi S., Khosrowshahi Asl A., Shahidi S.-A. The effect of xanthan gum and flaxseed mucilage as edible coatings in cheddar cheese during ripening. Coatings. 2018;8:80. doi: 10.3390/coatings8020080. DOI

Lu Z., Saldaña M.D.A., Jin Z., Sun W., Gao P., Bilige M., Sun W. Layer-by-layer electrostatic self-assembled coatings based on flaxseed gum and chitosan for Mongolian cheese preservation. Innov. Food Sci. Emerg. Technol. 2021;73:102785. doi: 10.1016/j.ifset.2021.102785. DOI

Yousuf B., Srivastava A.K. Flaxseed gum in combination with lemongrass essential oil as an effective edible coating for ready-to-eat pomegranate arils. Int. J. Biol. Macromol. 2017;104:1030–1038. doi: 10.1016/j.ijbiomac.2017.07.025. PubMed DOI

Treviño-Garza M.Z., Correa-Cerón R.C., Ortiz-Lechuga E.G., Solís-Arévalo K.K., Castillo-Hernández S.L., Gallardo-Rivera C.T., Arévalo Niño K. Effect of linseed (Linum usitatissimum) mucilage and chitosan edible coatings on quality and shelf-life of fresh-cut cantaloupe (Cucumis melo) Coatings. 2019;9:368. doi: 10.3390/coatings9060368. DOI

Treviño-Garza M.Z., García S., Heredia N., Alanís-Guzmán M.G., Arévalo-Niño K. Layer-by-layer edible coatings based on mucilages, pullulan and chitosan and its effect on quality and preservation of fresh-cut pineapple (Ananas comosus) Postharvest Biol. Technol. 2017;128:63–75. doi: 10.1016/j.postharvbio.2017.01.007. DOI

Rodrigues F.J., Cedran M.F., Garcia S. Influence of linseed mucilage incorporated into an alginate-base edible coating containing probiotic bacteria on shelf-life of fresh-cut yacon (Smallanthus sonchifolius) Food Bioprocess Technol. 2018;11:1605–1614. doi: 10.1007/s11947-018-2128-z. DOI

Al-Okbi S.Y. Highlights on functional foods, with special reference to flaxseed. J. Nat. Fibers. 2005;2:63–68. doi: 10.1300/J395v02n03_06. DOI

Long J.-j., Zu Y.-g., Fu Y.-j., Luo M., Mu P.-s., Zhao C.-j., Li C.-y., Wang W., Li J. Oil removal from oily water systems using immobilized flaxseed gum gel beads. RSC Adv. 2012;2:5172–5177. doi: 10.1039/c2ra20375h. DOI

Wang M., Huang G., Zhang G., Chen Y., Liu D., Li C. Selective flotation separation of fluorite from calcite by application of flaxseed gum as depressant. Miner. Eng. 2021;168:106938. doi: 10.1016/j.mineng.2021.106938. DOI

Prado N.S., Silva I.S.V.d., Silva T.A.L., Oliveira W.J.d., Motta L.A.d.C., Pasquini D., Otaguro H. Nanocomposite films based on flaxseed gum and cellulose nanocrystals. Mater. Res. 2018;21:e20180134. doi: 10.1590/1980-5373-mr-2018-0134. DOI

Smith A.K., Johnsen V.L., Beckel A.C. Linseed proteins. Ind. Eng. Chem. 1946;38:353–356. doi: 10.1021/ie50435a030. DOI

Sosulski F.W., Bakal A. Isolated proteins from rapeseed, flax and sunflower meals. Can. Inst. Food Technol. J. 1969;2:28–32. doi: 10.1016/S0008-3860(69)74338-0. DOI

Lan Y., Ohm J.-B., Chen B., Rao J. Physicochemical properties and aroma profiles of flaxseed proteins extracted from whole flaxseed and flaxseed meal. Food Hydrocoll. 2020;104:105731. doi: 10.1016/j.foodhyd.2020.105731. DOI

Perreault V., Hénaux L., Bazinet L., Doyen A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on protein structure, enzymatic hydrolysis and final hydrolysate antioxidant capacities. Food Chem. 2017;221:1805–1812. doi: 10.1016/j.foodchem.2016.10.100. PubMed DOI

Vassel B., Nesbitt L.L. The nitrogenous constituents of flaxseed: II. The isolation of a purified protein fraction. J. Biol. Chem. 1945;159:571–584. doi: 10.1016/S0021-9258(17)41562-6. DOI

Youle R.J., Huang A.H.C. Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Am. J. Bot. 1981;68:44–48. doi: 10.1002/j.1537-2197.1981.tb06354.x. DOI

Dev D.K., Sienkiewicz T. Isolation and subunit composition of 11 S globulin of linseed (Linum usitatissimum L.) Food/Nahr. 1987;31:767–769. doi: 10.1002/food.19870310741. DOI

Madhusudhan K.T., Singh N. Studies on linseed proteins. J. Agric. Food Chem. 1983;31:959–963. doi: 10.1021/jf00119a010. DOI

Kaushik P., Dowling K., McKnight S., Barrow C.J., Wang B., Adhikari B. Preparation, characterization and functional properties of flax seed protein isolate. Food Chem. 2016;197:212–220. doi: 10.1016/j.foodchem.2015.09.106. PubMed DOI

Wanasundara P.K.J.P.D., Shahidi F. Optimization of hexametaphosphate-assisted extraction of flaxseed proteins using response surface methodology. J. Food Sci. 1996;61:604–607. doi: 10.1111/j.1365-2621.1996.tb13168.x. DOI

Ye X.-P., Xu M.-F., Tang Z.-X., Chen H.-J., Wu D.-T., Wang Z.-Y., Songzhen Y.-X., Hao J., Wu L.-M., Shi L.-E. Flaxseed protein: Extraction, functionalities and applications. Food Sci. Technol. 2022;42 doi: 10.1590/fst.22021. DOI

Udenigwe C.C., Lin Y.-S., Hou W.-C., Aluko R.E. Kinetics of the inhibition of renin and angiotensin I-converting enzyme by flaxseed protein hydrolysate fractions. J. Funct. Foods. 2009;1:199–207. doi: 10.1016/j.jff.2009.01.009. DOI

Logarušić M., Radošević K., Bis A., Panić M., Slivac I., Gaurina Srček V. Biological potential of flaxseed protein hydrolysates obtained by different proteases. Plant Foods Hum. Nutr. 2020;75:518–524. doi: 10.1007/s11130-020-00841-z. PubMed DOI

Giacomino S., Peñas E., Ferreyra V., Pellegrino N., Fournier M., Apro N., Olivera Carrión M., Frias J. Extruded flaxseed meal enhances the nutritional quality of cereal-based products. Plant Foods Hum. Nutr. 2013;68:131–136. doi: 10.1007/s11130-013-0359-8. PubMed DOI

Rabetafika H.N., Van Remoortel V., Danthine S., Paquot M., Blecker C. Flaxseed proteins: Food uses and health benefits. Int. J. Food Sci. Technol. 2011;46:221–228. doi: 10.1111/j.1365-2621.2010.02477.x. DOI

Madhusudhan K.T., Singh N. Isolation and characterization of the major fraction (12 S) of linseed proteins. J. Agric. Food Chem. 1985;33:673–677. doi: 10.1021/jf00064a026. DOI

Marcone M.F., Kakuda Y., Yada R.Y. Salt-soluble seed globulins of various dicotyledonous and monocotyledonous plants—I. Isolation/purification and characterization. Food Chem. 1998;62:27–47. doi: 10.1016/S0308-8146(97)00158-1. DOI

Chung M.W.Y., Lei B., Li-Chan E.C.Y. Isolation and structural characterization of the major protein fraction from NorMan flaxseed (Linum usitatissimum L.) Food Chem. 2005;90:271–279. doi: 10.1016/j.foodchem.2003.07.038. DOI

Krause J.-P., Schultz M., Dudek S. Effect of extraction conditions on composition, surface activity and rheological properties of protein isolates from flaxseed (Linum usitatissimum L) J. Sci. Food Agric. 2002;82:970–976. doi: 10.1002/jsfa.1140. DOI

Madhusudhan K.T., Singh N. Isolation and characterization of a small molecular weight protein of linseed meal. Phytochemistry. 1985;24:2507–2509. doi: 10.1016/S0031-9422(00)80656-1. DOI

Liu J., Shim Y.Y., Poth A.G., Reaney M.J.T. Conlinin in flaxseed (Linum usitatissimum L.) gum and its contribution to emulsification properties. Food Hydrocoll. 2016;52:963–971. doi: 10.1016/j.foodhyd.2015.09.001. DOI

Tirgar M., Silcock P., Carne A., Birch E.J. Effect of extraction method on functional properties of flaxseed protein concentrates. Food Chem. 2017;215:417–424. doi: 10.1016/j.foodchem.2016.08.002. PubMed DOI

Martínez-Flores H.E., Barrera E.S., Garnica-Romo M.G., Penagos C.J.C., Saavedra J.P., Macazaga-Alvarez R. Functional characteristics of protein flaxseed concentrate obtained applying a response surface methodology. J. Food Sci. 2006;71:C495–C498. doi: 10.1111/j.1750-3841.2006.00147.x. DOI

Waszkowiak K., Mikołajczak B. The effect of roasting on the protein profile and antiradical capacity of flaxseed meal. Foods. 2020;9:1383. doi: 10.3390/foods9101383. PubMed DOI PMC

Wei C.-K., Thakur K., Liu D.-H., Zhang J.-G., Wei Z.-J. Enzymatic hydrolysis of flaxseed (Linum usitatissimum L.) protein and sensory characterization of Maillard reaction products. Food Chem. 2018;263:186–193. doi: 10.1016/j.foodchem.2018.04.120. PubMed DOI

Wei C.-K., Ni Z.-J., Thakur K., Liao A.-M., Huang J.-H., Wei Z.-J. Color and flavor of flaxseed protein hydrolysates Maillard reaction products: Effect of cysteine, initial pH, and thermal treatment. Int. J. Food Prop. 2019;22:84–99. doi: 10.1080/10942912.2019.1573830. DOI

Mueller K., Eisner P., Kirchhoff E. Simplified fractionation process for linseed meal by alkaline extraction—Functional properties of protein and fibre fractions. J. Food Eng. 2010;99:49–54. doi: 10.1016/j.jfoodeng.2010.01.036. DOI

Mueller K., Eisner P., Yoshie-Stark Y., Nakada R., Kirchhoff E. Functional properties and chemical composition of fractionated brown and yellow linseed meal (Linum usitatissimum L.) J. Food Eng. 2010;98:453–460. doi: 10.1016/j.jfoodeng.2010.01.028. DOI

Wang B., Wang L.-J., Li D., Bhandari B., Wu W.-F., Shi J., Chen X.D., Mao Z.-H. Effects of potato starch addition and cooling rate on rheological characteristics of flaxseed protein concentrate. J. Food Eng. 2009;91:392–401. doi: 10.1016/j.jfoodeng.2008.09.032. DOI

Dev D.K., Quensel E. Functional properties of linseed protein products containing different levels of mucilage in selected food systems. J. Food Sci. 1989;54:183–186. doi: 10.1111/j.1365-2621.1989.tb08597.x. DOI

Min C., Ma W., Kuang J., Huang J., Xiong Y.L. Textural properties, microstructure and digestibility of mungbean starch–flaxseed protein composite gels. Food Hydrocoll. 2022;126:107482. doi: 10.1016/j.foodhyd.2022.107482. DOI

Sharma M., Saini C.S. Efficacy of flaxseed protein-based edible coatings on the quality of whole guava (Psidium guajava) during storage. Food Sci. Appl. Biotechnol. 2021;4:93–104. doi: 10.30721/fsab2021.v4.i2.132. DOI

Bustamante M., Oomah B.D., Rubilar M., Shene C. Effective Lactobacillus plantarum and Bifidobacterium infantis encapsulation with chia seed (Salvia hispanica L.) and flaxseed (Linum usitatissimum L.) mucilage and soluble protein by spray drying. Food Chem. 2017;216:97–105. doi: 10.1016/j.foodchem.2016.08.019. PubMed DOI

Manthey F.A., Sinha S., Wolf-Hall C.E., Hall C.A., III Effect of flaxseed flour and packaging on shelf life of refrigerated pasta. J. Food Process. Preserv. 2008;32:75–87. doi: 10.1111/j.1745-4549.2007.00166.x. DOI

Xu Y., Hall C., III, Wolf-Hall C. Antifungal activity stability of flaxseed protein extract using response surface methodology. J. Food Sci. 2007;73:M9–M14. doi: 10.1111/j.1750-3841.2007.00576.x. PubMed DOI

Xu Y., Hall C., Wolf-Hall C., Manthey F. Fungistatic activity of flaxseed in potato dextrose agar and a fresh noodle system. Int. J. Food Microbiol. 2008;121:262–267. doi: 10.1016/j.ijfoodmicro.2007.11.005. PubMed DOI

Marambe H.K., Shand P.J., Wanasundara J.P.D. In vitro digestibility of flaxseed (Linum usitatissimum L.) protein: Effect of seed mucilage, oil and thermal processing. Int. J. Food Sci. Technol. 2013;48:628–635. doi: 10.1111/ijfs.12008. DOI

Oomah B.D. Flaxseed as a functional food source. J. Sci. Food Agric. 2001;81:889–894. doi: 10.1002/jsfa.898. DOI

Udenigwe C.C., Aluko R.E. Antioxidant and angiotensin converting enzyme-inhibitory properties of a flaxseed protein-derived high Fischer ratio peptide mixture. J. Agric. Food Chem. 2010;58:4762–4768. doi: 10.1021/jf100149w. PubMed DOI

Udenigwe C.C., Lu Y.-L., Han C.-H., Hou W.-C., Aluko R.E. Flaxseed protein-derived peptide fractions: Antioxidant properties and inhibition of lipopolysaccharide-induced nitric oxide production in murine macrophages. Food Chem. 2009;116:277–284. doi: 10.1016/j.foodchem.2009.02.046. DOI

Silva F.G.D.e., Hernández-Ledesma B., Amigo L., Netto F.M., Miralles B. Identification of peptides released from flaxseed (Linum usitatissimum) protein by Alcalase® hydrolysis: Antioxidant activity. LWT—Food Sci. Technol. 2017;76:140–146. doi: 10.1016/j.lwt.2016.10.049. DOI

Hwang C.-F., Chen Y.-A., Luo C., Chiang W.-D. Antioxidant and antibacterial activities of peptide fractions from flaxseed protein hydrolysed by protease from Bacillus altitudinis HK02. Int. J. Food Sci. Technol. 2016;51:681–689. doi: 10.1111/ijfs.13030. DOI

Doyen A., Udenigwe C.C., Mitchell P.L., Marette A., Aluko R.E., Bazinet L. Anti-diabetic and antihypertensive activities of two flaxseed protein hydrolysate fractions revealed following their simultaneous separation by electrodialysis with ultrafiltration membranes. Food Chem. 2014;145:66–76. doi: 10.1016/j.foodchem.2013.07.108. PubMed DOI

Omoni A.O., Aluko R.E. Mechanism of the inhibition of calmodulin-dependent neuronal nitric oxide synthase by flaxseed protein hydrolysates. J. Am. Oil Chem. Soc. 2006;83:335–340. doi: 10.1007/s11746-006-1209-8. DOI

Omoni A.O., Aluko R.E. Effect of cationic flaxseed protein hydrolysate fractions on the in vitro structure and activity of calmodulin-dependent endothelial nitric oxide synthase. Mol. Nutr. Food Res. 2006;50:958–966. doi: 10.1002/mnfr.200600041. PubMed DOI

Gui B., Shim Y.Y., Reaney M.J.T. Distribution of cyclolinopeptides in flaxseed fractions and products. J. Agric. Food Chem. 2012;60:8580–8589. doi: 10.1021/jf3023832. PubMed DOI

Sharav O., Shim Y.Y., Okinyo-Owiti D.P., Sammynaiken R., Reaney M.J.T. Effect of cyclolinopeptides on the oxidative stability of flaxseed oil. J. Agric. Food Chem. 2014;62:88–96. doi: 10.1021/jf4037744. PubMed DOI

Tolkachev O.N., Zhuchenko A.A. Biologically active substances of flax: Medicinal and nutritional properties (a review) Pharm. Chem. J. 2004;34:360–367. doi: 10.1023/A:1005217407453. DOI

Anzlovar S., Serra M.D., Dermastia M., Menestrina G. Membrane permeabilizing activity of pathogenesis-related protein linusitin from flax seed. Mol. Plant-Microbe Interact. 1998;11:610–617. doi: 10.1094/MPMI.1998.11.7.610. DOI

Lipilina E., Ganji V. Incorporation of ground flaxseed into bakery products and its effect on sensory and nutritional characteristics—A pilot study. J. Foodserv. 2009;20:52–59. doi: 10.1111/j.1748-0159.2008.00124.x. DOI

Wu M., Li D., Wang L.-J., Özkan N., Mao Z.-H. Rheological properties of extruded dispersions of flaxseed-maize blend. J. Food Eng. 2010;98:480–491. doi: 10.1016/j.jfoodeng.2010.01.031. DOI

Juodeikiene G., Zadeike D., Trakselyte-Rupsiene K., Gasauskaite K., Bartkiene E., Lele V., Viskelis P., Bernatoniene J., Ivanauskas L., Jakstas V. Functionalisation of flaxseed proteins assisted by ultrasonication to produce coatings enriched with raspberries phytochemicals. LWT. 2020;124:109180. doi: 10.1016/j.lwt.2020.109180. DOI

Wang B., Li D., Wang L.-J., Özkan N. Effect of concentrated flaxseed protein on the stability and rheological properties of soybean oil-in-water emulsions. J. Food Eng. 2010;96:555–561. doi: 10.1016/j.jfoodeng.2009.09.001. DOI

Ghosal S., Bhattacharyya D.K., Bhowal J. Production, characterization, and storage stability of nutritionally enriched flaxseed-based spread. J. Food Process. Preserv. 2022;46:e16574. doi: 10.1111/jfpp.16574. DOI

Alpaslan M., Hayta M. The effects of flaxseed, soy and corn flours on the textural and sensory properties of a bakery product. J. Food Qual. 2006;29:617–627. doi: 10.1111/j.1745-4557.2006.00099.x. DOI

Koca A.F., Anil M. Effect of flaxseed and wheat flour blends on dough rheology and bread quality. J. Sci. Food Agric. 2007;87:1172–1175. doi: 10.1002/jsfa.2739. DOI

Lunardello K.A., Yamashita F., de Toledo Benassi M., de Rensis C.M.V.B. The physicochemical characteristics of nonfat set yoghurt containing some hydrocolloids. Int. J. Dairy Technol. 2012;65:260–267. doi: 10.1111/j.1471-0307.2011.00762.x. DOI

Akdeniz V., Akalın A.S. New approach for yoghurt and ice cream production: High-intensity ultrasound. Trends Food Sci. Technol. 2019;86:392–398. doi: 10.1016/j.tifs.2019.02.046. DOI

Basiri S., Tajbakhsh S., Shekarforoush S.S. Fortification of stirred yoghurt with mucilage-free flaxseed and its physicochemical, microbial, textural and sensory properties. Int. Dairy J. 2022;131:105384. doi: 10.1016/j.idairyj.2022.105384. DOI

Delouee Arabshahi S., Rahati Ghochani S., Mohammadi A. Effect of flaxseed (Linum usitatissimum) mucilage on physicochemical and sensorial properties of semi-fat set yoghurt. J. Food Biosci. Technol. 2020;10:91–100.

Nguyen P.T.M., Kravchuk O., Bhandari B., Prakash S. Effect of different hydrocolloids on texture, rheology, tribology and sensory perception of texture and mouthfeel of low-fat pot-set yoghurt. Food Hydrocoll. 2017;72:90–104. doi: 10.1016/j.foodhyd.2017.05.035. DOI

Ng S.B.X., Nguyen P.T.M., Bhandari B., Prakash S. Influence of different functional ingredients on physical properties, rheology, tribology, and oral perceptions of no fat stirred yoghurt. J. Texture Stud. 2018;49:274–285. doi: 10.1111/jtxs.12307. PubMed DOI

Sodini I., Montella J., Tong P.S. Physical properties of yogurt fortified with various commercial whey protein concentrates. J. Sci. Food Agric. 2005;85:853–859. doi: 10.1002/jsfa.2037. DOI

Remeuf F., Mohammed S., Sodini I., Tissier J.P. Preliminary observations on the effects of milk fortification and heating on microstructure and physical properties of stirred yogurt. Int. Dairy J. 2003;13:773–782. doi: 10.1016/S0958-6946(03)00092-X. DOI

Hu Y., Li Y., Liu X. Soybean peptides promote yoghurt fermentation and quality. Biotechnol. Lett. 2020;42:1927–1937. doi: 10.1007/s10529-020-02912-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace