Insights into the physiology of C-peptide

. 2020 Sep 30 ; 69 (Suppl 2) : S237-S243.

Jazyk angličtina Země Česko Médium print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33094622

Current knowledge suggests a complex role of C-peptide in human physiology, but its mechanism of action is only partially understood. The effects of C-peptide appear to be variable depending on the target tissue, physiological environment, its combination with other bioactive molecules such as insulin, or depending on its concentration. It is apparent that C-peptide has therapeutic potential for the treatment of vascular and nervous damage caused by type 1 or late type 2 diabetes mellitus. The question remains whether the effect is mediated by the receptor, the existence of which is still uncertain, or whether an alternative non-receptor-mediated mechanism is responsible. The Institute of Endocrinology in Prague has been paying much attention to the issue of C-peptide and its metabolic effect since the 1980s. The RIA methodology of human C-peptide determination was introduced here and transferred to commercial production. By long-term monitoring of C-peptide oGTT-derived indices, the Institute has contributed to elucidating the pathophysiology of glucose tolerance disorders. This review summarizes the current knowledge of C-peptide physiology and highlights the contributions of the Institute of Endocrinology to this issue.

Zobrazit více v PubMed

BENDLOVÁ B. Candidate dissertation. Academy of Sciences of the Czech Republic; Prague: 1994a. Synthesis of human C-peptide, development of RIA assay and its further use for research purposes. (In Czech) pp. 1–106.

BENDLOVÁ B. Human C-peptide. The importance of its determination and the question of its biological function. (In Czech) Chemické listy. 1994b;88:51–58.

BENDLOVÁ B, LEBL M, ŠTOLBA P. Synthesis of modified human C-peptide and its fragments. Coll Czech Chem Commun. 1988;53:2637–2644. doi: 10.1135/cccc19882637. DOI

BENDLOVÁ B, VEJRAŽKOVÁ D, LUKÁŠOVÁ P, BRADNOVÁ B, VACÍNOVÁ G, VČELÁK J, ŠEDA O, VAŇKOVÁ M. Changes in glucose tolerance and influence of genetic background - semilongitudinal study. (In Czech) DMEV. 2015;18:35–36.

BENDLOVÁ B, VEJRAŽKOVÁ D, LUKÁŠOVÁ P, ŠEDOVÁ L, ŠEDA O, VČELÁK J, VAŇKOVÁ M. Shape of glycemic curves during OGTT: relationship to glucose tolerance and genetic background. (In Czech) DMEV. 2018;21:18.

BHATT MP, LIM YC, HWANG J, NA S, KIM YM, HA KS. C-peptide prevents hyperglycemia-induced endothelial apoptosis through inhibition of reactive oxygen species-mediated transglutaminase 2 activation. Diabetes. 2013a;62:243–253. doi: 10.2337/db12-0293. PubMed DOI PMC

BHATT MP, LIM YC, KIM YM, HA KS. C-peptide activates AMPKα and prevents ROS-mediated mitochondrial fission and endothelial apoptosis in diabetes. Diabetes. 2013b;62:3851–3862. doi: 10.2337/db13-0039. PubMed DOI PMC

CABRERA De LEÓN A, OLIVA GARCÍA JG, MARCELINO RODRÍGUEZ I, ALMEIDA GONZÁLEZ D, ALEMÁN SÁNCHEZ JJ, BRITO DÍAZ B, DOMÍNGUEZ COELLO S, BERTOMEU MARTÍNEZ V, AGUIRRE JAIME A, RODRÍGUEZ PÉREZ MDEL C. C-peptide as a risk factor of coronary artery disease in the general population. Diab Vasc Dis Res. 2015;12:199–207. doi: 10.1177/1479164114564900. PubMed DOI

EKBERG K, BRISMAR T, JOHANSSON BL, LINDSTRÖM P, JUNTTI-BERGGREN L, NORRBY A, BERNE C, ARNQVIST HJ, BOLINDER J, WAHREN J. C-Peptide replacement therapy and sensory nerve function in type 1 diabetic neuropathy. Diabetes Care. 2007;30:71–76. doi: 10.2337/dc06-1274. PubMed DOI

FAERCH K, BRØNS C, ALIBEGOVIC AC, VAAG A. The disposition index: adjustment for peripheral vs. hepatic insulin sensitivity? J Physiol. 2010;588:759–764. doi: 10.1113/jphysiol.2009.184028. PubMed DOI PMC

FIORINA P, FOLLI F, ZERBINI G, MAFFI P, GREMIZZI C, Di CARLO V, SOCCI C, BERTUZZI F, KASHGARIAN M, SECCHI A. Islet transplantation is associated with improvement of renal function among uremic patients with type I diabetes mellitus and kidney transplants. J Am Soc Nephrol. 2003;14:2150–2158. PubMed

HAIDET J, CIFARELLI V, TRUCCO M, LUPPI P. C-peptide reduces pro-inflammatory cytokine secretion in LPS-stimulated U937 monocytes in condition of hyperglycemia. Inflamm Res. 2012;61:27–35. doi: 10.1007/s00011-011-0384-8. PubMed DOI

HENRIKSSON M, PRAMANIK A, SHAFQAT J, ZHONG Z, TALLY M, EKBERG K, WAHREN J, RIGLER R, JOHANSSON J, JÖRNVALL H. Specific binding of proinsulin C-peptide to intact and to detergent-solubilized human skin fibroblasts. Biochem Biophys Res Commun. 2001;280:423–427. doi: 10.1006/bbrc.2000.4135. PubMed DOI

HILGERT I, ŠTOLBA P, KRIŠTOFOVÁ H, ŠTEFANOVÁ I, BENDLOVÁ B, LEBL M, HOŘEJŠÍ V. A monoclonal antibody applicable for determination of C-peptide of human proinsulin by RIA. Hybridoma. 1991;10:379–386. doi: 10.1089/hyb.1991.10.379. PubMed DOI

ISHII T, FUKANO K, SHIMADA K, KAMIKAWA A, OKAMATSU-OGURA Y, TERAO A, YOSHIDA T, SAITO M, KIMURA K. Proinsulin C-peptide activates α-enolase: implications for C-peptide--cell membrane interaction. J Biochem. 2012;152:53–62. doi: 10.1093/jb/mvs052. PubMed DOI

JÄGERBRINK T, LINDAHL E, SHAFQAT J, JÖRNVALL H. Proinsulin C-peptide interaction with protein tyrosine phosphatase 1B demonstrated with a labeling reaction. Biochem Biophys Res Commun. 2009;387:31–35. doi: 10.1016/j.bbrc.2009.06.074. PubMed DOI

JOHANSSON BL, BORG K, FERNQVIST-FORBES E, KERNELL A, ODERGREN T, WAHREN J. Beneficial effects of C-peptide on incipient nephropathy and neuropathy in patients with type 1 diabetes mellitus. Diabet Med. 2000;17:181–189. doi: 10.1046/j.1464-5491.2000.00274.x. PubMed DOI

KAUTZKY-WILLER A, BRAZZALE AR, MORO E, VRBÍKOVÁ J, BENDLOVA B, SBRIGNADELLO S, TURA A, PACINI G. Influence of increasing BMI on insulin sensitivity and secretion in normotolerant men and women of a wide age span. Obesity (Silver Spring) 2012;20:1966–1973. doi: 10.1038/oby.2011.384. PubMed DOI

KITAMURA T, KIMURA K, JUNG BD, MAKONDO K, OKAMOTO S, CAÑAS X, SAKANE N, YOSHIDA T, SAITO M. Proinsulin C-peptide rapidly stimulates mitogen-activated protein kinases in Swiss 3T3 fibroblasts: requirement of protein kinase C, phosphoinositide 3-kinase and pertussis toxin-sensitive G-protein. Biochem J. 2001;355:123–129. doi: 10.1042/bj3550123. PubMed DOI PMC

LACHIN JM, McGEE P, PALMER JP DCCT/EDIC RESEARCH GROUP. Impact of C-peptide preservation on metabolic and clinical outcomes in the Diabetes Control and Complications Trial. Diabetes. 2014;63:739–748. doi: 10.2337/db13-0881. PubMed DOI PMC

LI Y, ZHAO M, LI B, QI J. Dynamic localization and functional implications of C-peptide might for suppression of iNOS in high glucose-stimulated rat mesangial cells. Mol Cell Endocrinol. 2013;381:255–260. doi: 10.1016/j.mce.2013.08.007. PubMed DOI

LUKÁŠOVÁ P, VAŇKOVÁ M, VČELÁK J, VEJRAŽKOVÁ D, BRADNOVÁ O, STANICKÁ S, HAINER V, BENDLOVÁ B. Fat mass and obesity associated gene variants are associated with increased growth hormone levels and affect glucose and lipid metabolism in lean women. Physiol Res. 2015;64(Suppl 2):S177–S185. doi: 10.33549/physiolres.933088. PubMed DOI

LUPPI P, GENG X, CIFARELLI V, DRAIN P, TRUCCO M. C-peptide is internalised in human endothelial and vascular smooth muscle cells via early endosomes. Diabetologia. 2009;52:2218–2228. doi: 10.1007/s00125-009-1476-7. PubMed DOI

LUPPI P, DRAIN P. C-peptide antioxidant adaptive pathways in β cells and diabetes. J Intern Med. 2017;281:7–24. doi: 10.1111/joim.12522. PubMed DOI

MUNIYAPPA R, LEE S, CHEN H, QUON MJ. Current approaches for assessing insulin sensitivity and resistance in vivo: advantages, limitations, and appropriate usage. Am J Physiol Endocrinol Metab. 2008;294:E15–E26. doi: 10.1152/ajpendo.00645.2007. PubMed DOI

NAVARRO X, SUTHERLAND DE, KENNEDY WR. Long-term effects of pancreatic transplantation on diabetic neuropathy. Ann Neurol. 1997;42:727–736. doi: 10.1002/ana.410420509. PubMed DOI

PRAMANIK A, EKBERG K, ZHONG Z, SHAFQAT J, HENRIKSSON M, JANSSON O, TIBELL A, TALLY M, WAHREN J, JÖRNVALL H, RIGLER R, JOHANSSON J. C-peptide binding to human cell membranes: importance of Glu27. Biochem Biophys Res Commun. 2001;284:94–98. doi: 10.1006/bbrc.2001.4917. PubMed DOI

RICHARDS JP, YOSTEN GL, KOLAR GR, JONES CW, STEPHENSON AH, ELLSWORTH ML, SPRAGUE RS. Low O2-induced ATP release from erythrocytes of humans with type 2 diabetes is restored by physiological ratios of C-peptide and insulin. Am J Physiol Regul Integr Comp Physiol. 2014;307:R862–R868. doi: 10.1152/ajpregu.00206.2014. PubMed DOI

RICHARDS JP, BOWLES EA, GORDON WR, ELLSWORTH ML, STEPHENSON AH, SPRAGUE RS. Mechanisms of C-peptide-mediated rescue of low O2-induced ATP release from erythrocytes of humans with type 2 diabetes. Am J Physiol Regul Integr Comp Physiol. 2015;308:R411–R418. doi: 10.1152/ajpregu.00420.2014. PubMed DOI

SAISHO Y, KOU K, TANAKA K, ABE T, SHIMADA A, KAWAI T, ITOH H. Postprandial serum C-peptide to plasma glucose ratio predicts future insulin therapy in Japanese patients with type 2 diabetes. Acta Diabetologia. 2013;50:987–988. doi: 10.1007/s00592-012-0441-y. PubMed DOI

STUMVOLL M, MITRAKOU A, PIMENTA W, JENSSEN T, YKI-JÄRVINEN H, Van HAEFTEN T, HÄRING H, FRITSCHE A, GERICH J. Use of the oral glucose tolerance test to assess insulin release and insulin sensitivity. Diabetes Care. 2000;23:295–301. doi: 10.2337/diacare.23.3.295. PubMed DOI

TURA A, MORBIDUCCI U, SBRIGNADELLO S, WINHOFER Y, PACINI G, KAUTZKY-WILLER A. Shape of glucose, insulin, C-peptide curves during a 3-h oral glucose tolerance test: any relationship with the degree of glucose tolerance? Am J Physiol Regul Integr Comp Physiol. 2011;300:R941–R948. doi: 10.1152/ajpregu.00650.2010. PubMed DOI

TURA A, PACINI G, KAUTZKY-WILLER A, GASTALDELLI A, DEFRONZO RA, FERRANNINI E, MARI A. Estimation of prehepatic insulin secretion: comparison between standardized C-peptide and insulin kinetic models. Metabolism. 2012;61:434–443. doi: 10.1016/j.metabol.2011.08.001. PubMed DOI

TURA A, PACINI G, MORO E, VRBÍKOVÁ J, BENDLOVÁ B, KAUTZKY-WILLER A. Sex- and age-related differences of metabolic parameters in impaired glucose metabolism and type 2 diabetes compared to normal glucose tolerance. Diabetes Res Clin Pract. 2018;146:67–75. doi: 10.1016/j.diabres.2018.09.019. PubMed DOI

VČELÁK J, VEJRAŽKOVÁ D, VAŇKOVÁ M, LUKÁŠOVÁ P, BRADNOVÁ O, HÁLKOVÁ T, BEŠŤÁK J, ANDĚLOVÁ K, KVASNIČKOVÁ H, HOSKOVCOVÁ P, VONDRA K, VRBÍKOVÁ J, BENDLOVÁ B. T2D risk haplotypes of the TCF7L2 gene in the Czech population sample: the association with free fatty acids composition. Physiol Res. 2012;61:229–240. doi: 10.33549/physiolres.932272. PubMed DOI

VEJRAZKOVA D, LUKASOVA P, VANKOVA M, BRADNOVA O, VACINOVA G, VCELAK J, CIRMANOVA V, ANDELOVA K, KREJCI H, BENDLOVA B. Gestational diabetes - metabolic risks of adult women with respect to birth weight. Physiol Res. 2015;64(Suppl 2):S135–S145. doi: 10.33549/physiolres.933089. PubMed DOI

VEJRAZKOVA D, LISCHKOVA O, VANKOVA M, STANICKA S, VRBIKOVA J, LUKASOVA P, VCELAK J, VACINOVA G, BENDLOVA B. Distinct response of fat and gastrointestinal tissue to glucose in gestational diabetes mellitus and polycystic ovary syndrome. Physiol Res. 2017;66:283–292. doi: 10.33549/physiolres.933366. PubMed DOI

VISTISEN D, WITTE DR, TABÁK AG, BRUNNER EJ, KIVIMÄKI M, FÆRCH K. Sex differences in glucose and insulin trajectories prior to diabetes diagnosis: the Whitehall II study. Acta Diabetol. 2014;51:315–319. doi: 10.1007/s00592-012-0429-7. PubMed DOI

VONDRA K, VOBORSKÁ M, KVAPIL M, WEBER P, DVORÁKOVÁ H, STANICKÁ S, ZAMRAZIL V. Somatostatin: beneficial effects on remission in young adult patients with newly diagnosed diabetes mellitus type 1. Physiol Res. 2004;53:115–117. PubMed

VONDRA K, VRBÍKOVÁ J, BENDLOVÁ B, DVORAKOVA K, STERZL I, VONDROVA M. Differences in type I diabetes mellitus of young adults with and without thyroid autoimmunity. Exp Clin Endocrinol Diabetes. 2005;113:404–408. doi: 10.1055/s-2005-865769. PubMed DOI

VRBIKOVA J, BENDLOVA B, VANKOVA M, DVORAKOVA K, GRIMMICHOVA T, VONDRA K, PACINI G. Beta cell function and insulin sensitivity in women with polycystic ovary syndrome: influence of the family history of type 2 diabetes mellitus. Gynecol Endocrinol. 2009;25:597–602. doi: 10.1080/09513590902972133. PubMed DOI

WAHREN J. C-peptide and the pathophysiology of microvascular complications of diabetes. J Intern Med. 2017;281:3–6. doi: 10.1111/joim.12541. PubMed DOI

WAHREN J, KALLAS A, SIMA AA. The clinical potential of C-peptide replacement in type 1 diabetes. Diabetes. 2012;61:761–772. doi: 10.2337/db11-1423. PubMed DOI PMC

WAHREN J, FOYT H, DANIELS M, AREZZO JC. Long-acting C-peptide and neuropathy in type 1 diabetes: a 12-month clinical trial. Diabetes Care. 2016;39:596–602. doi: 10.2337/dc15-2068. PubMed DOI

WANG L, LIN P, MA A, ZHENG H, WANG K, LI W, WANG C, ZHAO R, LIANG K, LIU F, HOU X, SONG J, LU Y, ZHU P, SUN Y, CHEN L. C-peptide is independently associated with an increased risk of coronary artery disease in T2DM subjects: a cross-sectional study. PLoS One. 2015;10:e0127112. doi: 10.1371/journal.pone.0127112. PubMed DOI PMC

WILDOVÁ E, KRAML P, POTOČKOVÁ J, DLOUHÝ P, ANDĚL M. The assessment of the serum C-peptide and plasma glucose levels by orally administered whey proteins in type 2 diabetes mellitus. Physiol Res. 2017;66:993–999. doi: 10.33549/physiolres.933477. PubMed DOI

YOSTEN GL, KOLAR GR. The physiology of proinsulin C-peptide: unanswered questions and a proposed model. Physiology (Bethesda) 2015;30:327–332. doi: 10.1152/physiol.00008.2015. PubMed DOI

YOSTEN GL, KOLAR GR, REDLINGER LJ, SAMSON WK. Evidence for an interaction between proinsulin C-peptide and GPR146. J Endocrinol. 2013;218:B1–B8. doi: 10.1530/JOE-13-0203. PubMed DOI

YOSTEN GL, MARIC-BILKAN C, LUPPI P, WAHREN J. Physiological effects and therapeutic potential of proinsulin C-peptide. Am J Physiol Endocrinol Metab. 2014;307:E955–E968. doi: 10.1152/ajpendo.00130.2014. PubMed DOI PMC

ZASHIKHINA N, SHAROYKO V, ANTIPCHIK M, TARASENKO I, ANUFRIKOV Y, LAVRENTIEVA A, TENNIKOVA T, KORZHIKOVA-VLAKH E. Novel formulations of C-peptide with long-acting therapeutic potential for treatment of diabetic complications. Pharmaceutics. 2019;11:E27. doi: 10.3390/pharmaceutics11010027. PubMed DOI PMC

ZHONG Z, KOTOVA O, DAVIDESCU A, EHRÉN I, EKBERG K, JÖRNVALL H, WAHREN J, CHIBALIN AV. C-peptide stimulates Na+, K+-ATPase via activation of ERK1/2 MAP kinases in human renal tubular cells. Cell Mol Life Sci. 2004;61:2782–2790. doi: 10.1007/s00018-004-4258-x. PubMed DOI

ZHONG Z, DAVIDESCU A, EHRÉN I, EKBERG K, JÖRNVALL H, WAHREN J, CHIBALIN AV. C-peptide stimulates ERK1/2 and JNK MAP kinases via activation of protein kinase C in human renal tubular cells. Diabetologia. 2005;48:187–197. doi: 10.1007/s00125-004-1602-5. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...