Proteomic Profile of Flaxseed (Linum usitatissimum L.) Products as Influenced by Protein Concentration Method and Cultivar
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
QK1910302
Ministry of Agriculture
GAJU 080/2022/Z
University of South Bohemia in České Budějovice
LM2023042, e-INFRA CZ (ID:90254)
CEITEC Proteomics Core Facility of CIISB, Instruct-CZ Centre, supported by MEYS CR
PubMed
38731659
PubMed Central
PMC11083286
DOI
10.3390/foods13091288
PII: foods13091288
Knihovny.cz E-zdroje
- Klíčová slova
- 11S globulin, cultivar, flaxseed, flour, protein concentrates, proteomic profile,
- Publikační typ
- časopisecké články MeSH
The research is focused on the quantitative evaluation of the flaxseed (Linum usitatissimum L.) proteome at the level of seed cake (SC), fine flour-sieved a fraction below 250 µm (FF)-and protein concentrate (PC). The evaluation was performed on three oilseed flax cultivars (Agriol, Raciol, and Libra) with different levels of α-linolenic acid content using LC-MS/MS (shotgun proteomics) analysis, which was finalized by database searching using the NCBI protein database for Linum usitatissimum and related species. A total of 2560 protein groups (PGs) were identified, and their relative abundance was calculated. A set of 33 quantitatively most significant PGs was selected for further characterization. The selected PGs were divided into four classes-seed storage proteins (11S globulins and conlinins), oleosins, defense- and stress-related proteins, and other major proteins (mainly including enzymes). Seed storage proteins were found to be the most abundant proteins. Specifically, 11S globulins accounted for 41-44% of SC proteins, 40-46% of FF proteins, and 72-84% of PC proteins, depending on the cultivar. Conlinins (2S albumins) were the most abundant in FF, ranging from 10 to 13% (depending on cultivar). The second most important class from the point of relative abundance was oleosins, which were represented in SC and FF in the range of 2.1-3.8%, but only 0.36-1.20% in PC. Surprisingly, a relatively high abundance of chitinase was found in flax products as a protein related to defence and stress reactions.
Zobrazit více v PubMed
Barvkar V.T., Pardeshi V.C., Kale S.M., Kadoo N.Y., Giri A.P., Gupta V.S. Proteome Profiling of Flax (Linum usitatissimum) Seed: Characterization of Functional Metabolic Pathways Operating during Seed Development. J. Proteome Res. 2012;11:6264–6276. doi: 10.1021/pr300984r. PubMed DOI
Shim Y.Y., Gui B., Arnison P.G., Wang Y., Reaney M.J.T. Flaxseed (Linum usitatissimum L.) Bioactive Compounds and Peptide Nomenclature: A Review. Trends Food Sci. Technol. 2014;38:5–20. doi: 10.1016/j.tifs.2014.03.011. DOI
Marambe H.K., Wanasundara J.P.D. Protein from Flaxseed (Linum usitatissimum L.) In: Nadathur S.R., Wanasundara J.P.D., Scanlin L., editors. Sustainable Protein Sources. Academic Press; Cambridge, MA, USA: 2017. pp. 133–144. Chapter 8.
Bekhit A.E.-D.A., Shavandi A., Jodjaja T., Birch J., Teh S., Ahmed I.A.M., Al-Juhaimi F.A., Saeedi P., Bekhit A.A. Flaxseed: Composition, Detoxification, Utilization, and Opportunities. Biocatal. Agric. Biotechnol. 2018;13:129–152. doi: 10.1016/j.bcab.2017.11.017. DOI
Lan Y., Ohm J.-B., Chen B., Rao J. Physicochemical Properties and Aroma Profiles of Flaxseed Proteins Extracted from Whole Flaxseed and Flaxseed Meal. Food Hydrocoll. 2020;104:105731. doi: 10.1016/j.foodhyd.2020.105731. DOI
Bueno-Díaz C., Biserni C., Martín-Pedraza L., de las Heras M., Blanco C., Vázquez-Cortés S., Fernández-Rivas M., Ba-tanero E., Cuesta-Herranz J., Villalba M. Association Between the Seed Storage Proteins 2S Albumin and 11S Globulin and Severe Allergic Reaction after Flaxseed Intake. J. Investig. Allergol. Clin. Immunol. 2022;32:375–382. doi: 10.18176/jiaci.0713. PubMed DOI
Mueed A., Shibli S., Korma S.A., Madjirebaye P., Esatbeyoglu T., Deng Z. Flaxseed Bioactive Compounds: Chemical Composition, Functional Properties, Food Applications and Health Benefits-Related Gut Microbes. Foods. 2022;11:3307. doi: 10.3390/foods11203307. PubMed DOI PMC
Čeh B., Štraus S., Hladnik A., Kušar A. Impact of Linseed Variety, Location and Production Year on Seed Yield, Oil Content and Its Composition. Agronomy. 2020;10:1770. doi: 10.3390/agronomy10111770. DOI
Nykter M., Kymäläinen H.-R., Gates F. Quality Characteristics of Edible Linseed Oil. Agric. Food Sci. 2006;15:402–413. doi: 10.2137/145960606780061443. DOI
Rabetafika H.N., Van Remoortel V., Danthine S., Paquot M., Blecker C. Flaxseed Proteins: Food Uses and Health Benefits. Int. J. Food Sci. Technol. 2011;46:221–228. doi: 10.1111/j.1365-2621.2010.02477.x. DOI
Anastasiu A.-E., Chira N.-A., Banu I., Ionescu N., Stan R., Rosca S.-I. Oil productivity of seven Romanian linseed varieties as affected by weather conditions. Ind. Crop. Prod. 2016;86:219–230. doi: 10.1016/j.indcrop.2016.03.051. DOI
Komartin R.S., Stroescu M., Chira N., Stan R., Stoica-Guzun A. Optimization of oil extraction from Lallemantia iberica seeds using ultrasound-assisted extraction. J. Food Meas. Charact. 2021;15:2010–2020. doi: 10.1007/s11694-020-00790-w. DOI
Gutiérrez C., Rubilar M., Jara C., Verdugo M., Sineiro J., Shene C. Flaxseed and Flaxseed Cake as a Source of Compounds for Food Industry. J. Soil Sci. Plant Nutr. 2010;10:454–463. doi: 10.4067/S0718-95162010000200006. DOI
Kaushik P., Dowling K., McKnight S., Barrow C.J., Wang B., Adhikari B. Preparation, Characterization and Functional Properties of Flax Seed Protein Isolate. Food Chem. 2016;197 Pt A:212–220. doi: 10.1016/j.foodchem.2015.09.106. PubMed DOI
Wu S., Wang X., Qi W., Guo Q. Bioactive Protein/Peptides of Flaxseed: A Review. Trends Food Sci. Technol. 2019;92:184–193. doi: 10.1016/j.tifs.2019.08.017. DOI
Bárta J., Bártová V., Jarošová M., Švajner J. Proteins of Oilseed Cakes, Their Isolation and Usage Possibilities. Chem. Listy. 2021;115:472–480. (In Czech)
Maghaydah S., Alkahlout A., Abughoush M., Al Khalaileh N.I., Olaimat A.N., Al-Holy M.A., Ajo R., Choudhury I., Hayajneh W. Novel Gluten-Free Cinnamon Rolls by Substituting Wheat Flour with Resistant Starch, Lupine and Flaxseed Flour. Foods. 2022;11:1022. doi: 10.3390/foods11071022. PubMed DOI PMC
Waszkowiak K., Mikołajczak B. The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal. Foods. 2020;9:1383. doi: 10.3390/foods9101383. PubMed DOI PMC
Perreault V., Hénaux L., Bazinet L., Doyen A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on Protein Structure, Enzymatic Hydrolysis and Final Hydrolysate Antioxidant Capacities. Food Chem. 2017;221:1805–1812. doi: 10.1016/j.foodchem.2016.10.100. PubMed DOI
Logarušić M., Radošević K., Bis A., Panić M., Slivac I., Srček V.G. Biological Potential of Flaxseed Protein Hydrolysates Obtained by Different Proteases. Plant Foods Hum. Nutr. 2020;75:518–524. doi: 10.1007/s11130-020-00841-z. PubMed DOI
Ye X.-P., Xu M.-F., Tang Z.-X., Chen H.-J., Wu D.-T., Wang Z.-Y., Songzhen Y.-X., Hao J., Wu L.-M., Shi L.-E. Flaxseed Protein: Extraction, Functionalities and Applications. Food Sci. Technol. 2022;42:e22021. doi: 10.1590/fst.22021. DOI
Qin X., Li L., Yu X., Deng Q., Xiang Q., Zhu Y. Comparative Composition Structure and Selected Techno-Functional Elucidation of Flaxseed Protein Fractions. Foods. 2022;11:1820. doi: 10.3390/foods11131820. PubMed DOI PMC
Madhusudhan K.T., Singh N. Isolation and Characterization of a Small Molecular Weight Protein of Linseed Meal. Phytochemistry. 1985;24:2507–2509. doi: 10.1016/S0031-9422(00)80656-1. DOI
Marcone M.F., Kakuda Y., Yada R.Y. Salt-soluble Seed Globulins of Various Dicotyledonous and Monocotyledonous Plants—I. Isolation/Purification and Characterization. Food Chem. 1998;62:27–47. doi: 10.1016/S0308-8146(97)00158-1. DOI
Chung M.W.Y., Lei B., Li-Chan E.C.Y. Isolation and Structural Characterization of the Major Protein Fraction from NorMan Flaxseed (Linum usitatissimum L.) Food Chem. 2005;90:271–279. doi: 10.1016/j.foodchem.2003.07.038. DOI
Lorenc F., Jarošová M., Bedrníček J., Smetana P., Bárta J. Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods. 2022;11:2304. doi: 10.3390/foods11152304. PubMed DOI PMC
Kotecka-Majchrzak K., Sumara A., Fornal E., Montowska M. Proteomic Analysis of Oilseed Cake: A Comparative Study of Species-Specific Proteins and Peptides Extracted from Ten Seed Species. J. Sci. Food Agric. 2021;101:297–306. doi: 10.1002/jsfa.10643. PubMed DOI
Merkher Y., Kontareva E., Alexandrova A., Javaraiah R., Pustovalova M., Leonov S. Anti-Cancer Properties of Flaxseed Proteome. Proteomes. 2023;11:37. doi: 10.3390/proteomes11040037. PubMed DOI PMC
Klubicová K., Berčák M., Danchenko M., Skultety L., Rashydov N.M., Berezhna V.V., Miernyk J.A., Hajduch M. Agricultural Recovery of a Formerly Radioactive Area: I. Establishment of High-resolution Quantitative Protein Map of Mature Flax Seeds Harvested from the Remediated Chernobyl Area. Phytochemistry. 2011;72:1308–1315. doi: 10.1016/j.phytochem.2010.11.010. PubMed DOI
Bárta J., Bártová V., Jarošová M., Švajner J., Smetana P., Kadlec J., Filip V., Kyselka J., Berčíková M., Zdráhal Z., et al. Oilseed Cake Flour Composition, Functional Properties and Antioxidant Potential as Effects of Sieving and Species Differences. Foods. 2021;10:2766. doi: 10.3390/foods10112766. PubMed DOI PMC
Laemmli U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Bárta J., Roudnický P., Jarošová M., Zdráhal Z., Stupková A., Bártová V., Krejčová Z., Kyselka J., Filip V., Říha V., et al. Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis sativa L.) Cultivars. Plants. 2024;13:111. doi: 10.3390/plants13010111. PubMed DOI PMC
Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI
Demichev V., Messner C.B., Vernardis S.I., Lilley K.S., Ralser M. DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC
He B., Shi J., Wang X., Jiang H., Zhu J.H. Label-free Absolute Protein Quantification with Data-independent Acquisition. J. Proteom. 2019;200:51–59. doi: 10.1016/j.jprot.2019.03.005. PubMed DOI PMC
Oomah B.D., Mazza G. Flaxseed Proteins—A Review. Food Chem. 1993;48:109–114. doi: 10.1016/0308-8146(93)90043-F. DOI
Wanasundara P.K.J.P.D., Shahidi F. Removal of Flaxseed Mucilage by Chemical and Enzymatic Treatments. Food Chem. 1997;59:47–55. doi: 10.1016/S0308-8146(96)00093-3. DOI
Waszkowiak K., Mikołajczak B., Kmiecik D. Changes in Oxidative Stability and Protein Profile of Flaxseeds Resulting from Thermal Pre-treatment. J. Sci. Food Agric. 2018;98:5459–5469. doi: 10.1002/jsfa.9090. PubMed DOI
Waszkowiak K., Mikołajczak B., Polanowska K., Wieruszewski M., Siejak P., Smułek W., Jarzębski M. Protein Fractions from Flaxseed: The Effect of Subsequent Extractions on Composition and Antioxidant Capacity. Antioxidants. 2023;12:675. doi: 10.3390/antiox12030675. PubMed DOI PMC
Shewry P.R. Seed proteins. In: Black M., Bewley J.D., editors. Seed Technology and its Biological Basis. Sheffield Academic Press Ltd.; Sheffield, UK: CRC Press LLC; Boca Raton, FL, USA: 2000. pp. 42–84.
Liu J., Shim Y.Y., Poth A.G., Reaney M.J.T. Conlinin in Flaxseed (Linum usitatissimum L.) Gum and Its Contribution to Emulsification Properties. Food Hydrocoll. 2016;52:963–971. doi: 10.1016/j.foodhyd.2015.09.001. DOI
Truksa M., MacKenzie S.L., Qiu X. Molecular Analysis of Flax 2S Storage Protein Conlinin and Seed Specific Activity of Its Promoter. Plant Physiol. Biochem. 2003;41:141–147. doi: 10.1016/S0981-9428(02)00022-0. DOI
Souza P.F.N. The forgotten 2S albumin proteins: Importance, Structure, and Biotechnological Application in Agriculture and Human Health. Int. J. Biol. Macromol. 2020;164:4638–4649. doi: 10.1016/j.ijbiomac.2020.09.049. PubMed DOI
Moreno F.J., Clemente A. 2S Albumin Storage Proteins: What Makes them Food Allergens? Open Biochem. J. 2008;2:16–28. doi: 10.2174/1874091X00802010016. PubMed DOI PMC
Bhatla S.C., Kaushik V., Yadav M.K. Use of Oil bodies and Oleosins in Recombinant Protein Production and Other Biotechnological Applications. Biotechnol. Adv. 2010;28:293–300. doi: 10.1016/j.biotechadv.2010.01.001. PubMed DOI
Liu C., Wang R., He S., Cheng C., Ma Y. The Stability and Gastro-intestinal Digestion of Curcumin Emulsion Stabilized with Soybean Oil Bodies. LWT. 2020;131:109663. doi: 10.1016/j.lwt.2020.109663. DOI
Nikiforidis C.V. Structure and Functions of Oleosomes (Oil Bodies) Adv. Colloid Interface Sci. 2019;274:102039. doi: 10.1016/j.cis.2019.102039. PubMed DOI
Acevedo-Fani A., Dave A., Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front. Chem. 2020;8:564021. doi: 10.3389/fchem.2020.564021. PubMed DOI PMC
Kara H.H., Araiza-Calahorra A., Rigby N.M., Sarkar A. Flaxseed Oleosomes: Responsiveness to Physicochemical Stresses, Tribological Shear and Storage. Food Chem. 2024;431:137160. doi: 10.1016/j.foodchem.2023.137160. PubMed DOI
Li Z., Chi H., Liu C., Zhang T., Han L., Li L., Pei X., Long Y. Genome-Wide Identification and Functional Characterization of LEA Genes during Seed Development Process in Linseed Flax (Linum usitatissimum L.) BMC Plant Biol. 2021;21:193. doi: 10.1186/s12870-021-02972-0. PubMed DOI PMC
Carra S., Alberti S., Benesch J.L.P., Boelens W., Buchner J., Carver J.A., Cecconi C., Ecroyd H., Gusev N., Hightower L.E., et al. Small Heat Shock Proteins: Multifaceted Proteins with Important Implications for Life. Cell Stress Chaperon. 2019;24:295–308. doi: 10.1007/s12192-019-00979-z. PubMed DOI PMC
Waters E.R., Vierling E. Plant Small Heat Shock Proteins—Evolutionary and Functional Diversity. New Phytol. 2020;227:24–37. doi: 10.1111/nph.16536. PubMed DOI
Clemente M., Corigliano M.G., Pariani S.A., Sánchez-López E.F., Sander V.A., Ramos-Duarte V.A. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 2019;20:1345. doi: 10.3390/ijms20061345. PubMed DOI PMC
Anaya K., Cruz A.C.B., Cunha D.C.S., Monteiro S.M.N., dos Santos E.A. Growth Impairment Caused by Raw Linseed Consumption: Can Trypsin Inhibitors Be Harmful for Health? Plant Foods Hum. Nutr. 2015;70:338–343. doi: 10.1007/s11130-015-0500-y. PubMed DOI
Shao Q., Liu X., Su T., Ma C., Wang P. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. Front. Plant Sci. 2019;10:1568. doi: 10.3389/fpls.2019.01568. PubMed DOI PMC
Contreras del Mar M., Lama-Muñoz A., Gutiérrez-Pérez J.M., Espínola F., Moya M., Castro E. Protein Extraction from Agri-food Residues for Integration in Biorefinery: Potential Techniques and Current Status. Bioresour. Technol. 2019;280:459–477. doi: 10.1016/j.biortech.2019.02.040. PubMed DOI
Rodrigues I.M., Coelho J.F.J., Graça M., Carvalho V.S. Isolation and Valorisation of Vegetable Proteins from Oilseed Plants: Methods, Limitations and Potential. J. Food Eng. 2012;109:337–346. doi: 10.1016/j.jfoodeng.2011.10.027. DOI
Hadidi M., Aghababaei F., McClements D.J. Enhanced Alkaline Extraction Techniques for Isolating and Modifying Plant-Based Proteins. Food Hydrocoll. 2023;145:109132. doi: 10.1016/j.foodhyd.2023.109132. DOI
Hou F., Ding W., Qu W., Oladejo A.O., Xiong F., Zhang W., He R., Ma H. Alkali Solution Extraction of Rice Residue Protein Isolates: Influence of Alkali Concentration on Protein Functional, Structural Properties and Lysinoalanine Formation. Food Chem. 2017;218:207–215. doi: 10.1016/j.foodchem.2016.09.064. PubMed DOI