Proteomic Profile of Flaxseed (Linum usitatissimum L.) Products as Influenced by Protein Concentration Method and Cultivar

. 2024 Apr 23 ; 13 (9) : . [epub] 20240423

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38731659

Grantová podpora
QK1910302 Ministry of Agriculture
GAJU 080/2022/Z University of South Bohemia in České Budějovice
LM2023042, e-INFRA CZ (ID:90254) CEITEC Proteomics Core Facility of CIISB, Instruct-CZ Centre, supported by MEYS CR

The research is focused on the quantitative evaluation of the flaxseed (Linum usitatissimum L.) proteome at the level of seed cake (SC), fine flour-sieved a fraction below 250 µm (FF)-and protein concentrate (PC). The evaluation was performed on three oilseed flax cultivars (Agriol, Raciol, and Libra) with different levels of α-linolenic acid content using LC-MS/MS (shotgun proteomics) analysis, which was finalized by database searching using the NCBI protein database for Linum usitatissimum and related species. A total of 2560 protein groups (PGs) were identified, and their relative abundance was calculated. A set of 33 quantitatively most significant PGs was selected for further characterization. The selected PGs were divided into four classes-seed storage proteins (11S globulins and conlinins), oleosins, defense- and stress-related proteins, and other major proteins (mainly including enzymes). Seed storage proteins were found to be the most abundant proteins. Specifically, 11S globulins accounted for 41-44% of SC proteins, 40-46% of FF proteins, and 72-84% of PC proteins, depending on the cultivar. Conlinins (2S albumins) were the most abundant in FF, ranging from 10 to 13% (depending on cultivar). The second most important class from the point of relative abundance was oleosins, which were represented in SC and FF in the range of 2.1-3.8%, but only 0.36-1.20% in PC. Surprisingly, a relatively high abundance of chitinase was found in flax products as a protein related to defence and stress reactions.

Zobrazit více v PubMed

Barvkar V.T., Pardeshi V.C., Kale S.M., Kadoo N.Y., Giri A.P., Gupta V.S. Proteome Profiling of Flax (Linum usitatissimum) Seed: Characterization of Functional Metabolic Pathways Operating during Seed Development. J. Proteome Res. 2012;11:6264–6276. doi: 10.1021/pr300984r. PubMed DOI

Shim Y.Y., Gui B., Arnison P.G., Wang Y., Reaney M.J.T. Flaxseed (Linum usitatissimum L.) Bioactive Compounds and Peptide Nomenclature: A Review. Trends Food Sci. Technol. 2014;38:5–20. doi: 10.1016/j.tifs.2014.03.011. DOI

Marambe H.K., Wanasundara J.P.D. Protein from Flaxseed (Linum usitatissimum L.) In: Nadathur S.R., Wanasundara J.P.D., Scanlin L., editors. Sustainable Protein Sources. Academic Press; Cambridge, MA, USA: 2017. pp. 133–144. Chapter 8.

Bekhit A.E.-D.A., Shavandi A., Jodjaja T., Birch J., Teh S., Ahmed I.A.M., Al-Juhaimi F.A., Saeedi P., Bekhit A.A. Flaxseed: Composition, Detoxification, Utilization, and Opportunities. Biocatal. Agric. Biotechnol. 2018;13:129–152. doi: 10.1016/j.bcab.2017.11.017. DOI

Lan Y., Ohm J.-B., Chen B., Rao J. Physicochemical Properties and Aroma Profiles of Flaxseed Proteins Extracted from Whole Flaxseed and Flaxseed Meal. Food Hydrocoll. 2020;104:105731. doi: 10.1016/j.foodhyd.2020.105731. DOI

Bueno-Díaz C., Biserni C., Martín-Pedraza L., de las Heras M., Blanco C., Vázquez-Cortés S., Fernández-Rivas M., Ba-tanero E., Cuesta-Herranz J., Villalba M. Association Between the Seed Storage Proteins 2S Albumin and 11S Globulin and Severe Allergic Reaction after Flaxseed Intake. J. Investig. Allergol. Clin. Immunol. 2022;32:375–382. doi: 10.18176/jiaci.0713. PubMed DOI

Mueed A., Shibli S., Korma S.A., Madjirebaye P., Esatbeyoglu T., Deng Z. Flaxseed Bioactive Compounds: Chemical Composition, Functional Properties, Food Applications and Health Benefits-Related Gut Microbes. Foods. 2022;11:3307. doi: 10.3390/foods11203307. PubMed DOI PMC

Čeh B., Štraus S., Hladnik A., Kušar A. Impact of Linseed Variety, Location and Production Year on Seed Yield, Oil Content and Its Composition. Agronomy. 2020;10:1770. doi: 10.3390/agronomy10111770. DOI

Nykter M., Kymäläinen H.-R., Gates F. Quality Characteristics of Edible Linseed Oil. Agric. Food Sci. 2006;15:402–413. doi: 10.2137/145960606780061443. DOI

Rabetafika H.N., Van Remoortel V., Danthine S., Paquot M., Blecker C. Flaxseed Proteins: Food Uses and Health Benefits. Int. J. Food Sci. Technol. 2011;46:221–228. doi: 10.1111/j.1365-2621.2010.02477.x. DOI

Anastasiu A.-E., Chira N.-A., Banu I., Ionescu N., Stan R., Rosca S.-I. Oil productivity of seven Romanian linseed varieties as affected by weather conditions. Ind. Crop. Prod. 2016;86:219–230. doi: 10.1016/j.indcrop.2016.03.051. DOI

Komartin R.S., Stroescu M., Chira N., Stan R., Stoica-Guzun A. Optimization of oil extraction from Lallemantia iberica seeds using ultrasound-assisted extraction. J. Food Meas. Charact. 2021;15:2010–2020. doi: 10.1007/s11694-020-00790-w. DOI

Gutiérrez C., Rubilar M., Jara C., Verdugo M., Sineiro J., Shene C. Flaxseed and Flaxseed Cake as a Source of Compounds for Food Industry. J. Soil Sci. Plant Nutr. 2010;10:454–463. doi: 10.4067/S0718-95162010000200006. DOI

Kaushik P., Dowling K., McKnight S., Barrow C.J., Wang B., Adhikari B. Preparation, Characterization and Functional Properties of Flax Seed Protein Isolate. Food Chem. 2016;197 Pt A:212–220. doi: 10.1016/j.foodchem.2015.09.106. PubMed DOI

Wu S., Wang X., Qi W., Guo Q. Bioactive Protein/Peptides of Flaxseed: A Review. Trends Food Sci. Technol. 2019;92:184–193. doi: 10.1016/j.tifs.2019.08.017. DOI

Bárta J., Bártová V., Jarošová M., Švajner J. Proteins of Oilseed Cakes, Their Isolation and Usage Possibilities. Chem. Listy. 2021;115:472–480. (In Czech)

Maghaydah S., Alkahlout A., Abughoush M., Al Khalaileh N.I., Olaimat A.N., Al-Holy M.A., Ajo R., Choudhury I., Hayajneh W. Novel Gluten-Free Cinnamon Rolls by Substituting Wheat Flour with Resistant Starch, Lupine and Flaxseed Flour. Foods. 2022;11:1022. doi: 10.3390/foods11071022. PubMed DOI PMC

Waszkowiak K., Mikołajczak B. The Effect of Roasting on the Protein Profile and Antiradical Capacity of Flaxseed Meal. Foods. 2020;9:1383. doi: 10.3390/foods9101383. PubMed DOI PMC

Perreault V., Hénaux L., Bazinet L., Doyen A. Pretreatment of flaxseed protein isolate by high hydrostatic pressure: Impacts on Protein Structure, Enzymatic Hydrolysis and Final Hydrolysate Antioxidant Capacities. Food Chem. 2017;221:1805–1812. doi: 10.1016/j.foodchem.2016.10.100. PubMed DOI

Logarušić M., Radošević K., Bis A., Panić M., Slivac I., Srček V.G. Biological Potential of Flaxseed Protein Hydrolysates Obtained by Different Proteases. Plant Foods Hum. Nutr. 2020;75:518–524. doi: 10.1007/s11130-020-00841-z. PubMed DOI

Ye X.-P., Xu M.-F., Tang Z.-X., Chen H.-J., Wu D.-T., Wang Z.-Y., Songzhen Y.-X., Hao J., Wu L.-M., Shi L.-E. Flaxseed Protein: Extraction, Functionalities and Applications. Food Sci. Technol. 2022;42:e22021. doi: 10.1590/fst.22021. DOI

Qin X., Li L., Yu X., Deng Q., Xiang Q., Zhu Y. Comparative Composition Structure and Selected Techno-Functional Elucidation of Flaxseed Protein Fractions. Foods. 2022;11:1820. doi: 10.3390/foods11131820. PubMed DOI PMC

Madhusudhan K.T., Singh N. Isolation and Characterization of a Small Molecular Weight Protein of Linseed Meal. Phytochemistry. 1985;24:2507–2509. doi: 10.1016/S0031-9422(00)80656-1. DOI

Marcone M.F., Kakuda Y., Yada R.Y. Salt-soluble Seed Globulins of Various Dicotyledonous and Monocotyledonous Plants—I. Isolation/Purification and Characterization. Food Chem. 1998;62:27–47. doi: 10.1016/S0308-8146(97)00158-1. DOI

Chung M.W.Y., Lei B., Li-Chan E.C.Y. Isolation and Structural Characterization of the Major Protein Fraction from NorMan Flaxseed (Linum usitatissimum L.) Food Chem. 2005;90:271–279. doi: 10.1016/j.foodchem.2003.07.038. DOI

Lorenc F., Jarošová M., Bedrníček J., Smetana P., Bárta J. Structural Characterization and Functional Properties of Flaxseed Hydrocolloids and Their Application. Foods. 2022;11:2304. doi: 10.3390/foods11152304. PubMed DOI PMC

Kotecka-Majchrzak K., Sumara A., Fornal E., Montowska M. Proteomic Analysis of Oilseed Cake: A Comparative Study of Species-Specific Proteins and Peptides Extracted from Ten Seed Species. J. Sci. Food Agric. 2021;101:297–306. doi: 10.1002/jsfa.10643. PubMed DOI

Merkher Y., Kontareva E., Alexandrova A., Javaraiah R., Pustovalova M., Leonov S. Anti-Cancer Properties of Flaxseed Proteome. Proteomes. 2023;11:37. doi: 10.3390/proteomes11040037. PubMed DOI PMC

Klubicová K., Berčák M., Danchenko M., Skultety L., Rashydov N.M., Berezhna V.V., Miernyk J.A., Hajduch M. Agricultural Recovery of a Formerly Radioactive Area: I. Establishment of High-resolution Quantitative Protein Map of Mature Flax Seeds Harvested from the Remediated Chernobyl Area. Phytochemistry. 2011;72:1308–1315. doi: 10.1016/j.phytochem.2010.11.010. PubMed DOI

Bárta J., Bártová V., Jarošová M., Švajner J., Smetana P., Kadlec J., Filip V., Kyselka J., Berčíková M., Zdráhal Z., et al. Oilseed Cake Flour Composition, Functional Properties and Antioxidant Potential as Effects of Sieving and Species Differences. Foods. 2021;10:2766. doi: 10.3390/foods10112766. PubMed DOI PMC

Laemmli U.K. Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI

Bárta J., Roudnický P., Jarošová M., Zdráhal Z., Stupková A., Bártová V., Krejčová Z., Kyselka J., Filip V., Říha V., et al. Proteomic Profiles of Whole Seeds, Hulls, and Dehulled Seeds of Two Industrial Hemp (Cannabis sativa L.) Cultivars. Plants. 2024;13:111. doi: 10.3390/plants13010111. PubMed DOI PMC

Wiśniewski J.R., Zougman A., Nagaraj N., Mann M. Universal Sample Preparation Method for Proteome Analysis. Nat. Methods. 2009;6:359–362. doi: 10.1038/nmeth.1322. PubMed DOI

Demichev V., Messner C.B., Vernardis S.I., Lilley K.S., Ralser M. DIA-NN: Neural Networks and Interference Correction Enable Deep Proteome Coverage in High Throughput. Nat. Methods. 2020;17:41–44. doi: 10.1038/s41592-019-0638-x. PubMed DOI PMC

He B., Shi J., Wang X., Jiang H., Zhu J.H. Label-free Absolute Protein Quantification with Data-independent Acquisition. J. Proteom. 2019;200:51–59. doi: 10.1016/j.jprot.2019.03.005. PubMed DOI PMC

Oomah B.D., Mazza G. Flaxseed Proteins—A Review. Food Chem. 1993;48:109–114. doi: 10.1016/0308-8146(93)90043-F. DOI

Wanasundara P.K.J.P.D., Shahidi F. Removal of Flaxseed Mucilage by Chemical and Enzymatic Treatments. Food Chem. 1997;59:47–55. doi: 10.1016/S0308-8146(96)00093-3. DOI

Waszkowiak K., Mikołajczak B., Kmiecik D. Changes in Oxidative Stability and Protein Profile of Flaxseeds Resulting from Thermal Pre-treatment. J. Sci. Food Agric. 2018;98:5459–5469. doi: 10.1002/jsfa.9090. PubMed DOI

Waszkowiak K., Mikołajczak B., Polanowska K., Wieruszewski M., Siejak P., Smułek W., Jarzębski M. Protein Fractions from Flaxseed: The Effect of Subsequent Extractions on Composition and Antioxidant Capacity. Antioxidants. 2023;12:675. doi: 10.3390/antiox12030675. PubMed DOI PMC

Shewry P.R. Seed proteins. In: Black M., Bewley J.D., editors. Seed Technology and its Biological Basis. Sheffield Academic Press Ltd.; Sheffield, UK: CRC Press LLC; Boca Raton, FL, USA: 2000. pp. 42–84.

Liu J., Shim Y.Y., Poth A.G., Reaney M.J.T. Conlinin in Flaxseed (Linum usitatissimum L.) Gum and Its Contribution to Emulsification Properties. Food Hydrocoll. 2016;52:963–971. doi: 10.1016/j.foodhyd.2015.09.001. DOI

Truksa M., MacKenzie S.L., Qiu X. Molecular Analysis of Flax 2S Storage Protein Conlinin and Seed Specific Activity of Its Promoter. Plant Physiol. Biochem. 2003;41:141–147. doi: 10.1016/S0981-9428(02)00022-0. DOI

Souza P.F.N. The forgotten 2S albumin proteins: Importance, Structure, and Biotechnological Application in Agriculture and Human Health. Int. J. Biol. Macromol. 2020;164:4638–4649. doi: 10.1016/j.ijbiomac.2020.09.049. PubMed DOI

Moreno F.J., Clemente A. 2S Albumin Storage Proteins: What Makes them Food Allergens? Open Biochem. J. 2008;2:16–28. doi: 10.2174/1874091X00802010016. PubMed DOI PMC

Bhatla S.C., Kaushik V., Yadav M.K. Use of Oil bodies and Oleosins in Recombinant Protein Production and Other Biotechnological Applications. Biotechnol. Adv. 2010;28:293–300. doi: 10.1016/j.biotechadv.2010.01.001. PubMed DOI

Liu C., Wang R., He S., Cheng C., Ma Y. The Stability and Gastro-intestinal Digestion of Curcumin Emulsion Stabilized with Soybean Oil Bodies. LWT. 2020;131:109663. doi: 10.1016/j.lwt.2020.109663. DOI

Nikiforidis C.V. Structure and Functions of Oleosomes (Oil Bodies) Adv. Colloid Interface Sci. 2019;274:102039. doi: 10.1016/j.cis.2019.102039. PubMed DOI

Acevedo-Fani A., Dave A., Singh H. Nature-Assembled Structures for Delivery of Bioactive Compounds and Their Potential in Functional Foods. Front. Chem. 2020;8:564021. doi: 10.3389/fchem.2020.564021. PubMed DOI PMC

Kara H.H., Araiza-Calahorra A., Rigby N.M., Sarkar A. Flaxseed Oleosomes: Responsiveness to Physicochemical Stresses, Tribological Shear and Storage. Food Chem. 2024;431:137160. doi: 10.1016/j.foodchem.2023.137160. PubMed DOI

Li Z., Chi H., Liu C., Zhang T., Han L., Li L., Pei X., Long Y. Genome-Wide Identification and Functional Characterization of LEA Genes during Seed Development Process in Linseed Flax (Linum usitatissimum L.) BMC Plant Biol. 2021;21:193. doi: 10.1186/s12870-021-02972-0. PubMed DOI PMC

Carra S., Alberti S., Benesch J.L.P., Boelens W., Buchner J., Carver J.A., Cecconi C., Ecroyd H., Gusev N., Hightower L.E., et al. Small Heat Shock Proteins: Multifaceted Proteins with Important Implications for Life. Cell Stress Chaperon. 2019;24:295–308. doi: 10.1007/s12192-019-00979-z. PubMed DOI PMC

Waters E.R., Vierling E. Plant Small Heat Shock Proteins—Evolutionary and Functional Diversity. New Phytol. 2020;227:24–37. doi: 10.1111/nph.16536. PubMed DOI

Clemente M., Corigliano M.G., Pariani S.A., Sánchez-López E.F., Sander V.A., Ramos-Duarte V.A. Plant Serine Protease Inhibitors: Biotechnology Application in Agriculture and Molecular Farming. Int. J. Mol. Sci. 2019;20:1345. doi: 10.3390/ijms20061345. PubMed DOI PMC

Anaya K., Cruz A.C.B., Cunha D.C.S., Monteiro S.M.N., dos Santos E.A. Growth Impairment Caused by Raw Linseed Consumption: Can Trypsin Inhibitors Be Harmful for Health? Plant Foods Hum. Nutr. 2015;70:338–343. doi: 10.1007/s11130-015-0500-y. PubMed DOI

Shao Q., Liu X., Su T., Ma C., Wang P. New Insights Into the Role of Seed Oil Body Proteins in Metabolism and Plant Development. Front. Plant Sci. 2019;10:1568. doi: 10.3389/fpls.2019.01568. PubMed DOI PMC

Contreras del Mar M., Lama-Muñoz A., Gutiérrez-Pérez J.M., Espínola F., Moya M., Castro E. Protein Extraction from Agri-food Residues for Integration in Biorefinery: Potential Techniques and Current Status. Bioresour. Technol. 2019;280:459–477. doi: 10.1016/j.biortech.2019.02.040. PubMed DOI

Rodrigues I.M., Coelho J.F.J., Graça M., Carvalho V.S. Isolation and Valorisation of Vegetable Proteins from Oilseed Plants: Methods, Limitations and Potential. J. Food Eng. 2012;109:337–346. doi: 10.1016/j.jfoodeng.2011.10.027. DOI

Hadidi M., Aghababaei F., McClements D.J. Enhanced Alkaline Extraction Techniques for Isolating and Modifying Plant-Based Proteins. Food Hydrocoll. 2023;145:109132. doi: 10.1016/j.foodhyd.2023.109132. DOI

Hou F., Ding W., Qu W., Oladejo A.O., Xiong F., Zhang W., He R., Ma H. Alkali Solution Extraction of Rice Residue Protein Isolates: Influence of Alkali Concentration on Protein Functional, Structural Properties and Lysinoalanine Formation. Food Chem. 2017;218:207–215. doi: 10.1016/j.foodchem.2016.09.064. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...