Oilseed Cake Flour Composition, Functional Properties and Antioxidant Potential as Effects of Sieving and Species Differences
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
NAZV QK 1910302
Ministry of Agriculture
PubMed
34829047
PubMed Central
PMC8624202
DOI
10.3390/foods10112766
PII: foods10112766
Knihovny.cz E-zdroje
- Klíčová slova
- antioxidant activity, flax, hemp, milk thistle, oilseed cake flour, poppy, protein, rapeseed, sunflower,
- Publikační typ
- časopisecké články MeSH
Oilseed cakes are produced as a by-product of oil pressing and are mostly used as feed. Their use for human consumption is due to the functional properties and benefits for human health. Herein, oilseed cake flours of eight species (flax, hemp, milk thistle, poppy, pumpkin, rapeseed, safflower, sunflower) were sieved into fractions above (A250) and below (B250) 250 µm. The chemical composition, SDS-PAGE profiles, colour, functional properties and antioxidant activities of these flours were evaluated. The B250 fractions were evaluated as being protein and ash rich, reaching crude protein and ash content ranging from 31.78% (milk thistle) to 57.47% (pumpkin) and from 5.0% (flax) to 11.19% (poppy), respectively. A high content of carbohydrates was found in the flours of hemp, milk thistle and safflower with a significant increase for the A250 fraction, with a subsequent relation to a high water holding capacity (WHC) for the A250 fraction (flax, poppy, pumpkin and sunflower). The A250 milk thistle flour was found to have the richest in polyphenols content (TPC) (40.89 mg GAE/g), with the highest antioxidant activity using an ABTS•+ assay (101.95 mg AAE/g). The A250 fraction for all the species exhibited lower lightness than the B250 fraction. The obtained results indicate that sieving oilseed flour with the aim to prepare flours with specific functional characteristics and composition is efficient only in combination with a particular species.
Zobrazit více v PubMed
Sharma S., Gupta S.K., Mondal K. Production and trade of major world oil crops. In: Gupta S.K., editor. Technological Innovations in Major World Oil Crops. Volume 1. Springer; New York, NY, USA: 2012. pp. 1–15.
OECD-FAO . OECD-FAO Agricultural Outlook 2019–2028. OECD Publishing; Paris, France: 2019. Oilseeds and oilseed products.
Parry J., Su L., Moore J., Cheng Z., Luther M., Rao J., Wang J.Y., Yu L. Chemical compositions, antioxidant capacities, and antiproliferative activities of selected fruit seed flours. J. Agric. Food Chem. 2006;54:3773–3778. doi: 10.1021/jf060325k. PubMed DOI
Parry J., Cheng Z., Moore J., Yu L.L. Fatty acid composition, antioxidant properties, and antiproliferative capacity of selected cold-pressed seed flours. J. Am. Oil Chem. Soc. 2008;85:457–464. doi: 10.1007/s11746-008-1207-0. DOI
Ancuţa P., Sonia A. Oil press-cakes and meals valorization through circular economy approaches. Appl. Sci. 2020;10:7432. doi: 10.3390/app10217432. DOI
Gupta A., Sharma A., Pathak R., Kumar A., Sharma S. Solid state fermentation of non-edible oil seed cakes for production of proteases and cellulases and degradation of anti-nutritional factors. J. Food Biotechnol. Res. 2018;1:3–8.
Teh S.S., Bekhit A.E. Utilization of oilseed cakes for human nutrition and health benefits. In: Hakeem K.R., Jawaid M., Alothman O.Y., editors. Agricultural Biomass Based Potential Materials. Springer International Publishing; Cham, Switzerland: 2015. pp. 191–229.
Mattila P., Mäkinen S., Eurola M., Jalava T., Pihlava J.-M., Hellström J., Pihlanto A. Nutritional value of commercial protein-rich plant products. Plant Foods Hum. Nutr. 2018;73:108–115. doi: 10.1007/s11130-018-0660-7. PubMed DOI PMC
Zając M., Guzik P., Kulawik P., Tkaczewska J., Florkiewicz A., Migdal W. The quality of pork loaves with the addition of hemp seeds, de-hulled hemp seeds, hemp protein and hemp flour. LWT-Food Sci. Technol. 2019;105:190–199. doi: 10.1016/j.lwt.2019.02.013. DOI
Elsorady M.E. Characterization and functional properties of proteins isolated from flaxseed cake and sesame cake. Croat. J. Food Sci. Technol. 2020;12:77–83. doi: 10.17508/CJFST.2020.12.1.10. DOI
Pojić M., Hadnađev T.D., Hadnađev M., Rakita S., Brlek T. Bread supplementation with hemp seed cake: A by-product of hemp oil processing. J. Food Qual. 2015;38:431–440. doi: 10.1111/jfq.12159. DOI
Mejicanos G.A., Rogiewicz A., Nyachoti C.M., Slominski B.A. Fractionation of canola meal using sieving technology. Can. J. Anim. Sci. 2017;97:613–621. doi: 10.1139/CJAS-2016-0229. DOI
Murru M., Calvo C.L. Sunflower protein enrichment. Methods and potential applications. OCL-Oilseeds Fats Crop. Lipids. 2020;27:17. doi: 10.1051/ocl/2020007. DOI
Kotecka-Majchrzak K., Sumara A., Fornal E., Montowska M. Oilseed proteins—properties and application as a food ingredient. Trends Food Sci. Technol. 2020;106:160–170. doi: 10.1016/j.tifs.2020.10.004. DOI
Sanmartin C., Taglieri I., Venturi F., Macaluso M., Zinnai A., Tavarini S., Botto A., Serra A., Conte G., Flamini G., et al. Flaxseed Cake as a Tool for the Improvement of Nutraceutical and Sensorial Features of Sourdough Bread. Foods. 2020;9:204. doi: 10.3390/foods9020204. PubMed DOI PMC
De Lamo B., Gómez M. Bread Enrichment with Oilseeds. A Review. Foods. 2018;7:191. doi: 10.3390/foods7110191. PubMed DOI PMC
American Association of Cereal Chemists . AOAC Approved Methods of the AAAC. 10th ed. American Association of Cereal Chemists; St. Paul, MN, USA: 2006.
Lachman J., Hamouz K., Čepl J., Pivec V., Šulc M., Dvořák P. The effect of selected factors on polyphenol content and antioxidant activity in potato tubers. Chem. Listy. 2006;100:522–527.
Šulc M., Lachman J., Hamouz K., Orsák M., Dvořák P., Horáčková V. Selection and evaluation of methods for determination of antioxidant activity of purple- and red-fleshed potato varieties. Chem. Listy. 2007;101:584–591.
Laemmli U.K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature. 1970;227:680–685. doi: 10.1038/227680a0. PubMed DOI
Lan Y., Zha F., Peckrul A., Hanson B., Johnson B., Rao J., Chen B. Genotype x environmental effects on yielding ability and seed chemical composition of industrial hemp (Cannabis sativa L.) varieties grown in North Dakota, USA. J. Am. Oil Chem. Soc. 2019;96:1417–1425. doi: 10.1002/aocs.12291. DOI
Shen P., Gao Z., Xu M., Ohm J.B., Rao J., Chen B. The impact of hempseed dehulling on chemical composition, structure properties and aromatic profile of hemp protein isolate. Food Hydrocoll. 2020;106:105889. doi: 10.1016/j.foodhyd.2020.105889. DOI
Dotto J.M., Chacha J.S. The potential of pumpkin seeds as a functional food ingredient: A review. Sci. Afr. 2020;10:e00575. doi: 10.1016/j.sciaf.2020.e00575. DOI
Amin A.Z., Islam T., Uddin M.R., Uddin M.J., Rahman M.M., Satter M.A. Comparative study on nutrient contents in the different parts of indigenous and hybrid varieties of pumpkin (Cucurbita maxima Linn.) Heliyon. 2019;5:e02462. doi: 10.1016/j.heliyon.2019.e02462. PubMed DOI PMC
Nikolić I., Dokić L., Rakić D., Tomović V., Maravić N., Vidosavljević S., Šereš Z., Šoronja-Simović D. The role of two types of continuous phases bases on cellulose during textural, color, and sensory characterization of novel food spread with pumpkin seed flour. J. Food Process. Preserv. 2018;42:e13684. doi: 10.1111/jfpp.13684. DOI
Kreft I., Stibilj V., Trkov Z. Iodine and selenium contents in pumpkin (Cucurbita pepo L.) oil and oil-cake. Eur. Food Res. Technol. 2002;215:279–281. doi: 10.1007/s00217-002-0563-5. DOI
Korus J., Witczak M., Ziobro R., Juszczak L. Hemp (Cannabis sativa subsp. sativa) flour and protein preparation as natural nutrients and structure forming agents in starch based gluten-free bread. LWT-Food Sci. Technol. 2017;84:143–150. doi: 10.1016/j.lwt.2017.05.046. DOI
Bochkarev B., Egorova E., Poznyakovkiy V. Reasons for the ways of using oilcakes in food industry. Foods Raw Mater. 2016;4:4–12. doi: 10.21179/2308-4057-2016-1-4-12. DOI
Vonapartis E., Aubin M.P., Seguin P., Mustafa A.F., Charron J.B. Seed composition of ten industrial hemp cultivars approved for production in Canada. J. Food Compost. Anal. 2015;39:8–12. doi: 10.1016/j.jfca.2014.11.004. DOI
Bucsella B., Molnár D., Harasztos A.H., Tömösközi S. Comparison of the rheological and end-productproperties of an industrial aleurone-rich wheat flour, whole grain wheat and rye flour. J. Cereal Sci. 2016;69:40–48. doi: 10.1016/j.jcs.2016.02.007. DOI
Yilmaz E., Emir D.D. Compositional and functional characterisation of poppy seed (Papaver somniferum L.) press cake meals. Qual. Assur. Saf. Crops Foods. 2017;9:141–151. doi: 10.3920/QAS2016.0863. DOI
Bekhit A.E.-D.A., Shavandi A., Jodjaja T., Birch J., Teh S., Ahmed I.A.M., Al-Juhaimi F.Y., Saeedi P., Bekhit A.A. Flaxseed: Composition, detoxification, utilization, and opportunities. Biocatal. Agric. Biotechnol. 2018;13:129–152. doi: 10.1016/j.bcab.2017.11.017. DOI
Li F., Wu X.Y., Zhao T., Li F., Zhao J.L., Yang L.Q. Extraction, physicochemical, and functional properties of proteins from milk thistle Silybum marianum L. gaernt seeds. Int. J. Food Prop. 2013;16:1750–1763. doi: 10.1080/10942912.2011.608176. DOI
Guo X.F., Tian S., Small D.M. Generation of meat-like flavourings from enzymatic hydrolysates of proteins from Brassica spp. Food Chem. 2010;119:167–172. doi: 10.1016/j.foodchem.2009.05.089. DOI
Žilić S., Barać M., Pešić M., Crevar M., Stanojević S., Nišavić A., Saratlić G., Tolimir M. Characterization of sunflower seed and kernel proteins. Helia. 2010;33:103–114. doi: 10.2298/HEL1052103Z. DOI
Bučko S., Katona J., Popović L., Petrović L., Milinković J. Influence of enzymatic hydrolysis on solubility, interfacial and emulsifying properties of pumpkin (Cucurbita pepo) seed protein isolate. Food Hydrocoll. 2016;60:271–278. doi: 10.1016/j.foodhyd.2016.04.005. DOI
Hara I., Wada K., Wakabayashi S., Matsubara H. Pumpkin (Cucurbita sp.) seed globulin I. Purification, characterization, and subunit structure. Plant Cell Physiol. 1976;17:799–814. doi: 10.1093/oxfordjournals.pcp.a075336. DOI
Wanasundara J.P.D., McIntosh T.C., Perera S.P., Withana-Gamage T.S. Canola/rapeseed protein-functionality and nutrition. OCL-Oilseeds Fats Crop. Lipids. 2016;23:D407. doi: 10.1051/ocl/2016028. DOI
Kasprzak M.M., Houdijk J.G.M., Liddell S., Davis K., Olukosi O.A., Kightley S., White G.A., Wiseman J. Rapeseed napin and cruciferin are readily digested by poultry. J. Anim. Physiol. Anim. Nutr. 2017;101:658–666. doi: 10.1111/jpn.12576. PubMed DOI
Wang Q., Xiong Y.L. Processing, nutrition, and functionality of hempseed protein: A review. Compr. Rev. Food Sci. Food Saf. 2019;18:936–952. doi: 10.1111/1541-4337.12450. PubMed DOI
Malomo S.A., Aluko R.E. A comparative study of the structural and functional properties of isolated hemp seed (Cannabis sativa L.) albumin and globulin fractions. Food Hydrocoll. 2015;43:43–752. doi: 10.1016/j.foodhyd.2014.08.001. DOI
Malomo S.A., He R., Aluko R.E. Structural and functional properties of hemp seed protein products. J. Food Sci. 2014;79:C1512–C1521. doi: 10.1111/1750-3841.12537. PubMed DOI
Hu Y., Shim Y.Y., Reaney M.J.T. Flaxseed gum solution functional properties. Foods. 2020;9:681. doi: 10.3390/foods9050681. PubMed DOI PMC
Sun J., Li X., Xu X., Zhou G. Influence of various levels of flaxseed gum addition on the water-holding capacities of heat-induced porcine myofibrillar protein. J. Food Sci. 2011;76:C472–C478. doi: 10.1111/j.1750-3841.2011.02094.x. PubMed DOI
Nguyen D., Mounir S., Allaf K. Functional properties of water holding capacity, oil holding capacity, wettability, and sedimentation of swell-dried soybean powder. Sch. J. Eng. Tech. 2015;3:402–412.
Dzuvor C.K.O., Taylor J.T., Acquah C., Pan S., Agyei D. Bioprocessing of functional ingredients from flaxseed. Molecules. 2018;23:2444. doi: 10.3390/molecules23102444. PubMed DOI PMC
Martinelli T., Potenza E., Moschella A., Zaccheria F., Benedettelli S., Andrzejewska J. Phenotypic evaluation of milk thistle germplasm collection: Fruit morphology and chemical composition. Crop Sci. 2016;56:1–13. doi: 10.2135/cropsci2016.03.0162. DOI
Viktorova J., Stranska-Zachariasova M., Fenclova M., Vitek L., Hajslova J., Kren V., Ruml T. Complex evaluation of antioxidant capacity of milk thistle dietary supplements. Antioxidants. 2019;8:317. doi: 10.3390/antiox8080317. PubMed DOI PMC
Cappelletti E.M., Caniato R. Silymarin localization in the fruit and seed of Silybum marianum L. Gaertn. Herb. Hung. 1984;23:53–66.
Venglat P., Xiang D., Qiu S., Stone S.L., Tibiche C., Cram D., Alting-Mees M., Nowak J., Cloutier S., Deyholos M., et al. Gene expression analysis of flax seed development. BMC Plant Biol. 2011;11:74. doi: 10.1186/1471-2229-11-74. PubMed DOI PMC
Pickardt C., Weisz G.M., Eisner P., Kammerer D.R., Neidhart S., Carle R. Processing of low polyphenol protein isolates from residues of sunflower seed oil production. Procedia Food Sci. 2011;1:1417–1424. doi: 10.1016/j.profoo.2011.09.210. DOI
Xu L., Diosady L.L. Removal of phenolic compounds in the production of high-quality canola protein isolates. Food Res. Int. 2002;35:23–30. doi: 10.1016/S0963-9969(00)00159-9. DOI
Romani A., Pinelli P., Moschini V., Heimler D. Seeds and oil polyphenol content of sunflower (Helianthus annuus L.) grown with different agricultural management. Adv. Hortic. Sci. 2017;31:85–88.
Serçe A., Toptanci Ç.B., Tanrikut S.E., Altaş S., Kizil G., Kizil S., Kizil M. Assessment of the antioxidant activity of Silybum marianum seed extract and its protective effect against DNA oxidation, protein damage and lipid peroxidation. Food Technol. Biotechnol. 2016;54:455–461. doi: 10.17113/ftb.54.04.16.4323. PubMed DOI PMC
Bortíková V., Kolarič L., Šimko P. Application of milk thistle (Silybum marianum) in functional biscuits formulation. Acta Chim. Slovaca. 2019;12:192–199. doi: 10.2478/acs-2019-0027. DOI
Apostol L., Lorga S., Moşoiu C., Racovita R.C., Niculae O. The effects of partially defatted milk thistle (Silybum marianum) seed flour on wheat flour. J. Int. Sci. Publ. Agric. Food. 2017;5:74–84.
Schorno A.L., Manthey F.A., Hall C.A. Effect of particle size and sample size on lipid stability of milled flaxseed (Linum usitatissimum L.) J. Food Process. Preserv. 2010;34:167–179. doi: 10.1111/j.1745-4549.2009.00463.x. DOI
Uluata S., Özdemir N. Antioxidant activities and oxidative stabilities of some unconventional oilseeds. J. Am. Oil Chem. Soc. 2011;89:551–559. doi: 10.1007/s11746-011-1955-0. PubMed DOI PMC
Martysiak-Żurowska D., Wenta W. A comparison of ABTS and DPPH methods for assessing the total antioxidant capacity of human milk. Acta Sci. Pol. Technol. Aliment. 2012;11:83–89. PubMed
Okoh S.O., Asekun O.T., Familoni O.B., Afolayan A.J. Antioxidant and free radical scavenging Ccapacity of seed and shell essential oils extracted from Abrus precatorius (L) Antioxidants. 2014;3:278–287. doi: 10.3390/antiox3020278. PubMed DOI PMC
Lachman J., Sulc M., Faitová K., Pivec V. Major factors influencing antioxidant contents and antioxidant activity in grapes and wines. Int. J. Wine Res. 2009;1:101–121. doi: 10.2147/IJWR.S4600. DOI
Šulc M., Lachman J., Hamouz K., Dvořák P. Impact of Phenolic Content on Antioxidant Activity in Yellow and Purple-fleshed Potatoes Grown in the Czech Republic. Biol. Agric. Hortic. 2008;26:45–54. doi: 10.1080/01448765.2008.9755068. DOI
Liu Q., Qiu Y., Beta T. Comparison of antioxidant activities of different colored wheat grains and analysis of phenolic compounds. J. Agric. Food Chem. 2010;58:9235–9241. doi: 10.1021/jf101700s. PubMed DOI
Kaur P., Waghmare R., Kumar V., Rasane P., Kaur S., Gat Y. Recent advances in utilization of flaxseed as potential source for value addition. OCL-Oilseeds Fats Crop. Lipids. 2018;25:A304. doi: 10.1051/ocl/2018018. DOI
Foschia M., Peressini D., Sensidoni A., Brennan C.S. The effects of dietary fibre addition on the quality of common cereal products. J. Cereal Sci. 2013;58:216–227. doi: 10.1016/j.jcs.2013.05.010. DOI
Grasso S., Omoarukhe E., Wen X., Papoutsis K., Methven L. The use of upcycled defatted sunflower seed flour as a functional ingredient in biscuits. Foods. 2019;8:305. doi: 10.3390/foods8080305. PubMed DOI PMC