Assessment of Habitat Suitability Is Affected by Plant-Soil Feedback: Comparison of Field and Garden Experiment

. 2016 ; 11 (6) : e0157800. [epub] 20160623

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid27336400

BACKGROUND: Field translocation experiments (i.e., the introduction of seeds or seedlings of different species into different localities) are commonly used to study habitat associations of species, as well as factors limiting species distributions and local abundances. Species planted or sown in sites where they naturally occur are expected to perform better or equally well compared to sites at which they do not occur or are rare. This, however, contrasts with the predictions of the Janzen-Connell hypothesis and commonly reported intraspecific negative plant-soil feedback. The few previous studies indicating poorer performance of plants at sites where they naturally occur did not explore the mechanisms behind this pattern. AIMS AND METHODS: In this study, we used field translocation experiments established using both seeds and seedlings to study the determinants of local abundance of four dominant species in grasslands. To explore the possible effects of intraspecific negative plant-soil feedback on our results, we tested the effect of local species abundance on the performance of the plants in the field experiment. In addition, we set up a garden experiment to explore the intensity of intraspecific as well as interspecific feedback between the dominants used in the experiment. KEY RESULTS: In some cases, the distribution and local abundances of the species were partly driven by habitat conditions at the sites, and species performed better at their own sites. However, the prevailing pattern was that the local dominants performed worse at sites where they naturally occur than at any other sites. Moreover, the success of plants in the field experiment was lower in the case of higher intraspecific abundance prior to experimental setup. In the garden feedback experiment, two of the species performed significantly worse in soils conditioned by their species than in soils conditioned by the other species. In addition, the performance of the plants was significantly correlated between the two experiments, suggesting that plant-soil feedback is a likely explanation of the patterns observed in the field. CONCLUSIONS: All of the results indicate that intraspecific negative plant-soil feedback, either biotic or abiotic, may be a key factor determining the performance of the plants in our field translocation experiment. The possible effects of negative feedback should thus be considered when evaluating results of translocation experiments in future studies.

Zobrazit více v PubMed

Burrows MT, Schoeman DS, Richardson AJ, Molinos JG, Hoffmann A, Buckley LB, et al. Geographical limits to species-range shifts are suggested by climate velocity. Nature. 2014;507(7493):492–+. 10.1038/nature12976 WOS:000333402000039. PubMed DOI

Caughlin TT, Ferguson JM, Lichstein JW, Bunyavejchewin S, Levey DJ. The importance of long-distance seed dispersal for the demography and distribution of a canopy tree species. Ecology. 2014;95(4):952–62. 10.1890/13-0580.1 WOS:000334573600015. PubMed DOI

Volkov I, Banavar JR, He FL, Hubbell SP, Maritan A. Density dependence explains tree species abundance and diversity in tropical forests. Nature. 2005;438(7068):658–61. 10.1038/nature04030 WOS:000233593100048. PubMed DOI

Kawecki TJ, Ebert D. Conceptual issues in local adaptation. Ecology Letters. 2004;7(12):1225–41. 10.1111/j.1461-0248.2004.00684.x WOS:000225078000013. DOI

Andersen KM, Turner BL, Dalling JW. Seedling performance trade-offs influencing habitat filtering along a soil nutrient gradient in a tropical forest. Ecology. 2014;95(12):3399–413. WOS:000346851400017.

Fine PVA, Mesones I, Coley PD. Herbivores promote habitat specialization by trees in amazonian forests. Science. 2004;305(5684):663–5. 10.1126/science.1098982 WOS:000222992100046. PubMed DOI

Fine PVA, Miller ZJ, Mesones I, Irazuzta S, Appel HM, Stevens MHH, et al. The growth-defense trade-off and habitat specialization by plants in Amazonian forests. Ecology. 2006;87(7):S150–S62. WOS:000239606900014. PubMed

Palmiotto PA, Davies SJ, Vogt KA, Ashton MS, Vogt DJ, Ashton PS. Soil-related habitat specialization in dipterocarp rain forest tree species in Borneo. Journal of Ecology. 2004;92(4):609–23. 10.1111/j.0022-0477.2004.00894.x WOS:000222869400006. DOI

Baltzer JL, Thomas SC, Nilus R, Burslem D. Edaphic specialization in tropical trees: Physiological correlates and responses to reciprocal transplantation. Ecology. 2005;86(11):3063–77. 10.1890/04-0598 WOS:000233419600022. DOI

Stropp J, van der Sleen P, Quesada CA, ter Steege H. Herbivory and habitat association of tree seedlings in lowland evergreen rainforest on white-sand and terra-firme in the upper Rio Negro. Plant Ecology & Diversity. 2014;7(1–2):255–65. 10.1080/17550874.2013.773103 WOS:000336082900018. DOI

Ibanez I, McCarthy-Neumann S. Integrated assessment of the direct and indirect effects of resource gradients on tree species recruitment. Ecology. 2014;95(2):364–75. 10.1890/13-0685.1 WOS:000331429500011. PubMed DOI

Albrecht MA, McCarthy BC. Seedling establishment shapes the distribution of shade-adapted forest herbs across a topographical moisture gradient. Journal of Ecology. 2009;97(5):1037–49. 10.1111/j.1365-2745.2009.01527.x WOS:000268928200022. DOI

Münzbergová Z. Effect of spatial scale on factors limiting species distributions in dry grassland fragments. J Ecol. 2004;92(5):854–67. ISI:000223906500013.

Ehrlén J, Münzbergová Z, Diekmann M, Eriksson O. Long-term assessment of seed limitation in plants: results from an 11-year experiment. J Ecol. 2006;94(6):1224–32. ISI:000240920400017.

Moore KA, Elmendorf SC. Propagule vs. niche limitation: untangling the mechanisms behind plant species' distributions. Ecology Letters. 2006;9(7):797–804. 10.1111/j.1461-0248.2006.00923.x PubMed DOI

Seifert B, Fischer M. Experimental establishment of a declining dry-grassland flagship species in relation to seed origin and target environment. Biological Conservation. 2010;143(5):1202–11. 10.1016/j.biocon.2010.02.028 DOI

Harrison S, Cornell H, Moore KA. Spatial niches and coexistence: testing theory with tarweeds. Ecology. 2010;91(7):2141–50. 10.1890/09-0742.1 PubMed DOI

Dullinger S, Hulber K. Experimental Evaluation of Seed Limitation in Alpine Snowbed Plants. Plos One. 2011;6(6). 10.1371/journal.pone.0021537 PubMed DOI PMC

Hemrová L, Münzbergová Z. Identification of suitable unoccupied habitats: direct versus an indirect approach. Preslia. 2012;84(4):925–37. WOS:000313145000004.

Knappová J, Knapp M, Münzbergová Z. Spatio-temporal variation in contrasting effects of resident vegetation on establishment, growth and reproduction of dry grassland plants: implications for seed addition experiments. PLoS ONE. 2013;8(6):e65879 10.1371/journal.pone.0065879 PubMed DOI PMC

Münzbergová Z, Herben T. Seed, dispersal, microsite, habitat and recruitment limitation: identification of terms and concepts in studies of limitations. Oecologia. 2005;145(1):1–8. ISI:000231779500001. PubMed

Vítová A, Lepš J. Experimental assessment of dispersal and habitat limitation in an oligotrophic wet meadow. Plant Ecol. 2011;212(8):1231–42. WOS:000292820600001.

Janzen DH. Herbivores and the number of tree species in tropical forests. American Naturalist. 1970;104(940):501–28. 10.1086/282687 WOS:A1970I416100001. DOI

Connell JH. On the role of natural enemies in preventing competitive exclusion in some marine animals and in rain forest trees In: den Boer PJ, Gradwell GR, editors. Dynamics of populations. Oosterbeek, Netherlands: Centre for agricultural publishing and documentation; 1970. p. 14.

Packer A, Clay K. Soil pathogens and spatial patterns of seedling mortality in a temperate tree. Nature. 2000;404(6775):278–81. 10.1038/35005072 WOS:000086022200047. PubMed DOI

Johnson DJ, Beaulieu WT, Bever JD, Clay K. Conspecific Negative Density Dependence and Forest Diversity. Science. 2012;336(6083):904–7. 10.1126/science.1220269 WOS:000304145600062. PubMed DOI

Johnson DJ, Bourg NA, Howe R, McShea WJ, Wolf A, Clay K. Conspecific negative density-dependent mortality and the structure of temperate forests. Ecology. 2014;95(9):2493–503. WOS:000342340200012.

Petermann JS, Fergus AJF, Turnbull LA, Schmid B. Janzen-Connell effects are widespread and strong enough to maintain diversity in grasslands. Ecology. 2008;89(9):2399–406. 10.1890/07-2056.1 WOS:000259259300005. PubMed DOI

Mangan SA, Schnitzer SA, Herre EA, Mack KML, Valencia MC, Sanchez EI, et al. Negative plant-soil feedback predicts tree-species relative abundance in a tropical forest. Nature. 2010;466(7307):752–U10. 10.1038/nature09273 WOS:000280562500038. PubMed DOI

Brinkman EP, Van der Putten WH, Bakker EJ, Verhoeven KJF. Plant-soil feedback: experimental approaches, statistical analyses and ecological interpretations. Journal of Ecology. 2010;98(5):1063–73. 10.1111/j.1365-2745.2010.01695.x WOS:000280667200009. DOI

van der Putten WH, Bardgett RD, Bever JD, Bezemer TM, Casper BB, Fukami T, et al. Plant-soil feedbacks: the past, the present and future challenges. Journal of Ecology. 2013;101(2):265–76. 10.1111/1365-2745.12054 WOS:000317923300001. DOI

Bardgett RD, Wardle DA. Aboveground-Belowground Linkages: Biotic Interactions, Ecosystem Processes, and Global Changes: Oxford University Press; 2010.

Chýlová T, Münzbergová Z. Past land use co-determines the present distribution of dry grassland plant species. Preslia. 2008;80(2):183–98. ISI:000258002600003.

Tutin TG, Heywood VH, Burges NA, Moore DM, Valentine DH, Walter SM, et al. Flora Europaea. Cambridge: Cambridge University Press; 2001. p. 2392.

Hemrová L, Münzbergová Z. The effects of plant traits on species' responses to present and historical patch configurations and patch age. Oikos. 2015;124(4):437–45. 10.1111/oik.01130 WOS:000352240500007. DOI

Fridley JD, Vandermast DB, Kuppinger DM, Manthey M, Peet RK. Co-occurrence based assessment of habitat generalists and specialists: a new approach for the measurement of niche width. Journal of Ecology. 2007;95(4):707–22. 10.1111/j.1365-2745.2007.01236.x WOS:000247320100014. DOI

Knappová J, Münzbergová Z. Low seed pressure and competition from resident vegetation restricts dry grassland specialists to edges of abandoned fields. Agriculture Ecosystems and Environment. 2015; 200:200–207

Pánková H, Münzbergová Z, Rydlová J, Vosátka M. Differences in AM fungal root colonization between populations of perennial Aster species have genetic reasons. Oecologia. 2008;157(2):211–20. ISI:000257956000003. 10.1007/s00442-008-1064-4 PubMed DOI

Münzbergová Z. Determinants of species rarity: Population growth rates of species sharing the same habitat. Am J Bot. 2005;92(12):1987–94. WOS:000233761700008. 10.3732/ajb.92.12.1987 PubMed DOI

Munzbergova Z. Population dynamics of diploid and hexaploid populations of a perennial herb. Annals of Botany. 2007;100(6):1259–70. 10.1093/aob/mcm204 WOS:000250664200014. PubMed DOI PMC

Bever JD, Westover KM, Antonovics J. Incorporating the soil community into plant population dynamics: the utility of the feedback approach. Journal of Ecology. 1997;85(5):561–73. 10.2307/2960528 WOS:A1997YB78800001. DOI

Kulmatiski A, Beard KH, Stevens JR, Cobbold SM. Plant-soil feedbacks: a meta-analytical review. Ecology Letters. 2008;11(9):980–92. 10.1111/j.1461-0248.2008.01209.x WOS:000259263000010. PubMed DOI

Lepš J, Šmilauer P. Multivariate Analysis Ecological Data using CANOCO: Cambridge University Press; 2003. 269 p.

ter Braak C, Šmilauer P. Canoco reference manual and users guide to Canoco forWindows: Software for canonical community ordination (version 4). Ithaca: Microcomputer Power; 1998.

Černá L, Münzbergová Z. Conditions in Home and Transplant Soils Have Differential Effects on the Performance of Diploid and Allotetraploid Anthericum Species. Plos One. 2015;10(1). 10.1371/journal.pone.0116992 WOS:000348205300046. PubMed DOI PMC

van Dam NM, Qiu BL, Hordijk CA, Vet LEM, Jansen JJ. Identification of Biologically Relevant Compounds in Aboveground and Belowground Induced Volatile Blends. Journal of Chemical Ecology. 2010;36(9):1006–16. 10.1007/s10886-010-9844-9 WOS:000281971400011. PubMed DOI PMC

Bagchi R, Swinfield T, Gallery RE, Lewis OT, Gripenberg S, Narayan L, et al. Testing the Janzen-Connell mechanism: pathogens cause overcompensating density dependence in a tropical tree. Ecology Letters. 2010;13(10):1262–9. 10.1111/j.1461-0248.2010.01520.x WOS:000281895000007. PubMed DOI

Wright SJ. Plant diversity in tropical forests: a review of mechanisms of species coexistence. Oecologia. 2002;130(1):1–14. 10.1007/s004420100809 WOS:000173032500001. PubMed DOI

Terborgh J. Enemies Maintain Hyperdiverse Tropical Forests. American Naturalist. 2012;179(3):303–14. 10.1086/664183 WOS:000300454400002. PubMed DOI

Pacala SW, Silander JA. Field tests of neighborhood population dynamic models of 2 annual weedspecies. Ecological Monographs. 1990;60(1):113–34. 10.2307/1943028 WOS:A1990CP95700005. DOI

Johansson ME, Keddy PA. Intensity and asymmetry of competition between plant pairs of different degrees of similarity—an experimental-study on 2 guilds of wetland plants. Oikos. 1991;60(1):27–34. 10.2307/3544988 WOS:A1991EY48900005. DOI

Hendry RJ, McGlade JM, Weiner J. A coupled map lattice model of the growth of plant monocultures. Ecological Modelling. 1996;84(1–3):81–90. 10.1016/0304-3800(94)00128-6 WOS:A1996TP69300008. DOI

Keddy PA. Competition Plants and Vegetation: Origins, Processes, Consequences. 2007:186–224. BCI:BCI201200024565.

Herben T, Brezina S, Skalova H, Hadincova V, Krahulec F. Variation in plant performance in a grassland: Species-specific and neighbouring root mass effects. Journal of Vegetation Science. 2007;18(1):55–62. 10.1111/j.1654-1103.2007.tb02515.x WOS:000245427300007. DOI

Aguiar MR, Lauenroth WK, Peters DP. Intensity of intra- and interspecific competition in coexisting shortgrass species. Journal of Ecology. 2001;89(1):40–7. 10.1046/j.1365-2745.2001.00523.x WOS:000168273200005. DOI

Klimesova J, de Bello F. CLO-PLA: the database of clonal and bud bank traits of Central European flora. Journal of Vegetation Science. 2009;20(3):511–6. 10.1111/j.1654-1103.2009.01050.x WOS:000266244100013. DOI

Münzbergová Z, Šurinová M. The importance of species phylogenetic relationships andspecies traits for the intensity of plant-soil feedback. Ecosphere. 2015;6(11). 10.1890/ES15-00206.1 DOI

Bever JD. Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytologist. 2003;157(3):465–73. 10.1046/j.1469-8137.2003.00714.x WOS:000181333500006. PubMed DOI

Klironomos JN. Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature. 2002;417(6884):67–70. 10.1038/417067a WOS:000175307200038. PubMed DOI

Anacker BL, Klironomos JN, Maherali H, Reinhart KO, Strauss SY. Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecology Letters. 2014;17(12):1613–21. 10.1111/ele.12378 PubMed DOI

Heinze J, Bergmann J, Rillig MC, Joshi J. Negative biotic soil-effects enhance biodiversity by restricting potentially dominant plant species in grasslands. Perspectives in Plant Ecology Evolution and Systematics. 2015;17(3):227–35. 10.1016/j.ppees.2015.03.002 WOS:000355499000006. DOI

MacDougall AS, Rillig MC, Klironomos JN. Weak conspecific feedbacks and exotic dominance in a species-rich savannah. Proceedings of the Royal Society B-Biological Sciences. 2011;278(1720):2939–45. 10.1098/rspb.2010.2730 WOS:000294244900011. PubMed DOI PMC

Reinhart KO. The organization of plant communities: negative plant-soil feedbacks and semiarid grasslands. Ecology. 2012;93(11):2377–85. WOS:000310834900009. PubMed

Speek TAA, Schaminee JHJ, Stam JM, Lotz LAP, Ozinga WA, van der Putten WH. SPECIAL ISSUE: The Role of Below-Ground Processes in Mediating Plant Invasions Local dominance of exotic plants declines with residence time: a role for plant-soil feedback? Aob Plants. 2015;7:8. WOS:000357417200002. PubMed PMC

van der Putten WH, Vandijk C, Peters BAM. Plant-specific soil-borne diseases contribute to succession in foredune vegetation. Nature. 1993;362(6415):53–6. WOS:A1993KP97600057.

Olff H, Hoorens B, de Goede RGM, van der Putten WH, Gleichman JM. Small-scale shifting mosaics of two dominant grassland species: the possible role of soil-borne pathogens. Oecologia. 2000;125(1):45–54. 10.1007/pl00008890 WOS:000090013100006. PubMed DOI

Husáková I, Münzbergová Z. Relative Importance of Current and Past Landscape Structure and Local Habitat Conditions for Plant Species Richness in Dry Grassland-Like Forest Openings. Plos One. 2014;9(5). 10.1371/journal.pone.0097110 WOS:000338213300123. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...