Differences in expression of calcium binding proteins in the perirhinal and retrosplenial cortex of the rat

. 2021 Apr 30 ; 70 (2) : 273-285.

Jazyk angličtina Země Česko Médium print

Typ dokumentu srovnávací studie, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid33992048

The main aim was to describe interneuronal population expressing calcium binding proteins calretinin (CR) and parvalbumin (PV) in the perirhinal (PRC) and retrosplenial (RSC) cortex of the rat. These two cortical areas differ strikingly in their connectivity and function, which could be caused also by different structure of the interneuronal populations. Having a precise knowledge of the cellular composition of any cerebral area forms one of the basic input parameters and tenets for computational modelling of neuronal networks and for understanding some pathological conditions, like generating and spreading of epileptic activity. PRC possesses higher absolute and relative densities of CR+ and PV+ neurons than RSC, but the CR : PV ratio is higher in the RSC, which is similar to the neocortex. The bipolar/bitufted neurons are most common type of CR+ population, while the majority of PV+ neurons show multipolar morphology. Current results indicate that main difference between analysed areas is in density of CR+ neurons, which was significantly higher in the PRC. Our results coupled with works of other authors show that there are significant differences in the interneuronal composition and distribution of heretofore seemingly similar transitional cortical areas. These results may contribute to the better understanding of the mechanism of function of this cortical region in normal and diseased states.

Zobrazit více v PubMed

BARINKA F, DRUGA R. Calretinin expression in the mammalian neocortex: a review. Physiol Res. 2010;59:665–677. doi: 10.33549/physiolres.931930. PubMed DOI

BARINKA F, SALAJ M, RYBAR J, KRAJCOVICOVA E, KUBOVA H, DRUGA R. Calretinin, parvalbumin and calbindin immunoreactive interneurons in perirhinal cortex and temporal area Te3V of the rat brain: qualitative and quantitative analyses. Brain Res. 2012;1436:68–80. doi: 10.1016/j.brainres.2011.12.014. PubMed DOI

BRODMANN K. Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Leipzig: Barth; 1909.

BURWELL RD. The parahippocampal region: corticocortical connectivity. Ann NY Acad Sci. 2000;911:25–42. doi: 10.1111/j.1749-6632.2000.tb06717.x. PubMed DOI

BURWELL RD. Borders and cytoarchitecture of the perirhinal and postrhinal cortices in the rat. J Comp Neurol. 2001;437:17–41. doi: 10.1002/cne.1267. PubMed DOI

BURWELL RD, AMARAL DG. Cortical afferents of the perirhinal, postrhinal, and entorhinal cortices of the rat. J Comp Neurol. 1998;398:179–205. doi: 10.1002/(SICI)1096-9861(19980824)398:2<179::AID-CNE3>3.0.CO;2-Y. PubMed DOI

BURWELL RD, AMARAL DG. Perirhinal and postrhinal cortices of the rat: interconnectivity and connections with the entorhinal cortex. J Comp Neurol. 1998;391:293–321. doi: 10.1002/(SICI)1096-9861(19980216)391:3<293::AID-CNE2>3.0.CO;2-X. PubMed DOI

BURWELL RD, WITTER MP, AMARAL DG. Perirhinal and postrhinal cortices of the rat: a review of the neuroanatomical literature and comparison with findings from the monkey brain. Hippocampus. 1995;5:390–408. doi: 10.1002/hipo.450050503. PubMed DOI

CAULI B, ZHOU X, TRICOIRE L, TOUSSAY X, STAIGER JF. Revisiting enigmatic cortical calretinin-expressing interneurons. Front Neuroanat. 2014;8:52. doi: 10.3389/fnana.2014.00052. PubMed DOI PMC

COOPER BG, MANKA TF, MIZUMORI SJ. Finding your way in the dark: the retrosplenial cortex contributes to spatial memory and navigation without visual cues. Behav Neurosci. 2001;115:1012–1028. doi: 10.1037/0735-7044.115.5.1012. PubMed DOI

De CURTIS M, PARE D. The rhinal cortices: a wall of inhibition between the neocortex and the hippocampus. Prog Neurobiol. 2004;74(2):101–110. doi: 10.1016/j.pneurobio.2004.08.005. PubMed DOI

Del RIO MR, DEFELIPE J. Colocalization of calbindin D-28k, calretinin, and GABA immunoreactivities in neurons of the human temporal cortex. J Comp Neurol. 1996;369:472–482. doi: 10.1002/(SICI)1096-9861(19960603)369:3<472::AID-CNE11>3.0.CO;2-K. PubMed DOI

DESHMUKH SS, JOHNSON JL, KNIERIM JJ. Perirhinal cortex represents nonspatial, but not spatial, information in rats foraging in the presence of objects: comparison with lateral entorhinal cortex. Hippocampus. 2012;22(10):2045–2058. doi: 10.1002/hipo.22046. PubMed DOI PMC

DRUGA R. Neocortical inhibitory system. Folia Biol (Praha) 2009;55:201–217. PubMed

ELDUAYEN C, SAVE E. The retrosplenial cortex is necessary for path integration in the dark. Behav Brain Res. 2014;272:303–307. doi: 10.1016/j.bbr.2014.07.009. PubMed DOI

FURTAK SC, WEI SM, AGSTER KL, BURWELL RD. Functional neuroanatomy of the parahippocampal region in the rat: the perirhinal and postrhinal cortices. Hippocampus. 2007;17:709–722. doi: 10.1002/hipo.20314. PubMed DOI

GABBOTT PL, BACON SJ. Local circuit neurons in the medial prefrontal cortex (areas 24a,b,c, 25 and 32) in the monkey: I. Cell morphology and morphometrics. J Comp Neurol. 1996;364:567–608. doi: 10.1002/(SICI)1096-9861(19960122)364:4<567::AID-CNE1>3.0.CO;2-1. PubMed DOI

GONCHAR Y, BURKHALTER A. Three distinct families of GABAergic neurons in rat visual cortex. Cereb Cortex. 1997;7:347–358. doi: 10.1093/cercor/7.4.347. PubMed DOI

HIRSCH JA, MARTINEZ LM. Circuits that build visual cortical receptive fields. Trends Neurosci. 2006;29:30–39. doi: 10.1016/j.tins.2005.11.001. PubMed DOI

KAWAGUCHI Y, KUBOTA Y. GABAergic cell subtypes and their synaptic connections in rat frontal cortex. Cereb Cortex. 1997;7:476–486. doi: 10.1093/cercor/7.6.476. PubMed DOI

KUBOTA Y, HATTORI R, YUI Y. Three distinct subpopulations of GABAergic neurons in rat frontal agranular cortex. Brain Res. 1994;649:159–173. doi: 10.1016/0006-8993(94)91060-X. PubMed DOI

MARKRAM H, TOLEDO-RODRIGUEZ M, WANG Y, GUPTA A, SILBERBERG G, WU DC. Interneurons of the neocortical inhibitory system. Nat Rev Neurosci. 2004;5:793–807. doi: 10.1038/nrn1519. PubMed DOI

PAXINOS G, WATSON C. The Rat Brain in Stereotaxic Coordinates. 6th ed. Oxford: Elsevier Academic Press; Amsterdam: 2007.

POTHUIZEN HH, DAVIES M, ALBASSER MM, AGGLETON JP, VANN SD. Granular and dysgranular retrosplenial cortices provide qualitatively different contributions to spatial working memory: evidence from immediate-early gene imaging in rats. Eur J Neurosci. 2009;30:877–888. doi: 10.1111/j.1460-9568.2009.06881.x. PubMed DOI

SALAJ M, DRUGA R, CERMAN J, KUBOVA H, BARINKA F. Calretinin and parvalbumin immunoreactive interneurons in the retrosplenial cortex of the rat brain: Qualitative and quantitative analyses. Brain Res. 2015;1627:201–215. doi: 10.1016/j.brainres.2015.09.031. PubMed DOI

TOLEDO-RODRIGUEZ M, BLUMENFELD B, WU C, LUO J, ATTALI B, GOODMAN P, MARKRAM H. Correlation maps allow neuronal electrical properties to be predicted from single-cell gene expression profiles in rat neocortex. Cereb Cortex. 2004;14:1310–1327. doi: 10.1093/cercor/bhh092. PubMed DOI

TOLEDO-RODRIGUEZ M, GOODMAN P, ILLIC M, WU C, MARKRAM H. Neuropeptide and calcium-binding protein gene expression profiles predict neuronal anatomical type in the juvenile rat. J Physiol. 2005;567(Pt 2):401–413. doi: 10.1113/jphysiol.2005.089250. PubMed DOI PMC

TREMBLAY R, LEE S, RUDY B. GABAergic Interneurons in the neocortex: from cellular properties to circuits. Neuron. 2016;91:260–292. doi: 10.1016/j.neuron.2016.06.033. PubMed DOI PMC

Van GROEN T, WYSS JM. Connections of the retrosplenial granular a cortex in the rat. J Comp Neurol. 1990;300:593–606. doi: 10.1002/cne.903000412. PubMed DOI

Van GROEN T, WYSS JM. Connections of the retrosplenial dysgranular cortex in the rat. J Comp Neurol. 1992;315:200–216. doi: 10.1002/cne.903150207. PubMed DOI

Van GROEN T, WYSS JM. Connections of the retrosplenial granular b cortex in the rat. J Comp Neurol. 2003;463:249–263. doi: 10.1002/cne.10757. PubMed DOI

WEST MJ, SLOMIANKA L, GUNDERSEN HJ. Unbiased stereological estimation of the total number of neurons in the subdivisions of the rat hippocampus using the optical fractionator. Anat Rec. 1991;231:482–497. doi: 10.1002/ar.1092310411. PubMed DOI

VOGT BA. Structural organization of cingulate cortex: Areas, neurons and somatodendritic transmitter receptors. In: VOGT BA, GABRIEL M, editors. Neurobiology of cingulate cortex and limbic thalamus. Birhauser; Boston: 1993. pp. 19–70. DOI

VOGT BA, VOGT L, FARBER NB. Cigulate cortex and disease models. In: PAXINOS G, editor. The Rat Nervous System. 3th Edition. Elsevier Academic Press; San Diego: London: 2004. pp. 705–727. DOI

WHISHAW IQ, MAASWINKEL H, GONZALEZ CL, KOLB B. Deficits in allothetic and idiothetic spatial behavior in rats with posterior cingulate cortex lesions. Behav Brain Res. 2001;118:67–76. doi: 10.1016/S0166-4328(00)00312-0. PubMed DOI

WINER JA, MILLER LM, LEE CC, SCHREINER CE. Auditory thalamocortical transformation: structure and function. Trends Neurosci. 2005;28:255–263. doi: 10.1016/j.tins.2005.03.009. PubMed DOI

WITTER MP, AMARAL DG. Hippocampal formation. In: Paxinos G, editor. The Rat Nervous System. 3th Edition. Elsevier Academic Press; San Diego: London: 2004. pp. 635–704. DOI

ZAITSEV AV, GONZALEZ-BURGOS G, POVYSHEVA NV, KRONER S, LEWIS DA, KRIMER LS. Localization of calcium-binding proteins in physiologically and morphologically characterized interneurons of monkey dorsolateral prefrontal cortex. Cereb Cortex. 2005;15:1178–1186. doi: 10.1093/cercor/bhh218. PubMed DOI

ZAITSEV AV, POVYSHEVA NV, GONZALEZ-BURGOS G, ROTARU D, FISH KN, KRIMER LS, LEWIS DA. Interneuron diversity in layers 2–3 of monkey prefrontal cortex. Cereb Cortex. 2009;19:1597–1615. doi: 10.1093/cercor/bhn198. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...