Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
Grantová podpora
RF1 MH117155
NIMH NIH HHS - United States
R01 NS104368
NINDS NIH HHS - United States
R01 MH125557
NIMH NIH HHS - United States
R01 NS109553
NINDS NIH HHS - United States
RF1 NS132913
NINDS NIH HHS - United States
PubMed
38843298
PubMed Central
PMC11185486
DOI
10.1371/journal.pcbi.1012099
PII: PCOMPBIOL-D-23-01190
Knihovny.cz E-zdroje
- MeSH
- acetylcholin metabolismus MeSH
- default mode network fyziologie diagnostické zobrazování MeSH
- dospělí MeSH
- konektom * MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- modely neurologické * MeSH
- mozek * fyziologie diagnostické zobrazování MeSH
- nervová síť fyziologie diagnostické zobrazování MeSH
- odpočinek * fyziologie MeSH
- počítačová simulace MeSH
- výpočetní biologie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- acetylcholin MeSH
Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.
Bio Imaging Lab University of Antwerp Antwerp Belgium
Georgia Institute of Technology Atlanta Georgia United States of America
Institute of Computer Science Foundation for Research and Technology Hellas Heraklion Crete Greece
Institute of Computer Science of the Czech Academy of Sciences Prague Czech Republic
National Institute of Mental Health Klecany Czech Republic
μNEURO Research Centre of Excellence University of Antwerp Antwerp Belgium
Zobrazit více v PubMed
Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al.. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences. 2010;107(10):4734–4739. doi: 10.1073/pnas.0911855107 PubMed DOI PMC
Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S. Resting-state networks in the macaque at 7 T. NeuroImage. 2011;56(3):1546–1555. doi: 10.1016/j.neuroimage.2011.02.063 PubMed DOI
Chuang KH, Nasrallah FA. Functional networks and network perturbations in rodents. NeuroImage. 2017;163:419–436. doi: 10.1016/j.neuroimage.2017.09.038 PubMed DOI
Allan TW, Francis ST, Caballero-Gaudes C, Morris PG, Liddle EB, Liddle PF, et al.. Functional connectivity in MRI is driven by spontaneous BOLD events. PLoS One. 2015;10(4):e0124577. doi: 10.1371/journal.pone.0124577 PubMed DOI PMC
Esfahlani ZF, Jo Y, Faskowitz J, Byrge L, Kennedy DP, Sporns O, et al.. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proceedings of the National Academy of Sciences. 2020;117(45):28393–28401. doi: 10.1073/pnas.2005531117 PubMed DOI PMC
Van Den Heuvel MP, H Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology. 2010;20(8):519–534. doi: 10.1016/j.euroneuro.2010.03.008 PubMed DOI
Fox MD. Mapping symptoms to brain networks with the human connectome. New England Journal of Medicine. 2018;379(23):2237–2245. doi: 10.1056/NEJMra1706158 PubMed DOI
Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences. 2005;102(27):9673–9678. doi: 10.1073/pnas.0504136102 PubMed DOI PMC
Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–1090. doi: 10.1016/j.neuroimage.2007.02.041 PubMed DOI
Buckner RL, DiNicola LM. The brain’s default network: updated anatomy, physiology and evolving insights. Nature Reviews Neuroscience. 2019;20(10):593–608. doi: 10.1038/s41583-019-0212-7 PubMed DOI
Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences. 2008;105(34):12569–12574. doi: 10.1073/pnas.0800005105 PubMed DOI PMC
Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology. 2008;4(10):e1000196. doi: 10.1371/journal.pcbi.1000196 PubMed DOI PMC
Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, et al.. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences. 2013;110(49):19944–19949. doi: 10.1073/pnas.1311772110 PubMed DOI PMC
Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage. 2015;105:525–535. doi: 10.1016/j.neuroimage.2014.11.001 PubMed DOI
Li W, Motelow JE, Zhan Q, Hu YC, Kim R, Chen WC, et al.. Cortical network switching: possible role of the lateral septum and cholinergic arousal. Brain Stimulation. 2015;8(1):36–41. doi: 10.1016/j.brs.2014.09.003 PubMed DOI PMC
van den Brink RL, Pfeffer T, Donner TH. Brainstem modulation of large-scale intrinsic cortical activity correlations. Frontiers in Human Neuroscience. 2019;13:340. doi: 10.3389/fnhum.2019.00340 PubMed DOI PMC
Shine JM. Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive Sciences. 2019;23(7):572–583. doi: 10.1016/j.tics.2019.04.002 PubMed DOI
Hahn B, Ross TJ, Yang Y, Kim I, Huestis MA, Stein EA. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. Journal of Neuroscience. 2007;27(13):3477–3489. doi: 10.1523/JNEUROSCI.5129-06.2007 PubMed DOI PMC
Tanabe J, Nyberg E, Martin LF, Martin J, Cordes D, Kronberg E, et al.. Nicotine effects on default mode network during resting state. Psychopharmacology. 2011;216(2):287–295. doi: 10.1007/s00213-011-2221-8 PubMed DOI PMC
Sutherland MT, Ray KL, Riedel MC, Yanes JA, Stein EA, Laird AR. Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies. Biological Psychiatry. 2015;78(10):711–720. doi: 10.1016/j.biopsych.2014.12.021 PubMed DOI PMC
Zaborszky L, Duque A, Gielow M, Gombkoto P, Nadasdy Z, Somogyi J. Organization of the basal forebrain cholinergic projection system: specific or diffuse? In: The Rat Nervous System. Elsevier; 2015. p. 491–507.
Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, et al.. Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. Journal of Neuroscience. 2018;38(44):9446–9458. doi: 10.1523/JNEUROSCI.1676-18.2018 PubMed DOI PMC
Markello RD, Spreng RN, Luh WM, Anderson AK, De Rosa E. Segregation of the human basal forebrain using resting state functional MRI. NeuroImage. 2018;173:287–297. doi: 10.1016/j.neuroimage.2018.02.042 PubMed DOI
Nair J, Klaassen AL, Arato J, Vyssotski AL, Harvey M, Rainer G. Basal forebrain contributes to default mode network regulation. Proceedings of the National Academy of Sciences. 2018;115(6):1352–1357. doi: 10.1073/pnas.1712431115 PubMed DOI PMC
van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, et al.. Altered basal forebrain function during whole-brain network activity at pre-and early-plaque stages of Alzheimer’s disease in TgF344-AD rats. Alzheimer’s Research & Therapy. 2022;14(1):1–21. doi: 10.1186/s13195-022-01089-2 PubMed DOI PMC
Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, et al.. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Communications Biology. 2019;2(1):1–14. doi: 10.1038/s42003-019-0611-3 PubMed DOI PMC
Lozano-Montes L, Dimanico M, Mazloum R, Li W, Nair J, Kintscher M, et al.. Optogenetic stimulation of basal forebrain parvalbumin neurons activates the default mode network and associated behaviors. Cell Reports. 2020;33(6):108359. doi: 10.1016/j.celrep.2020.108359 PubMed DOI
Peeters LM, van den Berg M, Hinz R, Majumdar G, Pintelon I, Keliris GA. Cholinergic modulation of the default mode like network in rats. iScience. 2020;23(9):101455. doi: 10.1016/j.isci.2020.101455 PubMed DOI PMC
Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, synaptic and network effects of acetylcholine in the neocortex. Frontiers in Neural Circuits. 2019;13:24. doi: 10.3389/fncir.2019.00024 PubMed DOI PMC
Krishnan GP, González OC, Bazhenov M. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proceedings of the National Academy of Sciences. 2018;115(26):6858–6863. doi: 10.1073/pnas.1715841115 PubMed DOI PMC
Schmitt O, Eipert P. neuroVIISAS: approaching multiscale simulation of the rat connectome. Neuroinformatics. 2012;10(3):243–267. doi: 10.1007/s12021-012-9141-6 PubMed DOI
Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, et al.. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron. 2009;63(1):27–39. doi: 10.1016/j.neuron.2009.06.014 PubMed DOI PMC
Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, et al.. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods. 2008;172(1):137–141. doi: 10.1016/j.jneumeth.2008.04.012 PubMed DOI PMC
McCormick DA, Prince DA. Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. The Journal of Physiology. 1986;375(1):169–194. doi: 10.1113/jphysiol.1986.sp016112 PubMed DOI PMC
McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology. 1992;39(4):337–388. doi: 10.1016/0301-0082(92)90012-4 PubMed DOI
McCormick DA, Wang Z, Huguenard J. Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral Cortex. 1993;3(5):387–398. doi: 10.1093/cercor/3.5.387 PubMed DOI
Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, et al.. Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex. Neuron. 2020;106(4):649–661. doi: 10.1016/j.neuron.2020.02.030 PubMed DOI PMC
Gil Z, Connors BW, Amitai Y. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron. 1999;23(2):385–397. doi: 10.1016/S0896-6273(00)80788-6 PubMed DOI
Hsieh CY, Cruikshank SJ, Metherate R. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research. 2000;880(1-2):51–64. doi: 10.1016/S0006-8993(00)02766-9 PubMed DOI
Vijayraghavan S, Major AJ, Everling S. Muscarinic M1 receptor overstimulation disrupts working memory activity for rules in primate prefrontal cortex. Neuron. 2018;98(6):1256–1268. doi: 10.1016/j.neuron.2018.05.027 PubMed DOI
Kawaguchi Y. Selective cholinergic modulation of cortical GABAergic cell subtypes. Journal of Neurophysiology. 1997;78(3):1743–1747. doi: 10.1152/jn.1997.78.3.1743 PubMed DOI
Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nature Neuroscience. 2017;20(10):1377–1383. doi: 10.1038/nn.4624 PubMed DOI PMC
Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al.. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978 PubMed DOI
Schilling KG, Daducci A, Maier-Hein K, Poupon C, Houde JC, Nath V, et al.. Challenges in diffusion MRI tractography–Lessons learned from international benchmark competitions. Magnetic Resonance Imaging. 2019;57:194–209. doi: 10.1016/j.mri.2018.11.014 PubMed DOI PMC
Škoch A, Rehák Bučková B, Mareš J, Tintěra J, Sanda P, Jajcay L, et al.. Human brain structural connectivity matrices–ready for modelling. Scientific Data. 2022;9(1):1–9. doi: 10.1038/s41597-022-01596-9 PubMed DOI PMC
Straathof M, Sinke MR, Dijkhuizen RM, Otte WM. A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains. Journal of Cerebral Blood Flow & Metabolism. 2019;39(2):189–209. doi: 10.1177/0271678X18809547 PubMed DOI PMC
Kopal J, Pidnebesna A, Tomeček D, Tintěra J, Hlinka J. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Human Brain Mapping. 2020;41(18):5325–5340. doi: 10.1002/hbm.25195 PubMed DOI PMC
Bartoň M, Mareček R, Krajčovičová L, Slavíček T, Kašpárek T, Zemánková P, et al.. Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies—Quantifying noise removal and neural signal preservation. Human Brain Mapping. 2019;40(4):1114–1138. doi: 10.1002/hbm.24433 PubMed DOI PMC
Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. NeuroImage. 2015;117:343–357. doi: 10.1016/j.neuroimage.2015.03.055 PubMed DOI
Messé A, Rudrauf D, Giron A, Marrelec G. Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study. NeuroImage. 2015;111:65–75. doi: 10.1016/j.neuroimage.2015.02.001 PubMed DOI
Bonacich P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology. 1972;2(1):113–120. doi: 10.1080/0022250X.1972.9989806 DOI
Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, et al.. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PloS One. 2010;5(4):e10232. doi: 10.1371/journal.pone.0010232 PubMed DOI PMC
Chandler DJ, Lamperski CS, Waterhouse BD. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Research. 2013;1522:38–58. doi: 10.1016/j.brainres.2013.04.057 PubMed DOI PMC
Bloem B, Schoppink L, Rotaru DC, Faiz A, Hendriks P, Mansvelder HD, et al.. Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. Journal of Neuroscience. 2014;34(49):16234–16246. doi: 10.1523/JNEUROSCI.3011-14.2014 PubMed DOI PMC
Fröhlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. Journal of Neuroscience. 2006;26(23):6153–6162. doi: 10.1523/JNEUROSCI.5509-05.2006 PubMed DOI PMC
Fröhlich F, Sejnowski TJ, Bazhenov M. Network bistability mediates spontaneous transitions between normal and pathological brain states. Journal of Neuroscience. 2010;30(32):10734–10743. doi: 10.1523/JNEUROSCI.1239-10.2010 PubMed DOI PMC
Krishnan GP, Bazhenov M. Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience. 2011;31(24):8870–8882. doi: 10.1523/JNEUROSCI.6200-10.2011 PubMed DOI PMC
Raichle ME. The brain’s default mode network. Annual Review of Neuroscience. 2015;38:433–447. doi: 10.1146/annurev-neuro-071013-014030 PubMed DOI
Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al.. Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences. 2009;106(31):13040–13045. doi: 10.1073/pnas.0905267106 PubMed DOI PMC
Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al.. Common blood flow changes across visual tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience. 1997;9(5):648–663. doi: 10.1162/jocn.1997.9.5.648 PubMed DOI
Fransson P. How default is the default mode of brain function?: Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia. 2006;44(14):2836–2845. doi: 10.1016/j.neuropsychologia.2006.06.017 PubMed DOI
Northoff G, Qin P, Nakao T. Rest-stimulus interaction in the brain: a review. Trends in Neurosciences. 2010;33(6):277–284. doi: 10.1016/j.tins.2010.02.006 PubMed DOI
Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012;76(1):209–222. doi: 10.1016/j.neuron.2012.09.012 PubMed DOI PMC
Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018;97(4):769–785. doi: 10.1016/j.neuron.2018.01.008 PubMed DOI PMC
Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–129. doi: 10.1016/j.neuron.2012.08.036 PubMed DOI PMC
Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function. 2010;214(5):655–667. doi: 10.1007/s00429-010-0262-0 PubMed DOI PMC
Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience. 2013;25(1):74–86. doi: 10.1162/jocn_a_00281 PubMed DOI PMC
Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al.. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neuroscience & Biobehavioral Reviews. 2013;37(10):2676–2688. doi: 10.1016/j.neubiorev.2013.09.003 PubMed DOI
Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, et al.. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cerebral Cortex. 2015;25(1):118–137. doi: 10.1093/cercor/bht210 PubMed DOI PMC
Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage. 2008;42(3):1127–1141. doi: 10.1016/j.neuroimage.2008.05.055 PubMed DOI PMC
Chiang-shan RL, Ide JS, Zhang S, Hu S, Chao HH, Zaborszky L. Resting state functional connectivity of the basal nucleus of Meynert in humans: in comparison to the ventral striatum and the effects of age. NeuroImage. 2014;97:321–332. doi: 10.1016/j.neuroimage.2014.04.019 PubMed DOI PMC
Nazari M, Abadchi JK, Naghizadeh M, Contreras EB, Tatsuno M, McNaughton BL, et al.. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow-wave activity during REM sleep. bioRxiv. 2022. PubMed
Turchi J, Chang C, Frank QY, Russ BE, David KY, Cortes CR, et al.. The basal forebrain regulates global resting-state fMRI fluctuations. Neuron. 2018;97(4):940–952. doi: 10.1016/j.neuron.2018.01.032 PubMed DOI PMC
Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience. 2017;352:249–261. doi: 10.1016/j.neuroscience.2017.04.002 PubMed DOI PMC
Gielow MR, Zaborszky L. The input-output relationship of the cholinergic basal forebrain. Cell Reports. 2017;18(7):1817–1830. doi: 10.1016/j.celrep.2017.01.060 PubMed DOI PMC
Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Scientific Reports. 2019;9(1):1–12. doi: 10.1038/s41598-019-39203-4 PubMed DOI PMC
Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal forebrain gating by somatostatin neurons drives prefrontal cortical activity. Cerebral Cortex. 2019;29(1):42–53. doi: 10.1093/cercor/bhx302 PubMed DOI
Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, et al.. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447(7140):83–86. doi: 10.1038/nature05758 PubMed DOI
Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, et al.. A comparison of resting-state brain activity in humans and chimpanzees. Proceedings of the National Academy of Sciences. 2007;104(43):17146–17151. doi: 10.1073/pnas.0705132104 PubMed DOI PMC
Popa D, Popescu AT, Paré D. Contrasting activity profile of two distributed cortical networks as a function of attentional demands. Journal of Neuroscience. 2009;29(4):1191–1201. doi: 10.1523/JNEUROSCI.4867-08.2009 PubMed DOI PMC
Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proceedings of the National Academy of Sciences. 2012;109(10):3979–3984. doi: 10.1073/pnas.1200506109 PubMed DOI PMC
Stafford JM, Jarrett BR, Miranda-Dominguez O, Mills BD, Cain N, Mihalas S, et al.. Large-scale topology and the default mode network in the mouse connectome. Proceedings of the National Academy of Sciences. 2014;111(52):18745–18750. doi: 10.1073/pnas.1404346111 PubMed DOI PMC
Zhou ZC, Salzwedel AP, Radtke-Schuller S, Li Y, Sellers KK, Gilmore JH, et al.. Resting state network topology of the ferret brain. NeuroImage. 2016;143:70–81. doi: 10.1016/j.neuroimage.2016.09.003 PubMed DOI PMC
Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al.. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences. 2015;112(11):3535–3540. doi: 10.1073/pnas.1413625112 PubMed DOI PMC
Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. Journal of Neuroscience. 2014;34(8):2832–2844. doi: 10.1523/JNEUROSCI.3235-13.2014 PubMed DOI PMC
Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al.. Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences. 2009;106(6):2035–2040. doi: 10.1073/pnas.0811168106 PubMed DOI PMC
Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, et al.. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences. 2013;110(15):6169–6174. doi: 10.1073/pnas.1219562110 PubMed DOI PMC
Suárez LE, Markello RD, Betzel RF, Misic B. Linking structure and function in macroscale brain networks. Trends in Cognitive Sciences. 2020;24(4):302–315. doi: 10.1016/j.tics.2020.01.008 PubMed DOI
Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al.. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proceedings of the National Academy of Sciences. 2014;111(46):16574–16579. doi: 10.1073/pnas.1405672111 PubMed DOI PMC
Maier-Hein KH, Neher PF, Houde JC, Côté MA, Garyfallidis E, Zhong J, et al.. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 2017;8(1):1–13. doi: 10.1038/s41467-017-01285-x PubMed DOI PMC
Messé A, Rudrauf D, Benali H, Marrelec G. Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Computational Biology. 2014;10(3):e1003530. doi: 10.1371/journal.pcbi.1003530 PubMed DOI PMC
Roland JL, Snyder AZ, Hacker CD, Mitra A, Shimony JS, Limbrick DD, et al.. On the role of the corpus callosum in interhemispheric functional connectivity in humans. Proceedings of the National Academy of Sciences. 2017;114(50):13278–13283. doi: 10.1073/pnas.1707050114 PubMed DOI PMC
Liégeois R, Santos A, Matta V, Van De Ville D, Sayed AH. Revisiting correlation-based functional connectivity and its relationship with structural connectivity. Network Neuroscience. 2020;4(4):1235–1251. doi: 10.1162/netn_a_00166 PubMed DOI PMC
Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al.. Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences. 2006;103(37):13848–13853. doi: 10.1073/pnas.0601417103 PubMed DOI PMC
Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annual review of psychology. 1997;48(1):649–684. doi: 10.1146/annurev.psych.48.1.649 PubMed DOI
Sun Y, Yin Q, Fang R, Yan X, Wang Y, Bezerianos A, et al.. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer’s disease. PloS One. 2014;9(5):e96505. doi: 10.1371/journal.pone.0096505 PubMed DOI PMC
Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27(6):1816. doi: 10.3390/molecules27061816 PubMed DOI PMC
Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Current Neuropharmacology. 2016;14(1):101–115. doi: 10.2174/1570159X13666150716165726 PubMed DOI PMC
Lorenzini L, Ingala S, Collij LE, Wottschel V, Haller S, Blennow K, et al.. Eigenvector centrality dynamics are related to Alzheimer’s disease pathological changes in non-demented individuals. Brain Communications. 2023;5(3). doi: 10.1093/braincomms/fcad088 PubMed DOI PMC
Klaassens BL, Rombouts SA, Winkler AM, van Gorsel HC, van der Grond J, van Gerven JM. Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation. Human Brain Mapping. 2017;38(1):308–325. doi: 10.1002/hbm.23362 PubMed DOI PMC
Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences. 2003;100(1):253–258. doi: 10.1073/pnas.0135058100 PubMed DOI PMC
Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences. 2014;1316(1):29–52. doi: 10.1111/nyas.12360 PubMed DOI PMC
Konishi M, McLaren DG, Engen H, Smallwood J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PLoS One. 2015;10(6):e0132209. doi: 10.1371/journal.pone.0132209 PubMed DOI PMC
Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology. 2009;101(6):3270–3283. doi: 10.1152/jn.90777.2008 PubMed DOI PMC
Harrison BJ, Davey CG, Savage HS, Jamieson AJ, Leonards CA, Moffat BA, et al.. Dynamic subcortical modulators of human default mode network function. Cerebral Cortex. 2022;32(19):4345–4355. doi: 10.1093/cercor/bhab487 PubMed DOI PMC
González OC, Krishnan GP, Chauvette S, Timofeev I, Sejnowski T, Bazhenov M. Modeling of age-dependent epileptogenesis by differential homeostatic synaptic scaling. Journal of Neuroscience. 2015;35(39):13448–13462. doi: 10.1523/JNEUROSCI.5038-14.2015 PubMed DOI PMC
Krishnan GP, Filatov G, Shilnikov A, Bazhenov M. Electrogenic properties of the Na+/K+ ATPase control transitions between normal and pathological brain states. Journal of Neurophysiology. 2015;113(9):3356–3374. doi: 10.1152/jn.00460.2014 PubMed DOI PMC
Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology. 2004;92(2):1116–1132. doi: 10.1152/jn.00529.2003 PubMed DOI PMC
Fröhlich F, Bazhenov M. Coexistence of tonic firing and bursting in cortical neurons. Physical Review E. 2006;74(3):031922. doi: 10.1103/PhysRevE.74.031922 PubMed DOI
Lee WH, Frangou S. Linking functional connectivity and dynamic properties of resting-state networks. Scientific Reports. 2017;7(1):1–10. doi: 10.1038/s41598-017-16789-1 PubMed DOI PMC
Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–157. doi: 10.1038/35084005 PubMed DOI
Viswanathan A, Freeman RD. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neuroscience. 2007;10(10):1308–1312. doi: 10.1038/nn1977 PubMed DOI
Ashburner J, Barnes G, Chen CC, Daunizeau J, Flandin G, Friston K, et al.. SPM12 manual. Wellcome Trust Centre for Neuroimaging, London, UK. 2014;.
Melicher T, Horacek J, Hlinka J, Spaniel F, Tintera J, Ibrahim I, et al.. White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophrenia Research. 2015;162(1-3):22–28. doi: 10.1016/j.schres.2015.01.029 PubMed DOI
Hlinka J, Paluš M, Vejmelka M, Mantini D, Corbetta M. Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage. 2011;54(3):2218–2225. doi: 10.1016/j.neuroimage.2010.08.042 PubMed DOI PMC