Cholinergic modulation supports dynamic switching of resting state networks through selective DMN suppression

. 2024 Jun ; 20 (6) : e1012099. [epub] 20240606

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38843298

Grantová podpora
RF1 MH117155 NIMH NIH HHS - United States
R01 NS104368 NINDS NIH HHS - United States
R01 MH125557 NIMH NIH HHS - United States
R01 NS109553 NINDS NIH HHS - United States
RF1 NS132913 NINDS NIH HHS - United States

Brain activity during the resting state is widely used to examine brain organization, cognition and alterations in disease states. While it is known that neuromodulation and the state of alertness impact resting-state activity, neural mechanisms behind such modulation of resting-state activity are unknown. In this work, we used a computational model to demonstrate that change in excitability and recurrent connections, due to cholinergic modulation, impacts resting-state activity. The results of such modulation in the model match closely with experimental work on direct cholinergic modulation of Default Mode Network (DMN) in rodents. We further extended our study to the human connectome derived from diffusion-weighted MRI. In human resting-state simulations, an increase in cholinergic input resulted in a brain-wide reduction of functional connectivity. Furthermore, selective cholinergic modulation of DMN closely captured experimentally observed transitions between the baseline resting state and states with suppressed DMN fluctuations associated with attention to external tasks. Our study thus provides insight into potential neural mechanisms for the effects of cholinergic neuromodulation on resting-state activity and its dynamics.

Zobrazit více v PubMed

Biswal BB, Mennes M, Zuo XN, Gohel S, Kelly C, Smith SM, et al.. Toward discovery science of human brain function. Proceedings of the National Academy of Sciences. 2010;107(10):4734–4739. doi: 10.1073/pnas.0911855107 PubMed DOI PMC

Hutchison RM, Leung LS, Mirsattari SM, Gati JS, Menon RS, Everling S. Resting-state networks in the macaque at 7 T. NeuroImage. 2011;56(3):1546–1555. doi: 10.1016/j.neuroimage.2011.02.063 PubMed DOI

Chuang KH, Nasrallah FA. Functional networks and network perturbations in rodents. NeuroImage. 2017;163:419–436. doi: 10.1016/j.neuroimage.2017.09.038 PubMed DOI

Allan TW, Francis ST, Caballero-Gaudes C, Morris PG, Liddle EB, Liddle PF, et al.. Functional connectivity in MRI is driven by spontaneous BOLD events. PLoS One. 2015;10(4):e0124577. doi: 10.1371/journal.pone.0124577 PubMed DOI PMC

Esfahlani ZF, Jo Y, Faskowitz J, Byrge L, Kennedy DP, Sporns O, et al.. High-amplitude cofluctuations in cortical activity drive functional connectivity. Proceedings of the National Academy of Sciences. 2020;117(45):28393–28401. doi: 10.1073/pnas.2005531117 PubMed DOI PMC

Van Den Heuvel MP, H Pol HE. Exploring the brain network: a review on resting-state fMRI functional connectivity. European Neuropsychopharmacology. 2010;20(8):519–534. doi: 10.1016/j.euroneuro.2010.03.008 PubMed DOI

Fox MD. Mapping symptoms to brain networks with the human connectome. New England Journal of Medicine. 2018;379(23):2237–2245. doi: 10.1056/NEJMra1706158 PubMed DOI

Fox MD, Snyder AZ, Vincent JL, Corbetta M, Van Essen DC, Raichle ME. The human brain is intrinsically organized into dynamic, anticorrelated functional networks. Proceedings of the National Academy of Sciences. 2005;102(27):9673–9678. doi: 10.1073/pnas.0504136102 PubMed DOI PMC

Raichle ME, Snyder AZ. A default mode of brain function: a brief history of an evolving idea. NeuroImage. 2007;37(4):1083–1090. doi: 10.1016/j.neuroimage.2007.02.041 PubMed DOI

Buckner RL, DiNicola LM. The brain’s default network: updated anatomy, physiology and evolving insights. Nature Reviews Neuroscience. 2019;20(10):593–608. doi: 10.1038/s41583-019-0212-7 PubMed DOI

Sridharan D, Levitin DJ, Menon V. A critical role for the right fronto-insular cortex in switching between central-executive and default-mode networks. Proceedings of the National Academy of Sciences. 2008;105(34):12569–12574. doi: 10.1073/pnas.0800005105 PubMed DOI PMC

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK. Noise during rest enables the exploration of the brain’s dynamic repertoire. PLoS Computational Biology. 2008;4(10):e1000196. doi: 10.1371/journal.pcbi.1000196 PubMed DOI PMC

Chen AC, Oathes DJ, Chang C, Bradley T, Zhou ZW, Williams LM, et al.. Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences. 2013;110(49):19944–19949. doi: 10.1073/pnas.1311772110 PubMed DOI PMC

Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK. Functional connectivity dynamics: modeling the switching behavior of the resting state. NeuroImage. 2015;105:525–535. doi: 10.1016/j.neuroimage.2014.11.001 PubMed DOI

Li W, Motelow JE, Zhan Q, Hu YC, Kim R, Chen WC, et al.. Cortical network switching: possible role of the lateral septum and cholinergic arousal. Brain Stimulation. 2015;8(1):36–41. doi: 10.1016/j.brs.2014.09.003 PubMed DOI PMC

van den Brink RL, Pfeffer T, Donner TH. Brainstem modulation of large-scale intrinsic cortical activity correlations. Frontiers in Human Neuroscience. 2019;13:340. doi: 10.3389/fnhum.2019.00340 PubMed DOI PMC

Shine JM. Neuromodulatory influences on integration and segregation in the brain. Trends in Cognitive Sciences. 2019;23(7):572–583. doi: 10.1016/j.tics.2019.04.002 PubMed DOI

Hahn B, Ross TJ, Yang Y, Kim I, Huestis MA, Stein EA. Nicotine enhances visuospatial attention by deactivating areas of the resting brain default network. Journal of Neuroscience. 2007;27(13):3477–3489. doi: 10.1523/JNEUROSCI.5129-06.2007 PubMed DOI PMC

Tanabe J, Nyberg E, Martin LF, Martin J, Cordes D, Kronberg E, et al.. Nicotine effects on default mode network during resting state. Psychopharmacology. 2011;216(2):287–295. doi: 10.1007/s00213-011-2221-8 PubMed DOI PMC

Sutherland MT, Ray KL, Riedel MC, Yanes JA, Stein EA, Laird AR. Neurobiological impact of nicotinic acetylcholine receptor agonists: an activation likelihood estimation meta-analysis of pharmacologic neuroimaging studies. Biological Psychiatry. 2015;78(10):711–720. doi: 10.1016/j.biopsych.2014.12.021 PubMed DOI PMC

Zaborszky L, Duque A, Gielow M, Gombkoto P, Nadasdy Z, Somogyi J. Organization of the basal forebrain cholinergic projection system: specific or diffuse? In: The Rat Nervous System. Elsevier; 2015. p. 491–507.

Záborszky L, Gombkoto P, Varsanyi P, Gielow MR, Poe G, Role LW, et al.. Specific basal forebrain–cortical cholinergic circuits coordinate cognitive operations. Journal of Neuroscience. 2018;38(44):9446–9458. doi: 10.1523/JNEUROSCI.1676-18.2018 PubMed DOI PMC

Markello RD, Spreng RN, Luh WM, Anderson AK, De Rosa E. Segregation of the human basal forebrain using resting state functional MRI. NeuroImage. 2018;173:287–297. doi: 10.1016/j.neuroimage.2018.02.042 PubMed DOI

Nair J, Klaassen AL, Arato J, Vyssotski AL, Harvey M, Rainer G. Basal forebrain contributes to default mode network regulation. Proceedings of the National Academy of Sciences. 2018;115(6):1352–1357. doi: 10.1073/pnas.1712431115 PubMed DOI PMC

van den Berg M, Adhikari MH, Verschuuren M, Pintelon I, Vasilkovska T, Van Audekerke J, et al.. Altered basal forebrain function during whole-brain network activity at pre-and early-plaque stages of Alzheimer’s disease in TgF344-AD rats. Alzheimer’s Research & Therapy. 2022;14(1):1–21. doi: 10.1186/s13195-022-01089-2 PubMed DOI PMC

Alves PN, Foulon C, Karolis V, Bzdok D, Margulies DS, Volle E, et al.. An improved neuroanatomical model of the default-mode network reconciles previous neuroimaging and neuropathological findings. Communications Biology. 2019;2(1):1–14. doi: 10.1038/s42003-019-0611-3 PubMed DOI PMC

Lozano-Montes L, Dimanico M, Mazloum R, Li W, Nair J, Kintscher M, et al.. Optogenetic stimulation of basal forebrain parvalbumin neurons activates the default mode network and associated behaviors. Cell Reports. 2020;33(6):108359. doi: 10.1016/j.celrep.2020.108359 PubMed DOI

Peeters LM, van den Berg M, Hinz R, Majumdar G, Pintelon I, Keliris GA. Cholinergic modulation of the default mode like network in rats. iScience. 2020;23(9):101455. doi: 10.1016/j.isci.2020.101455 PubMed DOI PMC

Colangelo C, Shichkova P, Keller D, Markram H, Ramaswamy S. Cellular, synaptic and network effects of acetylcholine in the neocortex. Frontiers in Neural Circuits. 2019;13:24. doi: 10.3389/fncir.2019.00024 PubMed DOI PMC

Krishnan GP, González OC, Bazhenov M. Origin of slow spontaneous resting-state neuronal fluctuations in brain networks. Proceedings of the National Academy of Sciences. 2018;115(26):6858–6863. doi: 10.1073/pnas.1715841115 PubMed DOI PMC

Schmitt O, Eipert P. neuroVIISAS: approaching multiscale simulation of the rat connectome. Neuroinformatics. 2012;10(3):243–267. doi: 10.1007/s12021-012-9141-6 PubMed DOI

Alexander GM, Rogan SC, Abbas AI, Armbruster BN, Pei Y, Allen JA, et al.. Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron. 2009;63(1):27–39. doi: 10.1016/j.neuron.2009.06.014 PubMed DOI PMC

Zou QH, Zhu CZ, Yang Y, Zuo XN, Long XY, Cao QJ, et al.. An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF. Journal of Neuroscience Methods. 2008;172(1):137–141. doi: 10.1016/j.jneumeth.2008.04.012 PubMed DOI PMC

McCormick DA, Prince DA. Mechanisms of action of acetylcholine in the guinea-pig cerebral cortex in vitro. The Journal of Physiology. 1986;375(1):169–194. doi: 10.1113/jphysiol.1986.sp016112 PubMed DOI PMC

McCormick DA. Neurotransmitter actions in the thalamus and cerebral cortex and their role in neuromodulation of thalamocortical activity. Progress in Neurobiology. 1992;39(4):337–388. doi: 10.1016/0301-0082(92)90012-4 PubMed DOI

McCormick DA, Wang Z, Huguenard J. Neurotransmitter control of neocortical neuronal activity and excitability. Cerebral Cortex. 1993;3(5):387–398. doi: 10.1093/cercor/3.5.387 PubMed DOI

Galvin VC, Yang ST, Paspalas CD, Yang Y, Jin LE, Datta D, et al.. Muscarinic M1 receptors modulate working memory performance and activity via KCNQ potassium channels in the primate prefrontal cortex. Neuron. 2020;106(4):649–661. doi: 10.1016/j.neuron.2020.02.030 PubMed DOI PMC

Gil Z, Connors BW, Amitai Y. Efficacy of thalamocortical and intracortical synaptic connections: quanta, innervation, and reliability. Neuron. 1999;23(2):385–397. doi: 10.1016/S0896-6273(00)80788-6 PubMed DOI

Hsieh CY, Cruikshank SJ, Metherate R. Differential modulation of auditory thalamocortical and intracortical synaptic transmission by cholinergic agonist. Brain Research. 2000;880(1-2):51–64. doi: 10.1016/S0006-8993(00)02766-9 PubMed DOI

Vijayraghavan S, Major AJ, Everling S. Muscarinic M1 receptor overstimulation disrupts working memory activity for rules in primate prefrontal cortex. Neuron. 2018;98(6):1256–1268. doi: 10.1016/j.neuron.2018.05.027 PubMed DOI

Kawaguchi Y. Selective cholinergic modulation of cortical GABAergic cell subtypes. Journal of Neurophysiology. 1997;78(3):1743–1747. doi: 10.1152/jn.1997.78.3.1743 PubMed DOI

Lu J, Tucciarone J, Padilla-Coreano N, He M, Gordon JA, Huang ZJ. Selective inhibitory control of pyramidal neuron ensembles and cortical subnetworks by chandelier cells. Nature Neuroscience. 2017;20(10):1377–1383. doi: 10.1038/nn.4624 PubMed DOI PMC

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al.. Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. NeuroImage. 2002;15(1):273–289. doi: 10.1006/nimg.2001.0978 PubMed DOI

Schilling KG, Daducci A, Maier-Hein K, Poupon C, Houde JC, Nath V, et al.. Challenges in diffusion MRI tractography–Lessons learned from international benchmark competitions. Magnetic Resonance Imaging. 2019;57:194–209. doi: 10.1016/j.mri.2018.11.014 PubMed DOI PMC

Škoch A, Rehák Bučková B, Mareš J, Tintěra J, Sanda P, Jajcay L, et al.. Human brain structural connectivity matrices–ready for modelling. Scientific Data. 2022;9(1):1–9. doi: 10.1038/s41597-022-01596-9 PubMed DOI PMC

Straathof M, Sinke MR, Dijkhuizen RM, Otte WM. A systematic review on the quantitative relationship between structural and functional network connectivity strength in mammalian brains. Journal of Cerebral Blood Flow & Metabolism. 2019;39(2):189–209. doi: 10.1177/0271678X18809547 PubMed DOI PMC

Kopal J, Pidnebesna A, Tomeček D, Tintěra J, Hlinka J. Typicality of functional connectivity robustly captures motion artifacts in rs-fMRI across datasets, atlases, and preprocessing pipelines. Human Brain Mapping. 2020;41(18):5325–5340. doi: 10.1002/hbm.25195 PubMed DOI PMC

Bartoň M, Mareček R, Krajčovičová L, Slavíček T, Kašpárek T, Zemánková P, et al.. Evaluation of different cerebrospinal fluid and white matter fMRI filtering strategies—Quantifying noise removal and neural signal preservation. Human Brain Mapping. 2019;40(4):1114–1138. doi: 10.1002/hbm.24433 PubMed DOI PMC

Schirner M, Rothmeier S, Jirsa VK, McIntosh AR, Ritter P. An automated pipeline for constructing personalized virtual brains from multimodal neuroimaging data. NeuroImage. 2015;117:343–357. doi: 10.1016/j.neuroimage.2015.03.055 PubMed DOI

Messé A, Rudrauf D, Giron A, Marrelec G. Predicting functional connectivity from structural connectivity via computational models using MRI: an extensive comparison study. NeuroImage. 2015;111:65–75. doi: 10.1016/j.neuroimage.2015.02.001 PubMed DOI

Bonacich P. Factoring and weighting approaches to status scores and clique identification. Journal of Mathematical Sociology. 1972;2(1):113–120. doi: 10.1080/0022250X.1972.9989806 DOI

Lohmann G, Margulies DS, Horstmann A, Pleger B, Lepsien J, Goldhahn D, et al.. Eigenvector centrality mapping for analyzing connectivity patterns in fMRI data of the human brain. PloS One. 2010;5(4):e10232. doi: 10.1371/journal.pone.0010232 PubMed DOI PMC

Chandler DJ, Lamperski CS, Waterhouse BD. Identification and distribution of projections from monoaminergic and cholinergic nuclei to functionally differentiated subregions of prefrontal cortex. Brain Research. 2013;1522:38–58. doi: 10.1016/j.brainres.2013.04.057 PubMed DOI PMC

Bloem B, Schoppink L, Rotaru DC, Faiz A, Hendriks P, Mansvelder HD, et al.. Topographic mapping between basal forebrain cholinergic neurons and the medial prefrontal cortex in mice. Journal of Neuroscience. 2014;34(49):16234–16246. doi: 10.1523/JNEUROSCI.3011-14.2014 PubMed DOI PMC

Fröhlich F, Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Slow state transitions of sustained neural oscillations by activity-dependent modulation of intrinsic excitability. Journal of Neuroscience. 2006;26(23):6153–6162. doi: 10.1523/JNEUROSCI.5509-05.2006 PubMed DOI PMC

Fröhlich F, Sejnowski TJ, Bazhenov M. Network bistability mediates spontaneous transitions between normal and pathological brain states. Journal of Neuroscience. 2010;30(32):10734–10743. doi: 10.1523/JNEUROSCI.1239-10.2010 PubMed DOI PMC

Krishnan GP, Bazhenov M. Ionic dynamics mediate spontaneous termination of seizures and postictal depression state. Journal of Neuroscience. 2011;31(24):8870–8882. doi: 10.1523/JNEUROSCI.6200-10.2011 PubMed DOI PMC

Raichle ME. The brain’s default mode network. Annual Review of Neuroscience. 2015;38:433–447. doi: 10.1146/annurev-neuro-071013-014030 PubMed DOI

Smith SM, Fox PT, Miller KL, Glahn DC, Fox PM, Mackay CE, et al.. Correspondence of the brain’s functional architecture during activation and rest. Proceedings of the National Academy of Sciences. 2009;106(31):13040–13045. doi: 10.1073/pnas.0905267106 PubMed DOI PMC

Shulman GL, Fiez JA, Corbetta M, Buckner RL, Miezin FM, Raichle ME, et al.. Common blood flow changes across visual tasks: II. Decreases in Cerebral Cortex. Journal of Cognitive Neuroscience. 1997;9(5):648–663. doi: 10.1162/jocn.1997.9.5.648 PubMed DOI

Fransson P. How default is the default mode of brain function?: Further evidence from intrinsic BOLD signal fluctuations. Neuropsychologia. 2006;44(14):2836–2845. doi: 10.1016/j.neuropsychologia.2006.06.017 PubMed DOI

Northoff G, Qin P, Nakao T. Rest-stimulus interaction in the brain: a review. Trends in Neurosciences. 2010;33(6):277–284. doi: 10.1016/j.tins.2010.02.006 PubMed DOI

Lee SH, Dan Y. Neuromodulation of brain states. Neuron. 2012;76(1):209–222. doi: 10.1016/j.neuron.2012.09.012 PubMed DOI PMC

Thiele A, Bellgrove MA. Neuromodulation of attention. Neuron. 2018;97(4):769–785. doi: 10.1016/j.neuron.2018.01.008 PubMed DOI PMC

Picciotto MR, Higley MJ, Mineur YS. Acetylcholine as a neuromodulator: cholinergic signaling shapes nervous system function and behavior. Neuron. 2012;76(1):116–129. doi: 10.1016/j.neuron.2012.08.036 PubMed DOI PMC

Menon V, Uddin LQ. Saliency, switching, attention and control: a network model of insula function. Brain Structure and Function. 2010;214(5):655–667. doi: 10.1007/s00429-010-0262-0 PubMed DOI PMC

Spreng RN, Sepulcre J, Turner GR, Stevens WD, Schacter DL. Intrinsic architecture underlying the relations among the default, dorsal attention, and frontoparietal control networks of the human brain. Journal of Cognitive Neuroscience. 2013;25(1):74–86. doi: 10.1162/jocn_a_00281 PubMed DOI PMC

Gratwicke J, Kahan J, Zrinzo L, Hariz M, Limousin P, Foltynie T, et al.. The nucleus basalis of Meynert: a new target for deep brain stimulation in dementia? Neuroscience & Biobehavioral Reviews. 2013;37(10):2676–2688. doi: 10.1016/j.neubiorev.2013.09.003 PubMed DOI

Zaborszky L, Csordas A, Mosca K, Kim J, Gielow MR, Vadasz C, et al.. Neurons in the basal forebrain project to the cortex in a complex topographic organization that reflects corticocortical connectivity patterns: an experimental study based on retrograde tracing and 3D reconstruction. Cerebral Cortex. 2015;25(1):118–137. doi: 10.1093/cercor/bht210 PubMed DOI PMC

Zaborszky L, Hoemke L, Mohlberg H, Schleicher A, Amunts K, Zilles K. Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain. NeuroImage. 2008;42(3):1127–1141. doi: 10.1016/j.neuroimage.2008.05.055 PubMed DOI PMC

Chiang-shan RL, Ide JS, Zhang S, Hu S, Chao HH, Zaborszky L. Resting state functional connectivity of the basal nucleus of Meynert in humans: in comparison to the ventral striatum and the effects of age. NeuroImage. 2014;97:321–332. doi: 10.1016/j.neuroimage.2014.04.019 PubMed DOI PMC

Nazari M, Abadchi JK, Naghizadeh M, Contreras EB, Tatsuno M, McNaughton BL, et al.. Regional variation in cholinergic terminal activity determines the non-uniform occurrence of cortical slow-wave activity during REM sleep. bioRxiv. 2022. PubMed

Turchi J, Chang C, Frank QY, Russ BE, David KY, Cortes CR, et al.. The basal forebrain regulates global resting-state fMRI fluctuations. Neuron. 2018;97(4):940–952. doi: 10.1016/j.neuron.2018.01.032 PubMed DOI PMC

Yang C, McKenna JT, Brown RE. Intrinsic membrane properties and cholinergic modulation of mouse basal forebrain glutamatergic neurons in vitro. Neuroscience. 2017;352:249–261. doi: 10.1016/j.neuroscience.2017.04.002 PubMed DOI PMC

Gielow MR, Zaborszky L. The input-output relationship of the cholinergic basal forebrain. Cell Reports. 2017;18(7):1817–1830. doi: 10.1016/j.celrep.2017.01.060 PubMed DOI PMC

Espinosa N, Alonso A, Lara-Vasquez A, Fuentealba P. Basal forebrain somatostatin cells differentially regulate local gamma oscillations and functionally segregate motor and cognitive circuits. Scientific Reports. 2019;9(1):1–12. doi: 10.1038/s41598-019-39203-4 PubMed DOI PMC

Espinosa N, Alonso A, Morales C, Espinosa P, Chávez AE, Fuentealba P. Basal forebrain gating by somatostatin neurons drives prefrontal cortical activity. Cerebral Cortex. 2019;29(1):42–53. doi: 10.1093/cercor/bhx302 PubMed DOI

Vincent JL, Patel GH, Fox MD, Snyder AZ, Baker JT, Van Essen DC, et al.. Intrinsic functional architecture in the anaesthetized monkey brain. Nature. 2007;447(7140):83–86. doi: 10.1038/nature05758 PubMed DOI

Rilling JK, Barks SK, Parr LA, Preuss TM, Faber TL, Pagnoni G, et al.. A comparison of resting-state brain activity in humans and chimpanzees. Proceedings of the National Academy of Sciences. 2007;104(43):17146–17151. doi: 10.1073/pnas.0705132104 PubMed DOI PMC

Popa D, Popescu AT, Paré D. Contrasting activity profile of two distributed cortical networks as a function of attentional demands. Journal of Neuroscience. 2009;29(4):1191–1201. doi: 10.1523/JNEUROSCI.4867-08.2009 PubMed DOI PMC

Lu H, Zou Q, Gu H, Raichle ME, Stein EA, Yang Y. Rat brains also have a default mode network. Proceedings of the National Academy of Sciences. 2012;109(10):3979–3984. doi: 10.1073/pnas.1200506109 PubMed DOI PMC

Stafford JM, Jarrett BR, Miranda-Dominguez O, Mills BD, Cain N, Mihalas S, et al.. Large-scale topology and the default mode network in the mouse connectome. Proceedings of the National Academy of Sciences. 2014;111(52):18745–18750. doi: 10.1073/pnas.1404346111 PubMed DOI PMC

Zhou ZC, Salzwedel AP, Radtke-Schuller S, Li Y, Sellers KK, Gilmore JH, et al.. Resting state network topology of the ferret brain. NeuroImage. 2016;143:70–81. doi: 10.1016/j.neuroimage.2016.09.003 PubMed DOI PMC

Kim T, Thankachan S, McKenna JT, McNally JM, Yang C, Choi JH, et al.. Cortically projecting basal forebrain parvalbumin neurons regulate cortical gamma band oscillations. Proceedings of the National Academy of Sciences. 2015;112(11):3535–3540. doi: 10.1073/pnas.1413625112 PubMed DOI PMC

Yang C, McKenna JT, Zant JC, Winston S, Basheer R, Brown RE. Cholinergic neurons excite cortically projecting basal forebrain GABAergic neurons. Journal of Neuroscience. 2014;34(8):2832–2844. doi: 10.1523/JNEUROSCI.3235-13.2014 PubMed DOI PMC

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, et al.. Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences. 2009;106(6):2035–2040. doi: 10.1073/pnas.0811168106 PubMed DOI PMC

Hermundstad AM, Bassett DS, Brown KS, Aminoff EM, Clewett D, Freeman S, et al.. Structural foundations of resting-state and task-based functional connectivity in the human brain. Proceedings of the National Academy of Sciences. 2013;110(15):6169–6174. doi: 10.1073/pnas.1219562110 PubMed DOI PMC

Suárez LE, Markello RD, Betzel RF, Misic B. Linking structure and function in macroscale brain networks. Trends in Cognitive Sciences. 2020;24(4):302–315. doi: 10.1016/j.tics.2020.01.008 PubMed DOI

Thomas C, Ye FQ, Irfanoglu MO, Modi P, Saleem KS, Leopold DA, et al.. Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited. Proceedings of the National Academy of Sciences. 2014;111(46):16574–16579. doi: 10.1073/pnas.1405672111 PubMed DOI PMC

Maier-Hein KH, Neher PF, Houde JC, Côté MA, Garyfallidis E, Zhong J, et al.. The challenge of mapping the human connectome based on diffusion tractography. Nature Communications. 2017;8(1):1–13. doi: 10.1038/s41467-017-01285-x PubMed DOI PMC

Messé A, Rudrauf D, Benali H, Marrelec G. Relating structure and function in the human brain: relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Computational Biology. 2014;10(3):e1003530. doi: 10.1371/journal.pcbi.1003530 PubMed DOI PMC

Roland JL, Snyder AZ, Hacker CD, Mitra A, Shimony JS, Limbrick DD, et al.. On the role of the corpus callosum in interhemispheric functional connectivity in humans. Proceedings of the National Academy of Sciences. 2017;114(50):13278–13283. doi: 10.1073/pnas.1707050114 PubMed DOI PMC

Liégeois R, Santos A, Matta V, Van De Ville D, Sayed AH. Revisiting correlation-based functional connectivity and its relationship with structural connectivity. Network Neuroscience. 2020;4(4):1235–1251. doi: 10.1162/netn_a_00166 PubMed DOI PMC

Damoiseaux JS, Rombouts SA, Barkhof F, Scheltens P, Stam CJ, Smith SM, et al.. Consistent resting-state networks across healthy subjects. Proceedings of the National Academy of Sciences. 2006;103(37):13848–13853. doi: 10.1073/pnas.0601417103 PubMed DOI PMC

Everitt BJ, Robbins TW. Central cholinergic systems and cognition. Annual review of psychology. 1997;48(1):649–684. doi: 10.1146/annurev.psych.48.1.649 PubMed DOI

Sun Y, Yin Q, Fang R, Yan X, Wang Y, Bezerianos A, et al.. Disrupted functional brain connectivity and its association to structural connectivity in amnestic mild cognitive impairment and Alzheimer’s disease. PloS One. 2014;9(5):e96505. doi: 10.1371/journal.pone.0096505 PubMed DOI PMC

Chen ZR, Huang JB, Yang SL, Hong FF. Role of cholinergic signaling in Alzheimer’s disease. Molecules. 2022;27(6):1816. doi: 10.3390/molecules27061816 PubMed DOI PMC

Ferreira-Vieira TH, Guimaraes IM, Silva FR, Ribeiro FM. Alzheimer’s disease: targeting the cholinergic system. Current Neuropharmacology. 2016;14(1):101–115. doi: 10.2174/1570159X13666150716165726 PubMed DOI PMC

Lorenzini L, Ingala S, Collij LE, Wottschel V, Haller S, Blennow K, et al.. Eigenvector centrality dynamics are related to Alzheimer’s disease pathological changes in non-demented individuals. Brain Communications. 2023;5(3). doi: 10.1093/braincomms/fcad088 PubMed DOI PMC

Klaassens BL, Rombouts SA, Winkler AM, van Gorsel HC, van der Grond J, van Gerven JM. Time related effects on functional brain connectivity after serotonergic and cholinergic neuromodulation. Human Brain Mapping. 2017;38(1):308–325. doi: 10.1002/hbm.23362 PubMed DOI PMC

Greicius MD, Krasnow B, Reiss AL, Menon V. Functional connectivity in the resting brain: a network analysis of the default mode hypothesis. Proceedings of the National Academy of Sciences. 2003;100(1):253–258. doi: 10.1073/pnas.0135058100 PubMed DOI PMC

Andrews-Hanna JR, Smallwood J, Spreng RN. The default network and self-generated thought: Component processes, dynamic control, and clinical relevance. Annals of the New York Academy of Sciences. 2014;1316(1):29–52. doi: 10.1111/nyas.12360 PubMed DOI PMC

Konishi M, McLaren DG, Engen H, Smallwood J. Shaped by the past: the default mode network supports cognition that is independent of immediate perceptual input. PLoS One. 2015;10(6):e0132209. doi: 10.1371/journal.pone.0132209 PubMed DOI PMC

Fox MD, Zhang D, Snyder AZ, Raichle ME. The global signal and observed anticorrelated resting state brain networks. Journal of Neurophysiology. 2009;101(6):3270–3283. doi: 10.1152/jn.90777.2008 PubMed DOI PMC

Harrison BJ, Davey CG, Savage HS, Jamieson AJ, Leonards CA, Moffat BA, et al.. Dynamic subcortical modulators of human default mode network function. Cerebral Cortex. 2022;32(19):4345–4355. doi: 10.1093/cercor/bhab487 PubMed DOI PMC

González OC, Krishnan GP, Chauvette S, Timofeev I, Sejnowski T, Bazhenov M. Modeling of age-dependent epileptogenesis by differential homeostatic synaptic scaling. Journal of Neuroscience. 2015;35(39):13448–13462. doi: 10.1523/JNEUROSCI.5038-14.2015 PubMed DOI PMC

Krishnan GP, Filatov G, Shilnikov A, Bazhenov M. Electrogenic properties of the Na+/K+ ATPase control transitions between normal and pathological brain states. Journal of Neurophysiology. 2015;113(9):3356–3374. doi: 10.1152/jn.00460.2014 PubMed DOI PMC

Bazhenov M, Timofeev I, Steriade M, Sejnowski TJ. Potassium model for slow (2-3 Hz) in vivo neocortical paroxysmal oscillations. Journal of Neurophysiology. 2004;92(2):1116–1132. doi: 10.1152/jn.00529.2003 PubMed DOI PMC

Fröhlich F, Bazhenov M. Coexistence of tonic firing and bursting in cortical neurons. Physical Review E. 2006;74(3):031922. doi: 10.1103/PhysRevE.74.031922 PubMed DOI

Lee WH, Frangou S. Linking functional connectivity and dynamic properties of resting-state networks. Scientific Reports. 2017;7(1):1–10. doi: 10.1038/s41598-017-16789-1 PubMed DOI PMC

Logothetis NK, Pauls J, Augath M, Trinath T, Oeltermann A. Neurophysiological investigation of the basis of the fMRI signal. Nature. 2001;412(6843):150–157. doi: 10.1038/35084005 PubMed DOI

Viswanathan A, Freeman RD. Neurometabolic coupling in cerebral cortex reflects synaptic more than spiking activity. Nature Neuroscience. 2007;10(10):1308–1312. doi: 10.1038/nn1977 PubMed DOI

Ashburner J, Barnes G, Chen CC, Daunizeau J, Flandin G, Friston K, et al.. SPM12 manual. Wellcome Trust Centre for Neuroimaging, London, UK. 2014;.

Melicher T, Horacek J, Hlinka J, Spaniel F, Tintera J, Ibrahim I, et al.. White matter changes in first episode psychosis and their relation to the size of sample studied: a DTI study. Schizophrenia Research. 2015;162(1-3):22–28. doi: 10.1016/j.schres.2015.01.029 PubMed DOI

Hlinka J, Paluš M, Vejmelka M, Mantini D, Corbetta M. Functional connectivity in resting-state fMRI: is linear correlation sufficient? NeuroImage. 2011;54(3):2218–2225. doi: 10.1016/j.neuroimage.2010.08.042 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...